
An Alphabet-Friendly FM-index?

Paolo Ferragina1, Giovanni Manzini2, Veli Mäkinen3, and Gonzalo Navarro4

1 Dipartimento di Informatica, University of Pisa, Italy.
2 Dipartimento di Informatica, University of Piemonte Orientale, Italy.

3 Department of Computer Science, University of Helsinki, Finland.
4 Department of Computer Science, University of Chile, Chile.

Abstract. We show that, by combining an existing compression boost-
ing technique with the wavelet tree data structure, we are able to design
a variant of the FM-index which scales well with the size of the input
alphabet Σ. The size of the new index built on a string T [1, n] is bounded
by nHk(T)+O

(
(n log log n)/ log|Σ| n

)
bits, where Hk(T) is the k-th order

empirical entropy of T .
The above bound holds simultaneously for all k ≤ α log|Σ| n and 0 <
α < 1. Moreover, the index design does not depend on the parameter k,
which plays a role only in analysis of the space occupancy.
Using our index, the counting of the occurrences of an arbitrary pat-
tern P [1, p] as a substring of T takes O(p log |Σ|) time. Locating each
pattern occurrence takes O(log |Σ| (log2 n/ log log n)) time. Reporting a
text substring of length ` takes O((` + log2 n/ log log n) log |Σ|) time.

1 Introduction

A full-text index is a data structure built over a text string T [1, n] that supports
the efficient search for an arbitrary pattern as a substring of the indexed text.
A self-index is a full-text index that encapsulates the indexed text T , without
hence requiring its explicit storage.

The FM-index [3] has been the first self-index in the literature to achieve
a space occupancy close to the k-th order entropy of T—hereafter denoted by
Hk(T) (see Section 2.1). Precisely, the FM-index occupies at most 5nHk(T) +
o(n) bits of storage, and allows the search for the occ occurrences of a pattern
P [1, p] within T in O(p+occ log1+ε n) time, where ε > 0 is an arbitrary constant
fixed in advance. It can display any text substring of length ` in O(` + log1+ε n)
time. The design of the FM-index is based upon the relationship between the
Burrows-Wheeler compression algorithm [1] and the suffix array data struc-
ture [16, 9]. It is therefore a sort of compressed suffix array that takes advantage
of the compressibility of the indexed text in order to achieve space occupancy
close to the Information Theoretic minimum. Indeed, the design of the FM-index
does not depend on the parameter k and its space bound holds simultaneously
? Partially supported by the Italian MIUR projects ALINWEB and ECD and Grid.it and
‘‘Piattaforma distribuita ad alte prestazioni’’, and by the Chilean Fonde-
cyt Grant 1-020831.

over all k ≥ 0. These remarkable theoretical properties have been validated by
experimental results [4, 5] and applications [14, 21].

The above bounds on the FM-index space occupancy and query time have
been obtained assuming that the size of the input alphabet is a constant. Hidden
in the big-O notation there is an exponential dependency on the alphabet size
in the space bound, and a linear dependency on the alphabet size in the time
bounds. More specifically, the search time is O(p + occ |Σ| log1+ε n) and the
time to display a text substring is O((` + log1+ε n) |Σ|). Although in practical
implementations of the FM-index [4, 5] these dependencies are removed with
only a small penalty in the query time, it is worthwhile to investigate whether
it is possible to build a more “alphabet-friendly” FM-index.

In this paper we use the compression boosting technique [2, 7] and the wavelet
tree data structure [11] to design a version of the FM-index which scales well
with the size of the alphabet. Compression boosting partitions the Burrows-
Wheeler transformed text into contiguous areas in order to maximize the overall
compression achievable with zero-order compressors used over each area. The
wavelet tree offers a zero-order compression and also permits answering some
simple queries over the compressed area.

