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Università di Pisa

GIOVANNI MANZINI
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Abstract. Given a sequence S = s1s2 . . . sn of integers smaller than r = O(polylog(n)), we show
how S can be represented using nH0(S) + o(n) bits, so that we can know any sq , as well as answer
rank and select queries on S, in constant time. H0(S) is the zero-order empirical entropy of S and
nH0(S) provides an information-theoretic lower bound to the bit storage of any sequence S via a fixed
encoding of its symbols. This extends previous results on binary sequences, and improves previous
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Hällströmin katu 2b), FI-00014 University of Helsinki, Finland, e-mail: vmakinen@cs.helsinki.fi;
G. Navarro (contact author), Departamento de Ciencias de la Computación, Universidad de Chile,
Blanco Encalada 2120, Santiago, Chile, e-mail: gnavarro@dcc.uchile.cl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1549-6325/2007/05-ART20 $5.00 DOI 10.1145/1240233.1240243 http://doi.acm.org/
10.1145/1240233.1240243

ACM Transactions on Algorithms, Vol. 3, No. 2, Article 20, Publication date: May 2007.



2 P. FERRAGINA ET AL.

results on general sequences where those queries are answered in O(log r ) time. For larger r , we can
still represent S in nH0(S) + o(n log r ) bits and answer queries in O(log r/ log log n) time.

Another contribution of this article is to show how to combine our compressed representation of
integer sequences with a compression boosting technique to design compressed full-text indexes that
scale well with the size of the input alphabet �. Specifically, we design a variant of the FM-index that
indexes a string T [1, n] within nHk(T ) + o(n) bits of storage, where Hk(T ) is the kth-order empirical
entropy of T . This space bound holds simultaneously for all k ≤ α log|�| n, constant 0 < α < 1, and
|�| = O(polylog(n)). This index counts the occurrences of an arbitrary pattern P[1, p] as a substring
of T in O(p) time; it locates each pattern occurrence in O(log1+ε n) time for any constant 0 < ε < 1;
and reports a text substring of length � in O(� + log1+ε n) time.

Compared to all previous works, our index is the first that removes the alphabet-size dependance
from all query times, in particular, counting time is linear in the pattern length. Still, our index uses
essentially the same space of the kth-order entropy of the text T , which is the best space obtained
in previous work. We can also handle larger alphabets of size |�| = O(nβ ), for any 0 < β < 1, by
paying o(n log |�|) extra space and multiplying all query times by O(log |�|/ log log n).

Categories and Subject Descriptors: E.1 [Data]: Data Structures—Arrays; trees; E.4 [Data]: Coding
and Information Theory—Data compaction and compression; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—Pattern matching; sorting and
searching; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—Indexing
methods; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Search
process; I.7.2 [Document and Text Processing]: Document Preparation—Index generation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Text indexing, text compression, entropy, Burrows-Wheeler trans-
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1. Introduction

Recent years have witnessed an increasing interest in succinct data structures. Their
aim is to represent the data using as little space as possible, while efficiently an-
swering queries on the represented data. Several results exist on the representa-
tion of sequences [Jacobson 1989; Munro 1996; Clark 1996; Pagh 1999; Raman
et al. 2002], trees [Munro and Raman 1998; Geary et al. 2004; Ferragina et al.
2005], graphs [Munro and Raman 1998], permutations [Munro et al. 2003], and
texts [Grossi and Vitter 2006; Ferragina and Manzini 2005; Sadakane 2003; Navarro
2004; Grossi et al. 2003], to name a few.

One of the most basic structures, which lies at the heart of the representation
of more complex ones, is binary sequences with rank and select queries. Given a
binary sequence S = s1s2 . . . sn , we denote by Rankc(S, q) the number of times that
bit c appears in S[1, q] = s1s2 . . . sq , and by Selectc(S, q) the position in S of the
qth occurrence of bit c. The best current results [Pagh 1999; Raman et al. 2002]
answer these queries in constant time, retrieve any sq in constant time, and occupy
nH0(S) + o(n) bits of storage, where H0(S) is the zero-order empirical entropy of
S. This space bound includes that for representing S itself, so the binary sequence
is being represented in compressed form yet allows these queries to be answered
optimally.

For the general case of sequences over an arbitrary alphabet of size r , the only
known result is the one in Grossi et al. [2003], which still achieves nH0(S) +
o(n log r ) space occupancy. The data structure in Grossi et al. [2003] is the elegant
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Compressed Representations of Sequences and Full-Text Indexes 3

wavelet tree, taking O(log r ) time to answer Rankc(S, q) and Selectc(S, q) queries,
and to retrieve any character sq .

Our first contribution is a new compressed representation for general sequences
which uses nH0(S) + o(n) bits of space and answers the aforementioned queries in
constant time. This generalizes previous results on binary sequences [Raman et al.
2002] and improves the existing result on general sequences [Grossi et al. 2003]. Our
result holds when the alphabet size is polylogarithmic in sequence length, that is, r =
O(polylog(n)). For larger values of r , we can represent S using nH0(S)+o(n log r )
bits of space and answer all previous queries in O(log r/ log log n) time.

General sequences can be regarded, of course, as texts over an alphabet �. The
difference lies on the types of queries that are of interest for texts. A full-text index
is a data structure built over a text string T [1, n] that supports the efficient search
for arbitrary patterns as substrings of the indexed text. A full-text index is called
compressed if its space occupancy is bounded by λnHk(T ) + o(n log |�|) bits for
some k ≥ 0, where λ is a constant and Hk(T ) is the kth-order entropy of T (see
Section 4.1). If such an index also encapsulates the text without requiring its explicit
storage, then it is called a compressed self-index. Note that a self-index must, in
addition to its search functionality, permit the display of any text substring, as the
text is not separately available.

Recently, there has been a good deal of attention to compressed full-text indexes
because of their obvious applications in text databases. The most succinct self-
index to-date [Grossi et al. 2003] occupies nHk(T ) + O(n log log n/ log|�| n) bits
for a fixed k ≤ α log|�| n and constant 0 < α < 1. It can count the number
of occurrences of a pattern P[1, p] in O(p log |�| + polylog(n)) time, and can
locate each such occurrence in O(log |�| log2 n/ log log n) time. To display a text
substring of length �, it takes the locate time plus O(� log |�|).

Our second contribution (which builds on the first) is a new compressed self-
index that uses nHk(T ) + o(n) bits for any k ≤ α log|�| n and for alphabets of
size |�| = O(polylog(n)). Our index improves upon that in Grossi et al. [2003]
by removing from the query times the dependence on alphabet size and polyloga-
rithmic terms. More precisely: Counting takes O(p) time, locating an occurrence
takes O(log1+ε n) time for any constant ε > 0, and displaying a length-� text sub-
string takes the time for occurrence-locating plus O(�). For alphabets larger than
O(polylog(n)) (and up to O(nβ) for 0 < β < 1), our space requirement becomes
nHk(T ) + o(n log |�|) bits and our query times grow by a multiplicative factor
O(log |�|/ log log n).

The rest of the article is organized as follows. Section 2 explains our contributions
in more detail and relates them to the current literature. Section 3 presents our
new representation for general sequences, while Section 4 deploys such a sequence
representation to design our new compressed self-index. Finally, Section 5 discusses
conclusions and future directions of interesting research.

2. Our Contribution in Context

2.1. SUCCINCT SEQUENCE REPRESENTATIONS. The first results on binary se-
quences [Jacobson 1989; Munro 1996; Clark 1996] achieved constant time on rank
and select queries by using n + o(n) bits. In those schemes, n bits are used by S
itself and o(n) additional bits are needed by the auxiliary data structures that support
the Rankc and Selectc queries. Further refinements [Pagh 1999; Raman et al. 2002]
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4 P. FERRAGINA ET AL.

achieved constant time on the same queries by using a compressed representation of
S, requiring nH0(S)+o(n) bits overall (i.e., for S and the auxiliary data structures).
These solutions also support the constant-time retrieval of any bit sq , given q.

The case of general sequences, whose symbols are drawn from the range [1, r ],
has received less attention. The only existing proposal is the wavelet tree [Grossi
et al. 2003], a powerful and elegant data structure that allows reducing rank and
select operations over general sequences to rank and select operations over bi-
nary (compressed) sequences. By using the results in Pagh [1999] and Raman
et al. [2002] for binary sequence representations, the wavelet tree represents S in
nH0(S) + o(n log r ) bits and answers sq , Rankc(S, q), and Selectc(S, q) queries in
O(log r ) time.

In this article we generalize the result on binary sequences [Pagh 1999; Raman
et al. 2002] to sequences of integers in the range [1, r ], and obtain an improved result.
The main challenge in this generalization is to generate short descriptions for pieces
of the sequence, which can be computed in constant time and used to index into
tables containing partial precomputed queries. This is significantly more complex
than for binary sequences. We obtain a compressed sequence representation using
nH0(S)+ O((rn log log n)/ logr n) bits which answers queries sq , Rankc(S, q), and
Selectc(S, q) in constant time.

This first result is interesting only for small r = o(log n/ log log n), as otherwise
the term O((rn log log n)/ logr n) of the space complexity is �(n log r ). We then
use this sequence representation as a basic block within a generalized wavelet
tree to obtain better results. In fact, the original wavelet tree [Grossi et al. 2003]
is a binary tree whose nodes contain binary sequences representing the original
(general) sequence restricted to a subset of its symbols. In this article we consider a
h-ary generalization of the wavelet tree that, in turn, requires efficient storage into
its nodes of integer sequences from the range [1, h]. By setting h = O(logδ n) with
δ < 1, and using our previous sequence representation to store the wavelet-tree
nodes, we obtain a representation for S that uses nH0(S) + o(n) bits and (optimal)
constant query time for any r = O(polylog(n)). In other words, queries answered in
logarithmic time with binary wavelet trees [Grossi et al. 2003] are now answered in
constant time, within the same asymptotic space occupancy. For larger alphabets, we
can still obtain o(n log r ) extra space over the nH0(S) term and O(log r/ log log n)
query time, again improving upon binary wavelet trees by a sublogarithmic factor.

Note that there are even better results for binary sequences [Raman et al. 2002],
which we have not generalized. For example, it is possible to represent a sequence
with m bits, set taking nH0(S) + o(m) + O(log log n) bits of space and constant
query time for some limited queries. This is better than the result we have focused
on when m is much smaller than n.

2.2. COMPRESSED FULL-TEXT INDEXES. Classical full-text indexes, namely
suffix trees and suffix arrays [Crochemore and Rytter 1994; Manber and Myers
1993; Gonnet et al. 1992], are neither succinct nor self-indexes: They both occupy

(n log n) bits, plus O(n log |�|) bits to represent the indexed text.

The FM-index [Ferragina and Manzini 2005] has been the first self-index in the
literature to achieve a space occupancy proportional to the kth-order entropy of
T [1, n]. Precisely, the FM-index occupies at most 5nHk(T ) + o(n) bits of storage,
and allows one to count the number of occurrences of a pattern P[1, p] within T in
O(p) time. Each such occurrence can be located in O(log1+ε n) time, where ε > 0
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Compressed Representations of Sequences and Full-Text Indexes 5

is an arbitrary constant chosen when the index is built. The FM-index can display
any text substring of length � in O(� + log1+ε n) time. The design of the FM-index
is based upon the relationship between the Burrows-Wheeler compression algo-
rithm [Burrows and Wheeler 1994] and the suffix array data structure [Manber and
Myers 1993; Gonnet et al. 1992]. It is therefore a sort of compressed suffix array
that takes advantage of the compressibility of the indexed text in order to achieve
space occupancy related to the information-theoretic minimum. Indeed, design of
the FM-index does not depend on the parameter k, whereas its space bound holds
simultaneously for any fixed k. These remarkable theoretical properties have been
validated by experimental results [Ferragina and Manzini 2001; Hon et al. 2004]
and applications [Healy et al. 2003; Sadakane and Shibuya 2001].

The aforementioned time and space bounds for the FM-index have been obtained
by assuming that the size of the input alphabet is a constant. Hidden in the big-O
notation there is an exponential dependence on alphabet size in the space bound,
and a linear dependence on alphabet size in the time bounds. More specifically, the
time to locate an occurrence is O(|�| log1+ε n) and that to display a text substring
is O((� + log1+ε n) |�|). In practical implementations of the FM-index [Ferragina
and Manzini 2001] these dependencies have been removed at the expense of a
penalty factor (usually O(log n)) that multiplies all query times, including that for
counting.

We point out that the FM-index concept is more general than the implementa-
tion associated with its initial proposals [Ferragina and Manzini 2005, 2001]. For
the sake of presentation, let us denote now by T bwt the permutation of the text T
given by the Burrows-Wheeler transform [Burrows and Wheeler 1994] (see Sec-
tion 4.2). Assume we implement the computation of Rankc(T bwt , q) and the retrieval
of T bwt [q] in time trnk and tret , respectively, using O(N ) space (where the parameter
N is discussed to follow). The general FM-index concept gives us immediately a
succinct self-index that requires O(N + n/ logε n) space, counts the pattern occur-
rences in O(ptrnk) time, locates any such occurrence in O((trnk + tret ) log1+ε n), and
displays any text substring of length � in O((trnk + tret )(� + log1+ε n)) time (here
and in the rest of this section, ε is a positive parameter chosen when the index is
built). To-date, several implementations of the FM-index concept exist:

(1) the original [Ferragina and Manzini 2005], with trnk = O(1) and tret = O(|�|),
where N = 5nHk(T ) + o(n) contains an exponential dependence on |�| in the
o(n) term;

(2) the one obtained by using the binary wavelet tree [Grossi et al. 2003] to rep-
resent T bwt and to implement the required functions. This yields trnk = tret =
O(log |�|), so counting time deteriorates but locating and displaying times
improve. The space occupancy becomes N = nH0(T ) + o(n log |�|), which
depends only mildly on |�| but has a main term significantly worse than in the
original implementation (since here H0(T ) occurs in place of Hk(T )). Some
variants providing trnk = tret = O(H0(T )) on average, and O(log |�|) in the
worst case, have also been proposed [Mäkinen and Navarro 2004b];

(3) a variant of the compressed suffix array (CSA) introduced by Sadakane [2002].
Although the CSA was originally conceived as completely different from the
FM-index, this specific variant is actually an implementation of the FM-index
concept. It represents T bwt via |�| binary sequences T bwt

c , each indicating the
occurrences of a different character in T bwt . Those sequences are represented
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6 P. FERRAGINA ET AL.

with existing techniques [Pagh 1999], so that Rankc(T bwt , q) = Rank1(T bwt
c , q)

can be answered in constant time. This yields trnk = O(1) and tret = O(|�|) as
in the original implementation. The space occupancy is N = nH0(T ) + O(n).
The scheme works for |�| = O(polylog(n));

(4) that obtained by Huffman-compressing T bwt and then representing the resulting
binary sequence with the techniques in Munro [1996]. This yields trnk = tret =
O(H0(T )) on average and O(log |�|) in the worst case. The space occupancy
is N = 2n(H0(T ) + O(1))(1 + o(1)) [Grabowski et al. 2006]; and

(5) the one obtained by compressing via run-length encoding the sequence T bwt

[Mäkinen and Navarro 2005, 2004b]. This approach obtains either trnk = O(1)
and tret = O(|�|) if |�| = O(polylog(n)) or trnk = tret = O(log |�|) for larger
alphabets. The space occupancy is N = nHk(T ) log |�| + O(n) bits. Notice
that this is the only alternative to the original FM-index with space occupancy
related to the kth-order entropy (although it shows a linear dependence on n
but a milder dependence on |�|).