The resulting data structure indexes a string T [1, n] drawn from an al-
phabet Σ using nHk(T) + O

(
(n log log n)/ log|Σ| n

)
bits of storage. The above

bound holds simultaneously for all k ≤ α log|Σ| n and 0 < α < 1. The struc-
ture of our index is extremely simple and does not depend on the parame-
ter k, which plays a role only in the analysis of the space occupancy. With
our index, the counting of the occurrences of an arbitrary pattern P [1, p] as a
substring of T takes O(p log |Σ|) time. Locating each pattern occurrence takes
O(log |Σ| (log2 n/ log log n)) time. Displaying a text substring of length ` takes
O((` + log2 n/ log log n) log |Σ|) time. Compared to the original FM-index, we
note that the new version scales better with the alphabet size in all aspects.
Albeit the time to count pattern occurrences has increased, that of locating
occurrences and displaying text substrings has decreased.

Recently, various compressed full-text indexes have been proposed in the
literature achieving several time/space trade-offs [13, 20, 18, 11, 12, 10]. Among
them, the one with the smallest space occupancy is the data structure described
in [11] (Theorems 4.2 and 5.2) that achieves O(p log |Σ| + polylog(n)) time to
count the pattern occurrences, O(log |Σ| (` + log2 n/ log log n)) time to locate
and display a substring of length `, and uses nHk(T)+O

(
(n log log n)/ log|Σ| n

)
bits of storage. The space bound holds for a fixed k which must be chosen in
advance, i.e., when the index is built. The parameter k must satisfy the constraint
k ≤ α log|Σ| n with 0 < α < 1, which is the same limitation that we have for our
space bound. An alternative way to reduce the alphabet dependence of the FM-
index has been proposed in [10], where the resulting space bound is the higher
O((H0 + 1)n) although based on a simpler solution to implement.

To summarize, our data structure is extremely simple, has the smallest
known space occupancy, and counts the occurrences faster than the data struc-

ture in [11], which is the only other compressed index known to date with a
nHk(T) + o(n) space occupancy.

2 Background and notation

Hereafter we assume that T [1, n] is the text we wish to index, compress and
query. T is drawn from an alphabet Σ of size |Σ|. By T [i] we denote the i-th
character of T , T [i, n] denotes the ith text suffix, and T [1, i] denotes the ith text
prefix. We write |w| to denote the length of string w.

2.1 The k-th order empirical entropy

Following a well established practice in Information Theory, we lower bound the
space needed to store a string T by using the notion of empirical entropy. The
empirical entropy is similar to the entropy defined in the probabilistic setting
with the difference that it is defined in terms of the character frequencies ob-
served in T rather than in terms of character probabilities. The key property
of empirical entropy is that it is defined pointwise for any string T and can
be used to measure the performance of compression algorithms as a function
of the string structure, thus without any assumption on the input source. In a
sense, compression bounds produced in terms of empirical entropy are worst-case
measures.

Formally, the zero-th order empirical entropy of T is defined as H0(T) =
−

∑
i(ni/n) log(ni/n), where ni is the number of occurrences of the i-th alphabet

character in T , n =
∑

i ni = |T |, and all logarithms are taken to the base 2 (with
0 log 0 = 0). To introduce the concept of k-th order empirical entropy we need
to define what is a context. A length-k context w in T is one of its substrings
of length k. Given w, we denote by

→
wT the string formed by concatenating all

the symbols following the occurrences of w in T , taken from left to right. For
example, if T = mississippi then

→
sT = sisi and

→
siT = sp. The k-th order

empirical entropy of T is defined as:

Hk(T) =
1
n

∑
w∈Σk

|→wT |H0(
→
wT). (1)

The k-th order empirical entropy Hk(T) is a lower bound to the output size of
any compressor which encodes each character of T using a uniquely decipherable
code that depends only on the character itself and on the k characters preceding
it. For any k ≥ 0 we have Hk(T) ≤ log |Σ|. Note that for strings with many
regularities we may have Hk(T) = o(1). This is unlike the entropy defined in the
probabilistic setting which is always a constant. As an example, for T = (ab)n/2

we have H0(T) = 1 and Hk(T) = O((log n)/n) for any k ≥ 1.

mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

issippi#miss

ssippi#missi

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

=⇒

F T bwt

mississipp i

i #mississip p

i ppi#missis s

i ssippi#mis s

i ssissippi# m

m ississippi #

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

Fig. 1. Example of Burrows-Wheeler transform for the string T = mississippi. The
matrix on the right has the rows sorted in lexicographic order. The output of the BWT
is the last column; in this example the string ipssm#pissii.