We note that by directly applying our new sequence representation on T bwt , we
immediately obtain trnk = tret = O(1) time and N = nH0(T ) + o(n), which super-
sedes all the alternatives whose space requirement is proportional to the zero-order
entropy of T (i.e., the preceding items 2, 3, and 4), as long as |�| = O(polylog(n)).
In this article we improve this by making a further step that turns H0(T ) into Hk(T )
in the previous space bound. Precisely, our main result is an implementation of the
FM-index concept with trnk = tret = O(1) time and N = nHk(T ) + o(n), for a
reasonable range of values of k (see the following). Except for the limitation that
|�| = O(polylog(n)), this implementation supersedes all existing implementations
of the FM-index concept, thus can be regarded as the ultimate implementation of the
FM-index. To obtain this result, we combine our sequence representation with the
compression boosting technique introduced in Ferragina et al. [2005]. Compression
boosting partitions the Burrows-Wheeler transformed text into contiguous areas in
order to maximize the overall compression achievable with zero-order compressors
used over each area. Then we use our new sequence representation in each area.
The resulting structure is thus simple. It indexes a string T [1, n] drawn from an
alphabet �, with |�| = O(polylog(n)), using nHk(T )+ O(n/ logε n) bits. The data
structure does not depend on the parameter k and the space bound holds simulta-
neously for all k ≤ α log|�| n and constant 0 < α < 1. With our index, counting
the occurrences of an arbitrary pattern P[1, p] as a substring of T takes O(p) time
(i.e., no alphabet dependence). Locating each pattern occurrence takes O(log1+ε n).
Displaying a text substring of length � takes O(� + log1+ε n) time.

If the size of the alphabet is larger than polylogarithmic, that is, |�| = O(nβ) with
β < 1, our data structure uses nHk(T ) + o(n log |�|) space and the query times are
multiplied by a factor O(log |�|/ log log n). Note that although the space occupancy
can now be �(n), it is still less than the size of the uncompressed text. Moreover,
in terms of query time our index is faster than most FM-index implementations. As
an alternative, if space is more important than query speed, we can use a simplified
version of our index which uses binary wavelet trees instead of our new integer
sequences representation. For any alphabet size, the space occupancy of this latter
index is bounded by nHk(T ) + O

(
log |�|(n log log n/ log n)

)
bits for any k ≤
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TABLE I. COMPARISON OF SPACE, COUNTING TIME, AND RESTRICTIONS ON THE ALPHABET SIZE

AMONG THE BEST KNOWN SELF-INDEXES

Reference Space in bits Counting time Works for |�| =
FM05 5nHk(T ) + o(n) O(p) O(1)
Sad02 nH0(T ) + O(n) O(p) O(polylog(n))
MN05 nHk(T ) log |�| + O(n) O(p) O(polylog(n))
Sad03 nH0(T ) + O(n log log |�|) O(p log n)
GNP + 06 2n(H0(T ) + O(1))(1 + o(1)) O(p log |�|)
GGV03 nHk(T ) + o(n log |�|) O(p log |�| + polylog(n))
Nav04 4nHk(T ) + o(n log |�|) O(p3 log |�| + (p + R) log n)
This paper nHk(T ) + o(n) O(p) O(polylog(n))

nHk(T ) + o(n log |�|) O(p log |�|/ log log n) O(nβ ), β < 1
nHk(T ) + o(n log |�|) O(p log |�|)

The references are: FM05 = [Ferragina and Manzini 2005], Sad02 = [Sadakane 2002], MN05 =
[Mäkinen and Navarro 2005], Sad03 = [Sadakane 2003], GNP + 06 = [Grabowski et al. 2006],
GGV03 = [Grossi et al. 2003], and Nav04 = [Navarro 2004], where R is the number of occurrences
of p.

α log|�| n, and 0 < α < 1. The index takes O(p log |�|) time to count the pattern

occurrences, and O(log |�| (� + log2 n/ log log n)) time to locate and display a
substring of length �.

There exist several other compressed full-text indexes not based on the FM-
index concept [Ferragina and Manzini 2005; Grossi and Vitter 2006; Sadakane
2003; Navarro 2004; Grossi et al. 2003; Foschini et al. 2006; Mäkinen et al. 2004;
Mäkinen and Navarro 2004a]. Among them, the data structure with the smallest
space occupancy is described in Grossi et al. [2003, Thms. 4.2 and 5.2], and uses
nHk(T ) + O

(
log |�|(n log log n/ log n)

)
bits of storage for a fixed k ≤ α log|�| n

with 0 < α < 1 (the parameter k must be chosen when the index is built). The index
in Grossi et al. [2003] takes O(p log |�| + polylog(n)) time to count the pattern
occurrences and O(log |�| (� + log2 n/ log log n)) time to locate and display a
substring of length �. Note that for alphabets of polylogarithmic size our index is
faster in both queries at the cost of a small increase in the big-O terms of the space
occupancy. Note also that for any alphabet size our simplified data structure takes
the same space as the index in Grossi et al. [2003], but is faster in counting the
occurrences and takes the same time in reporting and displaying them.

Finally, we point out that the structure in Grossi et al. [2003] uses binary wavelet
trees to compactly represent sequences. By replacing binary wavelet trees with the
sequence representation described in this article, we can remove the O(log |�|)
factors from their query times.

To summarize, our index has asymptotically the smallest-known space occupancy
and processes all queries faster than the data structure in Grossi et al. [2003], which
is the only other compressed index known to-date with essentially nHk(T ) space
occupancy. Table I summarizes our contribution.

3. Compressed Representation of Sequences

Let S = s1s2 . . . sn be a sequence of n integers in the range [1, r ], called symbols
from now on. In this section we face the problem of supporting Rank and Select
queries on S. The query Rankc(S, q) returns the number of times that symbol
c ∈ [1, r ] appears in S[1, q] = s1s2 . . . sq . The query Selectc(S, q) returns the
position in S of the qth occurrence of symbol c ∈ [1, r ]. Our aim is to represent S in
compressed form, and hence we need to support also the retrieval of any S[q] = sq .
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8 P. FERRAGINA ET AL.

We measure the size of the compressed representation of S as a function of
its zero-order empirical entropy H0(S) = − ∑

c(nc/n) log(nc/n), where nc is the
number of occurrences of symbol c in S, n = ∑

c nc = |S|, and all logarithms
are taken to the base 2 (with 0 log 0 = 0). Notice that nH0(S) is an information-
theoretic lower bound to the compressibility of S when we use a fixed codeword
for each of its symbols.

3.1. REPRESENTING SEQUENCES OF SMALL INTEGERS. In this section
we describe the first data structure which represents S in nH0(S) +
O((rn log log n)/ logr n) bits, and answers S[q], Rankc(S, q), and Selectc(S, q)
queries in constant time. For the construction of the data structure we only need
2 ≤ r ≤ √

n, but the data structure is interesting only for r = o(log n/ log log n),
since otherwise the space occupancy will exceed the space �(n log r ) used by
the standard uncompressed representation. We first focus on S[q] and Rankc(S, q)
queries, and address the Selectc(S, q) query later.

3.1.1. Structure. We divide S into blocks of size u = ⌊
1
2

logr n
⌋

. Consider a

block where each symbol c appears N c times, so N 1 + N 2 + . . . + Nr = u. We
say that tuple (N 1, N 2, . . . , Nr ) is the symbol composition of the block. Using this
notation, we define the following sequences of values indexed by block number
i = 1, . . . , �n/u�:

—Si = S[u(i − 1) + 1 . . . ui] is the sequence of symbols forming the i th block of
S;

—for each symbol c ∈ [1, r ], N c
i = Rankc(Si , u) is the number of occurrences of

c in Si ;

—Li =
⌈

log
( u

N 1
i ,...,Nr

i

)⌉
is the number of bits necessary to encode all possible

sequences of u symbols in [1, r ] that share the symbol composition (N 1
i , . . . , Nr

i )
of block Si ;

—Ii is the identifier of block Si among all sequences having its symbol composition
(N 1

i , . . . , Nr
i ). Specifically, Ii consists of Li bits; and

—Ri is the identifier of the symbol composition (N 1
i , . . . , Nr

i ) among all possible tu-

ples of r numbers that add up to u.1 Ri consists of
⌈

log
(u+r−1

r−1

)⌉ ≤ �r log(u + 1)�
bits.

Our compressed representation of S consists of storage of the following information:

—a bit sequence I obtained by concatenating all variable-length identifiers Ii ;

—a bit sequence R obtained by concatenating all fixed-length identifiers Ri ;

—a table E = EN 1,...,Nr for every possible symbol composition (N 1, . . . , Nr )
summing up to u. Each entry of E corresponds to a different u-length block G
(with the proper symbol composition (N 1, . . . , Nr )) and stores the answers to
all Rankc(G, q) queries, where 1 ≤ q ≤ u and c ∈ [1, r ]. Indexes Ii are such
that E[Ii ] stores Rankc-information for the block Si . Tables E do not depend on
S, but just on u;

1 In the binary case (r = 2), Ri is just the number of bits set in Si [Raman et al. 2002], but this is
more complicated here.
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Compressed Representations of Sequences and Full-Text Indexes 9

FIG. 1. A graphical description of the algorithm solving rank queries on sequences. Precisely, we
illustrate the case Rankc(S, q), where q = i · u + l. The final “+” is the answer.

—a table F whose entries are indexed by all possible symbol compositions
(N 1, . . . , Nr ) summing up to u, and points to the corresponding tables EN 1,...,Nr .
Indexes Ri are such that F[Ri ] points to EN 1

i ,...,Nr
i
. Also table F does not depend

on S, but just on u;

—information to answer partial sum queries on Li , that is, to compute
∑i

j=1 L j in
constant time for any block i ; and

—information to answer partial sum queries on N c
i , that is, to compute

∑i
j=1 N c

j
in constant time for any block i and symbol c.

3.1.2. Solving Queries. To answer queries about position q, we first compute
the block number i = �q/u� to which q belongs and the offset � = q − (i − 1)u
inside this block. Then we compute E = F[Ri ], the table of entries corresponding
to block i , and G = E[Ii ], namely the entry of E corresponding to block i . Note
that since Ii values use variable numbers of bits, we need to know which are the
starting and ending positions of the representation for Ii in the sequence. These are

1+∑i−1
j=1 L j and

∑i
j=1 L j , respectively, which are known in constant time because

we have partial sum information on Li .
Now, to answer Rankc(S, q) we evaluate (in constant time) the partial sum∑i−1
j=1 N c

j and add Rankc(G, �). To answer S[q] we simply give G[�]. Both queries

take constant time. Figure 1 graphically illustrates the rank computation.

3.1.3. Space Usage. First notice that u H0(Si ) = log
( u

N 1
i ,...,Nr

i

)
, and thus

�n/u�∑
i=1

u H0(Si ) =
�n/u�∑
i=1

log

(
u

N 1
i , . . . , Nr

i

)
= log

�n/u�∏
i=1

(
u

N 1
i , . . . , Nr

i

)

≤ log

(
n

n1, . . . , nr

)
= nH0(S), (1)
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10 P. FERRAGINA ET AL.

where nc is the total number of occurrences of character c in S. The inequality holds
because distributing N c

i symbols over block Si is just one possible way to distribute
nc symbols over S [Pagh 1999]. This result permits us to bound the length of the
sequence I as

�n/u�∑
i=1

Li =
�n/u�∑
i=1

⌈
log

(
u

N 1
i , . . . , Nr

i

)⌉
≤

�n/u�∑
i=1

u H0(Si ) + �n/u�

≤ nH0(S) + O(n/ logr n).

Let us now consider the sequence R. The number of different tuples (N 1, . . . , Nr )

that add up u is
(u+r−1

r−1

) ≤ (u + 1)r . Hence, it is enough to use �r log(u + 1)� bits
for each Ri (which actually is enough to describe any tuple of r numbers in [0, u]).
Accumulated over the �n/u� blocks, this requires O(rn log log n/ logr n) bits.

We consider now the structures to answer partial sum queries [Pagh 1999],

namely
∑i

j=1 N c
j and

∑i
j=1 L j . Both structures are similar. Let us first concen-

trate on the L j ’s, whose upper bounds are Li ≤ �u log r� since
( u

N 1
i ,...,Nr

i

) ≤ ru .

Recall that we need to answer partial sum queries over the sequence of integers
L = L1, L2, . . . , Lt , where t = �n/u�. Since Li ≤ �u log r�, each partial sum over
L does not exceed n �log r� and can be represented in �log(n �log r�)� bits. Divide
L into blocks of this length, �log(n �log r�)�, and store the full partial sums for the
beginning of each block. This requires exactly t = O(n/ logr n) bits. Inside each
block, store the partial sums relative to the block beginning. These latter partial
sums cannot exceed �u log r� �log(n �log r�)� because of the upper bound on the
Li ’s and the length of L-blocks. Hence we need O(log u + log log r + log log n) =
O(log log n) bits for each partial sum within each block of L . Thus we need
O(|L| log log n) = O(t log log n) = O(n log log n/ logr n) bits overall for the par-
tial sum information on L . A partial sum query on Li is answered in constant time
by adding the partial sum of the block of L that contains Li and the relative partial
sum of Li inside that block. The same technique can be applied to sequences N c,
whose values are in the range [0, u], to obtain O(rn log log n/ logr n) bits of space
because there are r sequences to index.

Finally, let us consider tables E and F . The total number of entries over all
EN 1,...,Nr tables is clearly ru , since each sequence of u symbols over [1, r ] belongs
to exactly one symbol composition. For each such entry G, we explicitly store the
sequence itself plus the answers to all Rankc(G, q) queries, c ∈ [1, r ], 1 ≤ q ≤ u.
This storage requires O(u log r + ru log u) bits. Added over all entries of all E
tables, we have O(ru(u log r + ru log u)) = O(

√
nr logr n log log n) bits, which is

o(rn log log n/ logr n). Table F has necessarily fewer entries than E , since there is
at least one distinct entry of E for each (N 1, . . . , Nr ) symbol composition in F .
Each entry in F points to the corresponding table EN 1,...,Nr . If we concatenate all
EN 1,...,Nr tables into a supertable of ru entries, then F points inside this supertable
to the first entry of the corresponding table, and this requires O(u log r ) bits per
entry. Overall this adds O(ruu log r ) bits, which is negligible compared to the size
of E .

We remark that the simpler solution of storing indexes Pi = F[Ri ] + Ii directly
pointing to the large supertable E would require n log r bits, as the pointers are as
long as the sequences represented. This would defeat the whole scheme. Thus we
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Compressed Representations of Sequences and Full-Text Indexes 11

use table F as an intermediary so as to store the smaller Ri (subtable identifier) and
Ii (index relative to the subtable).