2.2 The Burrows-Wheeler transform

In [1] Burrows and Wheeler introduced a new compression algorithm based on
a reversible transformation now called the Burrows-Wheeler Transform (BWT
from now on). The BWT consists of three basic steps (see Figure 1): (1) append
at the end of T a special character # smaller than any other text character;
(2) form a conceptual matrix MT whose rows are the cyclic shifts of the string
T# sorted in lexicographic order; (3) construct the transformed text T bwt by
taking the last column of matrix MT . Notice that every column of MT , hence
also the transformed text T bwt, is a permutation of T#. In particular the first
column of MT , call it F , is obtained by lexicographically sorting the characters
of T# (or, equally, the characters of T bwt).

We remark that the BWT by itself is not a compression algorithm since T bwt

is just a permutation of T#. However, if T has some regularities the BWT will
“group together” several occurrences of the same character. As a result, the
transformed string T bwt contains long runs of identical characters and turns out
to be highly compressible (see e.g. [1, 17] for details).

Because of the special character #, when we sort the rows of MT we are
essentially sorting the suffixes of T . Therefore there is a strong relation between
the matrix MT and the suffix array built on T . The matrix MT has also other
remarkable properties; to illustrate them we introduce the following notation:
– Let C[·] denote the array of length |Σ| such that C[c] contains the total

number of text characters which are alphabetically smaller than c.
– Let Occ(c, q) denote the number of occurrences of character c in the prefix

T bwt[1, q].
– Let LF (i) = C[T bwt[i]] + Occ(T bwt[i], i).

LF (·) stands for Last-to-First column mapping since the character T bwt[i],
in the last column of MT , is located in the first column F at position LF (i).

For example in Figure 1 we have LF (10) = C[s] + Occ(s, 10) = 12; and in fact
T bwt[10] and F [LF (10)] = F [12] both correspond to the first s in the string
mississippi.

The LF (·) mapping allows us to scan the text T backward. Namely, if T [k] =
T bwt[i] then T [k−1] = T bwt[LF (i)]. For example in Fig. 1 we have that T [3] = s
is the 10th character of T bwt and we correctly have T [2] = T bwt[LF (10)] =
T bwt[12] = i (see [3] for details).

2.3 The FM-index

The FM-index is a self-index that allows to efficiently search for the occurrences
of an arbitrary pattern P [1, p] as a substring of the text T [1, n]. Pattern P is
provided on-line whereas the text T is given to be preprocessed in advance. The
number of pattern occurrences in T is hereafter indicated with occ. The term
self-index highlights the fact that T is not stored explicitly but it can be derived
from the FM-index.

The FM-index consists of a compressed representation of T bwt together with
some auxiliary information which makes it possible to compute in O(1) time
the value Occ(c, q) for any character c and for any q, 0 ≤ q ≤ n. The two
key procedures to operate on the FM-index are: the counting of the number of
pattern occurrences (shortly get rows), and the location of their positions in the
text T (shortly get position). Note that the counting process returns the value
occ, whereas the location process returns occ distinct integers in the range [1, n].

Algorithm get rows(P [1, p])

1. i← p, c← P [p], First← C[c] + 1, Last← C[c + 1];
2. while ((First ≤ Last) and (i ≥ 2)) do
3. c← P [i− 1];
4. First← C[c] + Occ(c, First− 1) + 1;
5. Last← C[c] + Occ(c, Last);
6. i← i− 1;
7. if (Last < First) then return “no rows prefixed by P [1, p]” else return

(First, Last).

Fig. 2. Algorithm get rows for finding the set of rows prefixed by P [1, p], and thus for
counting the pattern’s occurrences occ = Last−First+1. Recall that C[c] is the number
of text characters which are alphabetically smaller than c, and that Occ(c, q) denotes
the number of occurrences of character c in T bwt[1, q].

Figure 2 sketches the pseudocode of the counting operation that works in p
phases, numbered from p to 1. The i-th phase preserves the following invariant:
The parameter First points to the first row of the BWT matrix MT prefixed by
P [i, p], and the parameter Last points to the last row of MT prefixed by P [i, p].