3.1.4. Solving Selectc(S, q) Queries. The solution to Selectc(S, q) queries on
binary sequences proposed in Raman et al. [2002, Lem. 2.3] divides the sequence
into blocks of size u (with the same formula we use for u, with r = 2) and makes
use of a sequence A, so that Ai is the number of bits set in the i th block. In our
scheme, sequence A corresponds to sequence N c for each character c ∈ [1, r ]. We
can use exactly the same scheme of Raman et al. [2002] for each of our sequences
N c. They need precisely the same partial sum queries we already considered for N c,
as well as other structures that require O(n log(u)/u) bits per sequence N c. They
also need to have all Selectc(G, q) queries precomputed for each possible block G,
which we can add to our E tables for additional O(ruru log u) bits. Overall, the
solution needs O(rn log(u)/u) = O(rn log log n/ logr n) additional bits of space.

THEOREM 3.1. Let S[1, n] be a sequence of numbers in [1, r ], with 2 ≤ r ≤√
n. There exists a data structure, using nH0(S) + O(r (n log log n)/ logr n) bits of

space, that supports queries Rankc(S, q) and Selectc(S, q) and retrieves S[q], all
in constant time.

The theorem is a generalization of the results in Pagh [1999] and Raman et al.
[2002], which use nH0(S) + O((n log log n)/ log n) bits of space to represent a
binary sequence S (r = 2) so as to answer Rankc(S, q) and Selectc(S, q) queries in
constant time. Note that for binary sequences, queries S[q] can be easily answered
in constant time by finding c ∈ {0, 1} such that Rankc(S, q) − Rankc(S, q − 1) = 1,
whereas we had to provide direct access to G[�]. Moreover, with binary sequences
one can use Ri = i , while we needed explicit pointers to an intermediate table F .

As we have already observed, the preceding result is interesting only for alphabets
of size r = o(log n/ log log n), since otherwise the space occupancy of the data
structure is �(n log r ). In the next section we show how to extend this result to
alphabets of polylogarithmic size.

3.2. GENERALIZED WAVELET TREES. In this section we use the representation
of sequences developed in the previous section to build an improved sequence
representation which better adapts to the range of different symbols represented.
Albeit we solve exactly the same problem, we will change notation a bit for clarity.
This time our sequence S[1, n] will be a sequence of symbols over an alphabet
� = [1, |�|], so that r ≤ |�| will be reserved to applications of Theorem 3.1.
Actually, for r = |�| the data structure we are going to introduce will be essentially
the data structure of Theorem 3.1.

Let us recall the basic ideas underlying the (binary) wavelet tree [Grossi et al.
2003]. Consider a balanced binary tree T whose leaves contain the characters of
the alphabet �. Moreover, T has height O(log |�|). Each node u of T is associated
with a string Su that represents the subsequence of S containing only the characters
that are stored into leaves descending from u. The root is thus associated with the
entire S. The node u of the wavelet tree does indeed store a binary image of the
sequence Su , denoted by Bu , such that Bu[i] = 1 if the character Su[i] descends
by the right child of u, and Bu[i] = 0 otherwise. By representing every binary
sequence Bu with the data structure of Raman et al. [2002], we get a data structure
supporting Rankc(S, q), Selectc(S, q), and S[q] queries in O(log |�|) time using
nH0(S) + o(n log |�|) bits of space.
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12 P. FERRAGINA ET AL.

3.2.1. The r-ary Wavelet Tree. Let us consider an r-ary balanced tree whose
leaves are associated with symbols of the alphabet �. This r -ary tree has height at
most 1 + logr |�|. As in a (binary) wavelet tree, each node v is associated with a
subsequence Sv of S[1, n] formed just by the symbols descending from v . Unlike
a (binary) wavelet tree, the subsequence Sv is stored in v as a sequence of integers
in the range [1, r ]. Precisely, let v be a node with children v1 . . . vr , and let �v be
the set of symbols descending from v . Because of the balance of the tree, �v is
actually split into r equally-sized subsets �v1

. . . �vr , which are integral ranges of
size |�vi | ≈ |�v |/r . Therefore, the sequence Sv is represented as a sequence of
nv = |Sv | integers in the range [1, r ] such that Sv [q] = j whenever Sv [q] ∈ �v j .
The data structure of Theorem 3.1 is finally built over Sv and stored at node v so
as to answer queries Sv [q], Rank j (Sv , q), and Select j (Sv , q) in constant time.

A technical detail is that we concatenate all the sequences Sv lying at the tree
level h, and store them into one unique long sequence Sh . All these level-wise
sequences have the same length of S, namely n. As we go down/up the tree, it is
easy to maintain in constant time the index q∗ +1 where the current node sequence
Sv starts inside the level sequence Sh . To achieve this, each node v maintains also
a vector Cv [1, r ] such that Cv [ j] is the number of occurrences in Sv of symbols in
[1, j − 1]. Now assume that we are at node v and its sequence Sv starts at index
q∗ + 1 of Sh; then the sequence Sv j of the j th child of v starts at q∗ + Cv [ j] + 1 in

Sh+1. Conversely, assume that we are at node v j and its sequence Sv j starts at index

q∗ + 1 of Sh+1; then the sequence Sv of the parent v of v j starts at q∗ − Cv [ j] + 1

in Sh . Notice that we need to store pointers (with negligible extra space) to find the
C vectors of children or parents, or we can take advantage of the tree being almost
perfect to avoid such pointers. We also need, for the bottom-up traversal required
to implement select (see next), |�| pointers to the leaves of the r -ary wavelet tree.

—Solving queries: To compute Rankc(S, q), we start at the root node v and
determine in constant time the subset �v j to which c belongs by a simple algebraic
calculation. We then compute the position corresponding to q in Sv j , namely qv j =
Rank j (Sv , q). We then recursively continue with q = qv j at node v j . We eventually
reach a tree leaf vl (corresponding to the subset {c} ⊆ �) for which we have the
answer to our original query Rankc(S, q) = qvl . On the other hand, to determine
S[q], we start at the root node v and obtain j = Sv [q], so that S[q] ∈ �v j . Then
we continue recursively with node v j and q = qv j = Rank j (Sv , q) as before, until
we reach a leaf vl where �vl = {S[q]} is finally determined. Both queries take
O(logr |�|) time.

To compute Selectc(S, q), instead, we proceed bottom-up. We identify the leaf vl
corresponding to subset {c} and then proceed upwards. At leaf vl (not actually rep-
resented in the tree), we initialize qvl = q. This is the position we want to track up-
wards in the tree. Now, letting v be the parent of v j , then qv = Select j (Sv , qv j ) is the
position of Sv j [qv j ] in Sv . We eventually reach the root, with qroot = Selectc(S, q),
in O(logr |�|) time.

It goes without saying that since we do not represent sequences Sv but level-
wise sequences Sh , in the preceding calculations we need to take care of the
latter. Assume that our current sequence Sv starts at position q∗ + 1 in Sh .
Then, queries over Sv are translated to queries over Sh as follows: Sv [q] =
Sh[q∗+q], Rank j (Sv , q) = Rank j (Sh, q∗+q)−Rank j (Sh, q∗), and Select j (Sv , q) =
Select j (Sh, Rank j (Sh, q∗) + q).
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Compressed Representations of Sequences and Full-Text Indexes 13

—Space usage: An immediate advantage of having all sequences Sh[1, n] over
the same alphabet [1, r ] is that all tables E and F are the same for all levels, thus
taking o((rn log log n)/ logr n) bits overall. All the other O((rn log log n)/ logr n)
size structures used to prove Theorem 3.1 total O(log |�| (rn log log n)/ log n) bits
of space by adding up all the O(logr |�|) levels. The structures Cv need O(r log n)

bits each, and there is one Cv array per nonleaf node v . This totals O( |�|
r−1

r log n) =
O(|�| log n) bits. This space includes also the pointers to leaves and the parent-child
pointers in the tree, if used.

Let us consider now the entropy-related part. For each nonleaf node v at tree-
level h, with children v1, . . . , vr , sequence Sv spans at most 2 + �nv/u blocks
in Sh (recall from Section 3.1 that the sequence is divided into blocks of length
u = ⌊

1
2

log n
⌋

and that nv = |Sv |). The sum of local zero-order entropies u H0(Sh
i )

for the �nv/u blocks is a lower bound to nv H0(Sv ) (recall Eq. (1)). As for the other
two blocks, we simply assume that they take the maximum u �log r� = O(log n)
bits. We have at most r

r−1
|�| boundaries over the whole tree. Hence summing over

all the sequence boundaries, the space overhead induced by all partial blocks is
O(|�| log n) bits.

Thus, let us focus on the term nv H0(Sv ). Note that this is

−nv

r∑
j=1

nv j

nv
log

nv j

nv
= −

r∑
j=1

nv j log nv j +
r∑

j=1

nv j log nv

= nv log nv −
r∑

j=1

nv j log nv j .

If we add this term over all the nodes v in the tree, we get a sort of telescopic sum in
which the second terms −nv j log nv j computed for v will cancel the first (positive)
term of the formula derived for children v j ’s. Therefore, after all cancellations, the
only surviving terms are the term n log n corresponding to the tree root, and the
terms −nul log nul corresponding to the parents of the tree leaves (where nul = nc
for some c ∈ �, where nc is the frequency of character c). This is

n log n −
∑
c∈�

nc log(nc) = nH0(S).

THEOREM 3.2. Let S[1, n] be a string over an arbitrary alphabet �. The r-ary
wavelet tree built on S, for 2 ≤ r ≤ min(|�|, √n), uses nH0(S) + O(|�| log n) +
O(log |�| (rn log log n)/ log n) bits of storage and supports in O(logr |�|) time the
queries S[q], Rankc(S, q), and Selectc(S, q) for any c ∈ � and 1 ≤ q ≤ n.

Moreover, if |�| = O(polylog(n)), thenr can be chosen so that the resultingr-ary
wavelet tree supports all queries in constant time and takes nH0(S) + O(n/ logε n)
bits of space for any constant 0 < ε < 1.

PROOF. The first part of the theorem, for a general r , is a consequence of the
development in this section. For the last sentence, note that by choosing r = |�|1/κ ,
for constant κ > 0, we can support the query operations in constant time O(κ).
Now, if |�| = O(polylog(n)) = O((log n)d), then we can choose any κ > d
to obtain O(dn(log log n)2/(log n)1−d/κ ) space overhead. For any constant 0 <
ε < 1, we choose κ ≥ d/(1 − ε) to ensure that O(n(log log n)2/(log n)1−d/κ ) =
O(n/ logε n).
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14 P. FERRAGINA ET AL.

The theorem is a generalization upon the (binary) wavelet tree data structure
[Grossi et al. 2003], taking nH0(S) + O(log |�| (n log log n)/ log n) space and
answering the same queries in O(log |�|) time. The last part shows that when
|�| = O(polylog(n)), the generalization obtains essentially the same space (up
to lower-order terms) and reduces query times to a constant. The case of larger
alphabets deserves a separate corollary.

COROLLARY 3.3. Let S[1, n] be a string over an alphabet �. If we choose
r = O(log n/(log log n)2), the r-ary wavelet tree built on S uses nH0(S) +
O(|�| log n) + o(n log |�|) bits and supports in O(log |�|/ log log n) time the
queries S[q], Rankc(S, q), and Selectc(S, q) for any c ∈ � and 1 ≤ q ≤ n.
Note that if |�| = o(n), the space occupancy simplifies to nH0(S) + o(n log |�|).

4. Compressed Representation of Full-Text Indexes

We will now apply the results of the previous section to build a new implementa-
tion of the FM-index concept. We need first to explain the FM-index concept in
full detail, that is, the Burrows-Wheeler transform and the backward search mecha-
nism, highlighting the time dependence on alphabet size |�|. Also, the compression
boosting technique [Ferragina et al. 2005] will be central to our solution. We intro-
duce these earlier developments in Sections 4.1 to 4.4 and then introduce our new
result in Section 4.5.

Hereafter we assume that T [1, n] is the text we wish to index, compress, and
query. T is drawn from an alphabet � of size |�|. By T [i] we denote the i th character
of T , while T [i, n] denotes the i th text suffix and T [1, i] denotes the i th text prefix.
A substring of T is any T [i, j]. We write |w | to denote the length of string w .

Our final goal is to answer substring queries using a compressed representation
of T . In other words, we wish to find out whether a given pattern P[1, p] occurs as a
substring of T (existence query), how many times it occurs (counting query), and at
which positions (locating query). Also, as T is compressed, we need to support the
retrieval of any substring of T (context query). If the compressed representation of
T supports all these queries, we say that the representation is a compressed full-text
self-index.

4.1. THE kTH-ORDER EMPIRICAL ENTROPY. Following a well-established prac-
tice in information theory, we lower bound the space needed to store a string T by
using the notion of empirical entropy. Empirical entropy is similar to the entropy
defined in the probabilistic setting with the difference that it is defined in terms of
the character frequencies observed in T , rather than in terms of character probabil-
ities. The key property of empirical entropy is that it is defined pointwise for any
string T and can be used to measure the performance of compression algorithms
as a function of the string structure, thus without any assumption on the input
source. In a sense, compression bounds produced in terms of empirical entropy are
worst-case measures.

Just as defined for sequences, the zero-order empirical entropy of T is defined
as H0(T ) = − ∑

c(nc/n) log(nc/n), where nc is the number of occurrences of
alphabet character c in T , and n = ∑

c nc = |T |. To introduce the concept of
kth-order empirical entropy we need to define what is a context. A length-k context
w in T is one of its substrings of length k. Given w , we denote by wT the string
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Compressed Representations of Sequences and Full-Text Indexes 15

FIG. 2. Example of Burrows-Wheeler transform for the string T = mississippi. The matrix on
the right has rows sorted in lexicographic order. The output of the BWT is the last column; in this
example, the string ipssm#pissii.

formed by concatenating all the symbols following the occurrences of w in T , taken
from left-to-right. For example, if T = mississippi, then sT = sisi and siT =
sp. The kth-order empirical entropy of T is defined as

Hk(T ) = 1

n

∑
w∈�k

|wT | H0(wT ). (2)

The kth-order empirical entropy Hk(T ) is a lower bound to the output size of
any compressor which encodes each character of T using a uniquely decipherable
code that depends only on the character itself and on the k characters preceding
it. For any k ≥ 0, we have Hk(T ) ≤ log |�|. Note that for strings with many
regularities we may have Hk(T ) = o(1). This is unlike the entropy defined in the
probabilistic setting, which is always a constant. As an example, for the family of
texts T = (ab)n/2 we have H0(T ) = 1 and Hk(T ) = O((log n)/n) for any k ≥ 1.
Hk can be similarly defined with the symbols preceding (instead of following) the
contexts, and the result is the same up to lower order terms [Ferragina and Manzini
2005]. We will use the definitions interchangeably in the following.

4.2. THE BURROWS-WHEELER TRANSFORM. Burrows and Wheeler [1994] in-
troduced a new compression algorithm based on a reversible transformation that
is now called the Burrows-Wheeler transform (BWT). The BWT consists of three
basic steps (see Figure 2): (1) Append at the end of T a special character # smaller
than any other text character; (2) form a conceptual matrix MT whose rows are
the cyclic shifts of the string T # sorted in lexicographic order; and (3) construct
the transformed text T bwt by taking the last column of matrix MT . Notice that
every column of MT , hence also the transformed text T bwt , is a permutation of T #.
In particular, the first column of MT , call it F , is obtained by lexicographically
sorting the characters of T # (or equally, the characters of T bwt ).