After the final phase, P prefixes the rows between First and Last and thus,
according to the properties of matrix MT (see Section 2.2), we have occ =
Last− First + 1. It is easy to see that the running time of get rows is dominated
by the cost of the 2p computations of the values Occ().

Algorithm get position(i)

1. i′ ← i, t← 0;
2. while row i′ is not marked do
3. i′ ← LF [i′];
4. t← t + 1;
5. return Pos(i′) + t;

Fig. 3. Algorithm get position for the computation of Pos(i).

Given the range (First, Last), we now consider the problem of retrieving the
positions in T of these pattern occurrences. We notice that every row in MT is
prefixed by some suffix of T . For example, in Fig. 1 the fourth row of MT is pre-
fixed by the text suffix T [5, 11] = issippi. Then, for i = First,First+1, . . . , Last
we use procedure get position(i) to find the position in T of the suffix that pre-
fixes the i-th row MT [i]. Such a position is denoted hereafter by Pos(i), and
the pseudocode of get position is given in Figure 3. The intuition underlying
its functioning is simple. We scan backward the text T using the LF (·) map-
ping (see Section 2.2) until a marked position is met. If we mark one text po-
sition every Θ(log2 n/ log log n), the while loop is executed O(log2 n/ log log n)
times. Since the computation of LF (i) can be done via at most |Σ| computa-
tions of Occ(), we have that get position takes O(|Σ| (log2 n/ log log n)) time.
Finally, we observe that marking one position every Θ(log2 n/ log log n) takes
Θ(n log log n/ log n) bits overall. Combining the observations on get position with
the ones for get rows, we get [3]:

Theorem 1. For any string T [1, n] drawn from a constant-sized alphabet Σ,
the FM-index counts the occurrences of any pattern P [1, p] within T taking O(p)
time. The location of each pattern occurrence takes O(|Σ| log2 n/ log log n) time.
The size of the FM-index is bounded by 5nHk(T) + o(n) bits, for any k ≥ 0.

In order to retrieve the content of T [l, r], we must first find the row in MT

that corresponds to r, and then issue ` = r − l + 1 backward steps in T , using
the LF (·) mapping. Starting at the lowest marked text position that follows
r, we perform O(log2 n/ log log n) steps until reaching r. Then we perform `
additional LF-steps to collect the text characters. The resulting complexity is
O((` + log2 n/ log log n) |Σ|).

We point out the existence [6] of a variant of the FM-index that achieves
O(p + occ) query time and uses O(nHk(T) logε n) + o(n) bits of storage. This

data structure exploits the interplay between the Burrows-Wheeler compression
algorithm and the LZ78 algorithm [22]. Notice that this is first full-text index
achieving o(n log n) bits of storage, possibly o(n) on highly compressible texts,
and output sensitivity in the query execution.

As we mentioned in the Introduction, the main drawback of the FM-index
is that, hidden in the o(n) term of the space bound, there are constants which
depend exponentially on the alphabet size |Σ|. In Section 3 we describe a simple
alternative representation of T bwt which takes nHk(T)+O(log |Σ|n log log n

log n) bits
and allows the computation of Occ(c, q) and T bwt[i] in O(log |Σ|) time.

2.4 Compression boosting

The concept of compression boosting has been recently introduced in [2, 7, 8]
opening the door to a new approach to data compression. The key idea is that one
can take an algorithm whose performance can be bounded in terms of the 0-th
order entropy and obtain, via the booster, a new compressor whose performance
can be bounded in terms of the k-th order entropy, simultaneously for all k.
Putting it another way, one can take a compression algorithm that uses no
context information at all and, via the boosting process, obtain an algorithm
that automatically uses the “best possible” contexts.

To simplify the exposition, we now state a boosting theorem in a form which
is slightly different from the version described in [2, 7]. However, the proof of
Theorem 2 can be obtained by a straightforward modification of the proof of
Theorem 4.1 in [7].