We remark that the BWT itself is not a compression algorithm, since T bwt is just
a permutation of T #. However, if T has “small” entropy the transformed string T bwt

contains long runs of identical characters and turns out to be highly compressible
[Burrows and Wheeler 1994; Manzini 2001].

Because of the special character #, when we sort the rows of MT we are es-
sentially sorting the suffixes of T . Therefore, there is a strong relation between
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16 P. FERRAGINA ET AL.

FIG. 3. Algorithm count for finding the set of rows prefixed by P[1, p], and thus for counting the
pattern occurrences occ = Last − First + 1. Recall that C[c] is the number of text characters which
are alphabetically smaller than c, and that Occ(c, q) denotes the number of occurrences of character
c in T bwt [1, q].

the matrix MT and the suffix array built on T . The matrix MT has also other
remarkable properties; to illustrate them we introduce the following notation:

—Let C[ ] denote the array of length |�| such that C[c] contains the total number
of text characters which are alphabetically smaller than c.

—Let Occ(c, q) denote the number of occurrences of character c in the prefix
T bwt [1, q]. In our sequence terminology, Occ(c, q) = Rankc(T bwt , q).

—Let LF(i) = C[T bwt [i]] + Occ(T bwt [i], i).

LF( ) stands for last-to-first column mapping, since the character T bwt [i], in the
last column of MT , is located in the first column F at position LF(i). For example,
in Figure 2 we have LF(10) = C[s] + Occ(s, 10) = 12; and in fact T bwt [10] and
F[LF(10)] = F[12] both correspond to the first s in the string mississippi.

The LF( ) mapping allows us to scan the text T backward. Specifically, if
T [k] = T bwt [i] then T [k − 1] = T bwt [LF(i)]. For example, in Figure 2 we
have that T [3] = s is the tenth character of T bwt and we correctly have T [2] =
T bwt [LF(10)] = T bwt [12] = i [Ferragina and Manzini 2005].

4.3. THE FM-INDEX. The FM-index is a self-index that allows one to efficiently
search for the occurrences of an arbitrary pattern P[1, p] as a substring of the text
T [1, n]. Pattern P is provided online, whereas the text T is given to be preprocessed
in advance. The number of pattern occurrences in T is hereafter indicated by occ.

The FM-index consists, in essence, of the data structures required to compute
C[ ], Occ( ), and LF( ). The first is directly stored in |�| log n bits. To compute
Occ(c, q) in constant time, the FM-index stores a compressed representation of T bwt

together with some auxiliary information. This also gives the tools to compute LF(i),
provided we have access to T bwt [i]. This is obtained in O(|�|) time by linearly
searching for the only c ∈ � such that Occ(c, q) �= Occ(c, q − 1). The two key
procedures to operate on the FM-index are: the counting of the number of pattern
occurrences (shortly, count), and the location of their positions in the text T (shortly,
locate). Note that the counting process returns the value occ, whereas the location
process returns occ distinct integers in the range [1, n].

Figure 3 sketches the pseudocode of the counting operation that works “back-
wards” in p phases, hence numbered from p to 1. The i th phase preserves the
following invariant: The parameter First points to the first row of the BWT ma-
trix MT prefixed by P[i, p], and the parameter Last points to the last row of MT
prefixed by P[i, p]. After the final phase, P prefixes the rows between First and
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FIG. 4. Algorithm locate for the computation of Pos(i).

Last and thus, according to the properties of matrix MT (see Section 4.2), we have
occ = Last − First + 1. It is easy to see that the running time of count is dominated
by the cost of the 2p computations of the values Occ( ).

Given the range (First, Last), we now consider the problem of locating the posi-
tions in T of these pattern occurrences. We notice that every row in MT is prefixed
by some suffix of T . For example, in Figure 2, the fourth row of MT is prefixed by
the text suffix T [5, 11] = issippi. Then, for i = First, First + 1, . . . , Last we use
procedure locate(i) to find the starting position in T of the suffix that prefixes the
i th row MT [i]. Such a position is denoted hereafter by Pos(i), and the pseudocode
of locate is given in Figure 4. The intuition underlying its functioning is simple. We
scan backwards the text T using the L F( ) mapping (see Section 4.2) until a marked
position is met. If we mark one text position every 
(log1+ε n), for some constant
ε > 0, the while loop is executed O(log1+ε n) times. Since the computation of
L F(i) is done via at most |�| computations of Occ( ), we have that locate takes
O(|�| log1+ε n) time. The space required by the marked positions is 
(n/ logε n)
bits. Combining the observations on locate with the ones for count, we get [Ferragina
and Manzini 2005] the following theorem.

THEOREM 4.1. For any string T [1, n] drawn from a constant-sized alphabet
�, the FM-index counts the occurrences of any pattern P[1, p] within T , taking
O(p) time. The location of each pattern occurrence takes O(|�| log1+ε n) time for
any constant ε > 0. The size of the FM-index is bounded by 5nHk(T ) + o(n) bits,
for any fixed k.

In order to retrieve the content of T [l1, l2], we must first find the row in MT
that corresponds to l2, and then issue � = l2 − l1 + 1 backward steps in T , using
the L F( ) mapping. Starting at the lowest marked text position that follows l2, we
perform O(log1+ε n) steps until reaching l2. Then, we perform � additional LF-steps
to collect the text characters. The resulting complexity is O((� + log1+ε n) |�|).

As we mentioned in the Introduction, the main drawback of the FM-index is
that, hidden in the o(n) term of the space bound, there are constants which depend
exponentially on the alphabet size |�|. In Section 4.5 we describe our new imple-
mentation of the FM-index concept, which takes nHk(T ) + o(n) bits and allows
the computation of Occ(c, q) and T bwt [i] in O(1) time for a reasonable range of
alphabet sizes, namely, |�| = O(polylog(n)).

4.4. COMPRESSION BOOSTING. The concept of compression boosting has been
recently introduced in Ferragina et al. [2005], opening the door to a new approach to
data compression. The key idea is that one can take an algorithm whose performance
can be bounded in terms of the zero-order entropy and obtain, via the booster,
a new compressor whose performance can be bounded in terms of the kth-order
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entropy, simultaneously for all k. Putting it another way, one can take a compression
algorithm that uses no context information at all and, via the boosting process, obtain
an algorithm that automatically uses the “best possible” contexts.

For technical reasons we need a boosting theorem which is slightly different from
the one in Ferragina et al. [2005]. However, the proof of Theorem 4.2 is obtained
by a straightforward modification of the proof of Lemma 4.6 in Ferragina et al.
[2005].

THEOREM 4.2. Let A be an algorithm which compresses any string S in less
than |S|H0(S)+ f (|S|) bits, where f ( ) is a nondecreasing concave function. Given
T [1, n], there is an O(n)-time procedure that computes a partition S1, S2, . . . , Sz
of T bwt such that for any k ≥ 0, we have

z∑
i=1

|A(Si )| ≤
z∑

i=1

(|Si |H0(Si ) + f (|Si |)) ≤ nHk(T ) + |�|k f (n/|�|k).

PROOF. For any k ≥ 0, let Ŝ1, Ŝ2, . . . , Ŝm denote the partition of T bwt such that

m∑
i=1

|Ŝi |H0(Ŝi ) = nHk(T ). (3)

Each Ŝi is a permutation of one of the strings wT defined in Section 4.1 with
w ∈ �k [Ferragina et al. 2005, Sect. 3]. Repeating verbatim the proof of Lemma 4.6
in Ferragina et al. [2005] we get that the partition S1, . . . , Sz of T bwt produced by
the boosting algorithm is such that

z∑
i=1

(|Si |H0(Si ) + f (|Si |)) ≤
m∑

i=1

(|Ŝi |H0(Ŝi ) + f (|Ŝi |)
)
. (4)

Since by hypothesis |A(Si )| ≤ |Si |H0(Si ) + f (|Si |), from Eqs. (4) and (3) we get

z∑
i=1

(|Si |H0(Si ) + f (|Si |)) ≤
m∑

i=1

|Ŝi |H0(Ŝi ) +
m∑

i=1

f (|Ŝi |)

= nHk(T ) +
m∑

i=1

f (|Ŝi |)

≤ nHk(T ) + |�|k f (n/|�|k),

where the last inequality follows from the concavity of f ( ) and the fact that
m ≤ |�|k .