Theorem 2. Let A be an algorithm which compresses any string s in less than
|s|H0(s) + f(|s|) bits, where f(·) is a non decreasing concave function. Given
T [1, n] there is a O(n) time procedure that computes a partition s1, s2, . . . , sz of
T bwt such that, for any k ≥ 0, we have

z∑
i=1

|A(si)| ≤
z∑

i=1

(|si|H0(si) + f(|si|)) ≤ nHk(T) + |Σ|kf(n/|Σ|k).

Proof. (Sketch). According to Theorem 4.1 in [7], the booster computes the
partition that minimizes the function

∑z
i=1 |s|H0(si) + f(|si|). To determine

the right side of the above inequality, we consider the partition ŝ1, ŝ2, . . . , ŝm

induced by the contexts of length k in T . For such partition we have m ≤ |Σ|k
and

∑m
i=1 |ŝi|H0(ŝi) = nHk(T). The hypothesis on f implies that

∑m
i=1 f(|ŝi|) ≤

|Σ|kf(n/|Σ|k) and the theorem follows.

To understand the relevance of this result suppose that we want to compress
T [1, n] and that we wish to exploit the zero-th order compressor A. Using the
booster we can first compute the partition s1, s2, . . . , sz of T bwt, and then com-
press each si using A. By the above theorem, the overall space occupancy would
be bounded by

∑
i |A(si)| ≤ nHk(T) + |Σ|kf(n/|Σ|k). Note that the process is

reversible, because the decompression of each si retrieves T bwt, and from T bwt

we can retrieve T using the inverse BWT. Summing up, the booster allows us to
compress T up to its k-th order entropy using only the zero-th order compressor
A. Note that the parameter k is neither known to A nor to the booster, it comes
into play only in the space complexity analysis. Additionally, the space bound
in Theorem 2 holds simultaneously for all k ≥ 0. The only information that is
required by the booster is the function f(n) such that |s|H0(s) + f(|s|) is an
upper bound on the size of the output produced by A on input s.

2.5 The wavelet tree

Given a binary sequence S[1,m] and b ∈ {0, 1}, consider the following operations:
Rankb(S, i) computes the number of b’s in S[1, i], and Selectb(S, i) computes the
position of the i-th b in S[1, i]. In [19] it has been proven the following:

Theorem 3. Let S[1,m] be a binary sequence containing t occurrences of the
digit 1. There exists a data structure (called FID) that supports Rankb(S, i) and
Selectb(S, i) in constant time, and uses

⌈
log

(
m
t

)⌉
+ O((m log log m)/ log m) =

mH0(S) + O((m log log m)/ log m) bits of space.

If, instead of a binary sequence, we have a sequence W [1, w] over an arbitrary
alphabet Σ, a compressed and indexable representation of W is provided by the
wavelet tree [11] which is a clever generalization of the FID data structure.

Theorem 4. Let W [1, w] denote a string over an arbitrary alphabet Σ. The
wavelet tree built on W uses wH0(W) + O(log |Σ| (w log log w)/ log w) bits of
storage and supports in O(log |Σ|) time the following operations:
– given q, 1 ≤ q ≤ w, the retrieval of the character W [q];
– given c ∈ Σ and q, 1 ≤ q ≤ w, the computation of the number of occurrences

OccW (c, q) of c in W [1, q].

To make the paper more self-contained we recall the basic ideas underlying
the wavelet tree. Consider a balanced binary tree T whose leaves contain the
characters of the alphabet Σ. T has depth O(log |Σ|). Each node u of T is
associated with a string Wu that represents the subsequence of W containing
only the characters that descend from u. The root is thus associated with the
entire W . To save space and be alphabet-friendly, the wavelet tree does not
store Wu but a binary image of it, denoted by Bu, that is computed as follows:
Bu[i] = 0 if the character Wu[i] descends from the left child of u, otherwise
Bu[i] = 1. Assume now that every binary sequence Bu is implemented with the
data structure of Theorem 3; then it is an exercise to derive the given space
bounds and to implement OccW (c, q) and retrieve W [q] in O(log |Σ|) time.

3 Alphabet-friendly FM-index

We now have all the tools we need in order to build a version of the FM-index
that scales well with the alphabet size. The crucial observation is the following.

To build the FM-index we need to solve two problems: a) to compress T bwt up
to Hk(T), and b) to compute Occ(c, q) in time independent of n. We use the
boosting technique to transform problem a) into the problem of compressing the
strings s1, s2, . . . , sz up to their zero-th order entropy, and we use the wavelet
tree to create a compressed (up to H0) and indexable representation of each si

thus solving simultaneously problems a) and b). The details of the construction
are given in Figure 4.

1. Use Theorem 2 to determine the optimal partition s1, s2, . . . , sz of T bwt with re-
spect to f(t) = (Kt log |Σ| log log t)/ log t + (1 + |Σ|) log n, where K is such that
(Kt log |Σ| log log t)/ log t is larger than the O((t log |Σ| log log t)/ log t) term in
Theorem 4.

2. Build a binary string B that keeps track of the starting positions in T bwt of the
si’s. The entries of B are all zeroes except for the bits at positions

∑i

j=1
|sj | for

i = 1, . . . , z which are set to 1. Construct the data structure of Theorem 3 over
the binary string B.

3. For each string si, i = 1, . . . , z build:

(a) the array Ci[1, |Σ|] such that Ci[c] stores the occurrences of character c within
s1s2 · · · si−1;

(b) the wavelet tree Ti.

Fig. 4. Construction of an alphabet-friendly FM-index.

To compute T bwt[q], we first determine the substring sy containing the q-th
character of T bwt by computing y = Rank1(B, q). Then we exploit the wavelet
tree Ty to determine T bwt[q]. By Theorem 3 the former step takes O(1) time,
and by Theorem 4 the latter step takes O(log |Σ|) time.

To compute Occ(c, q), we initially determine the substring sy where the row q
occurs, y = Rank1(B, q). Then we exploit the wavelet tree Ty and the array Cy[c]
to compute Occ(c, q) = Occsy

(c, q′) + Cy[c], where q′ = q −
∑y−1

j=1 |sj |. Again, by
Theorems 3 and 4 this computation takes overall O(log |Σ|) time.

Combining these bounds with the results stated in Section 2.3, we obtain that
the alphabet-friendly FM-index takes O(p log |Σ|) time to count the occurrences
of a pattern P [1, p] and O(log |Σ|(log2 n/ log log n)) time to retrieve the position
of each occurrence.

Concerning the space occupancy we observe that by Theorem 3, the storage
of B takes

⌈
log

(
n
z

)⌉
+O((n log log n)/ log n) bits. Each array Ci takes O(|Σ| log n)

bits, and each wavelet tree Ti occupies |si|H0(si) + O
(
|si| log |Σ| log log |si|

log |si|

)
bits

(Theorem 4). Since log
(
n
z

)
≤ z log n, the total occupancy is bounded by

z∑
i=1

(
|si|H0(si)+K|si|

log |Σ| log log |si|
log |si|

+(1+|Σ|) log n
)
+O((n log log n)/ log n) .

Function f(t) defined at Step 1 of Figure 4 was built to match exactly the
overhead space bound we get for each partition, so the partitioning was optimally
built for that overhead. Hence we can apply Theorem 2 to get that the above
summation is bounded by

nHk(T) + O

(
n

log |Σ| log log n

log(n/|Σ|k)

)
+ O

(
|Σ|k+1 log n

)
. (2)

We are interested in bounding the space occupancy in terms of Hk only for
k ≤ α log|Σ| n for some α < 1. In this case we have |Σ|k ≤ nα and (2) becomes

nHk(T) + O(log |Σ|(nlog log n)/log n) . (3)

We achieve the following result:5

Theorem 5. The data structure described in Figure 4 indexes a string T [1, n]
over an arbitrary alphabet |Σ|, using a storage bounded by

nHk(T) + O(log |Σ|(nlog log n)/log n)

bits for any k ≤ α log|Σ| n and 0 < α < 1. We can count the number of oc-
currences of a pattern P [1, p] in T in O(p log |Σ|) time, locate each occurrence
in O(log |Σ|(log2 n/ log log n)) time, and display a text substring of length ` in
O((` + log2 n/ log log n) log |Σ|) time.

It is natural to ask whether a more sophisticated data structure can achieve
a nHk(T) + o(n) space bound without any restriction on the alphabet size or
context length. The answer to this question is negative. To see this, consider the
extreme case in which |Σ| = n, that is, the input string consists of a permutation
of n distinct characters. In this case we have Hk(T) = 0 for k ≥ 1. Since
the representation of such string requires Θ(n log n) bits, a self index of size
nHk(T) + o(n) bits cannot exist.

Finally, we note that the wavelet tree alone, over the full BWT transformed
text T bwt, would be enough to obtain the time bounds we achieved. However,
the resulting structure size would depend on H0(T) rather than Hk(T). The
partitioning of the text into areas is crucial to obtain the latter space bounds.
A previous technique combining wavelet trees with text partitioning [15] takes
each run of equal letters in T bwt as an area. It requires 2n(Hk log |Σ|+1+ o(1))
bits of space and counts pattern occurrences in the optimal O(p) time. It would
be interesting to retain the optimal space complexity obtained in this work and
the optimal search time O(p).

References

1. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

5 If we mark one text position every log1+ε n, the location of each occurrence would
take O(log |Σ| log1+ε n) time and additional O(n/ logε n) bits of storage.

2. P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. Technical Report 240, Dipartimento di Matematica
e Applicazioni, University of Palermo, Italy, 2004.

3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
IEEE Symposium on Foundations of Computer Science (FOCS ’00), pages 390–
398, 2000.

4. P. Ferragina and G. Manzini. An experimental study of a compressed index. In-
formation Sciences: special issue on “Dictionary Based Compression”, 135:13–28,
2001.

5. P. Ferragina and G. Manzini. An experimental study of an opportunistic index.
In ACM-SIAM Symposium on Discrete Algorithms (SODA ’01), pages 269–278,
2001.

6. P. Ferragina and G. Manzini. On compressing and indexing data. Technical Report
TR-02-01, Dipartimento di Informatica, University of Pisa, Italy, 2002.

7. P. Ferragina and G. Manzini. Compression boosting in optimal linear time using
the Burrows-Wheeler transform. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’04), 2004.

8. R. Giancarlo and M. Sciortino. Optimal partitions of strings: A new class of
Burrows-Wheeler compression algorithms. In Combinatorial Pattern Matching
Conference (CPM ’03), pages 129–143, 2003.

9. G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT trees
and PAT arrays. In B. Frakes and R. A. Baeza-Yates and, editors, Information
Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82. Prentice-Hall,
1992.

10. Sz. Grabowski, V. Mäkinen, and G. Navarro. First Huffman, then Burrows-
Wheeler: an alphabet-independent FM-index. In Symposium on String Processing
and Information Retrieval (SPIRE 2004), 2004. Appears in this same volume.

11. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In ACM-SIAM Symposium on Discrete Algorithms (SODA ’03), pages 841–850,
2003.

12. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Exper-
iments on compressing suffix arrays and applications. In ACM-SIAM Symp. on
Discrete Algorithms (SODA ’04), 2004.

13. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In ACM Symposium on Theory of Computing
(STOC ’00), pages 397–406, 2000.

14. J. Healy, E.E. Thomas, J.T. Schwartz, and M. Wigler. Annotating large genomes
with exact word matches. Genome Research, 13:2306–2315, 2003.

15. V. Mäkinen and G. Navarro. New search algorithms and time/space tradeoffs for
succinct suffix arrays. Technical Report C-2004-20, University of Helsinki, Finland,
2004.

16. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

17. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

18. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algo-
rithms, 2(1):87–114, 2004.

19. R. Raman, V. Raman, and S.Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In ACM-SIAM Symposium on
Discrete Algorithms (SODA ’02), pages 233–242, 2002.

20. K. Sadakane. Succinct representations of LCP information and improvements in
the compressed suffix arrays. In ACM-SIAM Symposium on Discrete Algorithms
(SODA ’02), pages 225–232, 2002.

21. K. Sadakane and T. Shibuya. Indexing huge genome sequences for solving various
problems. Genome Informatics, 12:175–183, 2001.

22. J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Transaction on Information Theory, 24:530–536, 1978.