To understand the relevance of this result, suppose that we want to compress
T [1, n] and that we wish to exploit the zero-order compressor A. Using the boost-
ing technique we can first compute the partition S1, S2, . . . , Sz of T bwt , and then
compress each Si using A. By the previous theorem, the overall space occupancy
would be bounded by

∑
i |A(Si )| ≤ nHk(T ) + |�|k f (n/|�|k). Note that the pro-

cess is reversible because the decompression of each Si retrieves T bwt , and from
T bwt we can retrieve T using the inverse BWT. Summing up, the booster allows
us to compress T up to its kth-order entropy using only the zero-order compressor
A. Note that the parameter k is neither known to A nor to the booster, and comes
into play only in the space complexity analysis. This means that the space bound
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FIG. 5. Construction of our improved FM-index.

in Theorem 4.2 holds simultaneously for all k ≥ 0. The only information required
by the booster is the function f () such that |S|H0(S) + f (|S|) is an upper bound
on the size of the output produced by A on input S.

4.5. AN IMPROVED FM-INDEX IMPLEMENTATION. We now show how to com-
bine the tools described in previous sections to obtain an FM-index implementation
with query time independent of the alphabet size when |�| = O(polylog(n)). At
the end we consider the case of larger alphabets.

The crucial observation is the following. To build the FM-index we need to
solve two problems: (a) compress T bwt up to Hk(T ), and (b) support the efficient
computation of Occ(c, q) and T bwt [q]. We use the boosting technique to transform
problem (a) into the problem of compressing the strings S1, S2, . . . , Sz up to their
zero-order entropy, and use the generalized wavelet tree to create a compressed
(up to H0) and indexable representation of each Si , thus solving simultaneously
problems (a) and (b).

The details of the construction are given in Figure 5, some comments follow. To
compute T bwt [q], we first determine the substring Sy containing the qth character

of T bwt by computing y = Rank1(B, q). Then we exploit the generalized wavelet
tree Ty to determine T bwt [q] = Sy[q ′]. By Theorem 3.1, the former step takes O(1)
time, and by Theorem 3.2 the latter step takes also O(1) time.

To compute Occ(c, q), we initially determine the substring Sy of T bwt where
the matrix row q occurs in, y = Rank1(B, q). Then we find the relative position

of q within Sy by calculating q ′ = q − ∑y−1
j=1 |Sj | = q − Select1(B, y).2 Finally,

we exploit the generalized wavelet tree Ty and use the array Cy[c] to compute
Occ(c, q) = OccSy (c, q ′)+Cy[c] = Rankc(Sy, q ′)+Cy[c]. Again, by Theorems 3.1
and 3.2, this computation takes overall O(1) time. Using this technique inside
algorithms count and locate of Section 4.3, we immediately obtain O(p) time to
count the occurrences of a pattern P[1, p] and O(log1+ε n) time to retrieve the
position of each occurrence. The time to display a substring of length � is O(�) in
addition to the locate time.

2 Instead of implementing select we can just store all these partial sums at O(z log n) extra space,
where z is the number of pieces in the T bwt partition, and this cost does not affect the overall space
result.
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We now analyze the space occupancy of our data structure. Let us call a sequence
Si long if |�i | = O(polylog(|Si |)), where �i is the alphabet of Si . Otherwise Si is
short.

Let us first assume that all sequences are long. This assumption and Theorem 3.2
allow us to conclude that a generalized wavelet tree Ti built on Si uses |Si |H0(Si )+
O(|Si |/ logε |Si |) bits for any 0 < ε < 1. By Theorem 3.1, the storage of B
takes

⌈
log

(n
z

)⌉ + O((n log log n)/ log n) ≤ z log n + O((n log log n)/ log n) bits.
Each array Ci takes |�| log n bits. Consequently, under the hypothesis that |�i | =
O(polylog(|Si |)) for all sequences Si , the total space occupancy is bounded by

z∑
i=1

(
|Si |H0(Si ) + K |Si |/ logε |Si | + (1 + |�|) log n

)
+ O((n log log n)/ log n) .

Note that the function f (t) used at step 1 of our construction (see Figure 5) matches
exactly the overhead with respect to the H0 that we have for each Si . From Theo-
rem 4.2 we get that for any k ≥ 0, we can bound the previous summation by

nHk(T ) + O
(
n/ logε(n/|�|k)

) + O
(|�|k+1 log n

) + O((n log log n)/ log n) . (5)

Recall that we are interested in bounding the space occupancy in terms of Hk(T )
only for k ≤ α log|�| n for some α < 1. In this case we have |�|k ≤ nα. By
observing that O((n log log n)/ log n) = O(n/ logε n) we turn Eq. (5) into

nHk(T ) + O(n/ logε n) . (6)

We complete the analysis of the space occupancy by considering the case of short
sequences, that is, where |�i | = ω(polylog(|Si |)) for some sequences Si . The first
part of Theorem 3.2 implies that we can always choose r = |�i |1/κ such that
all query times are the constant O(logr |�i |) = O(κ). The extra space, however,
can only be bounded by o(|�i ||Si |). Since ω(polylog(|Si |)) = |�i | ≤ |�| =
O(polylog(n)), we must have |Si | = o(nβ) for any β > 0. Thus, the extra space for
a short sequence Si is o(|�||Si |) = o(nβpolylog(n)).

Recalling again that we are interested in bounding the space occupancy in terms
of Hk(T ) only for k ≤ α log|�| n and α < 1, we have that the overall space overhead

because of the (at most |�|k ≤ nα) short sequences Si is o(nα+βpolylog(n)) bits for
any β > 0. If we take β < 1 − α, the space bound becomes O(n/ logε n) for any
desired 0 < ε < 1. Therefore, we can correctly apply Theorem 4.2, since the extra
space to represent short sequences can be considered to be the one corresponding to a
long sequence plus smaller terms that are left in the sublinear term that accompanies
nHk(T ).

We note that we have inherited from Eq. (6) a sublinear space cost of the form
O(n/ logε n) for any 0 < ε < 1. Also, from Theorem 4.1, we carry another term
of the form O(n/ logε n) for any ε > 0. We then achieve the following result.

THEOREM 4.3. Let T [1, n] be a string over an alphabet �, where |�| =
O(polylog(n)). The data structure of Figure 5 indexes T [1, n] within nHk(T ) +
O(n/ logε n) bits, for any k ≤ α log|�| n and 0 < α, ε < 1. It can count the number
of occurrences of any string P[1, p] in T in O(p) time, locate each occurrence
in O(log1+ε n) time, and display any text substring of length � in O(� + log1+ε n)
time.
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4.5.1. Large Alphabets. Suppose now that the alphabet is larger than
O(polylog(n)), in particular |�| = O(nβ) with β < 1. Corollary 3.3 shows that
we can obtain O(log |�|/ log log n) query time on the sequences Si , using space
|Si |H0(Si ) + O(|�| log |Si |) + o(|Si | log |�|) (more precisely, the latter term is
O(|Si | log |�|/ log log |Si |) in Corollary 3.3). It is easy to repeat the analysis and
obtain that, instead of Eq. (5), the bound on the size of our index becomes

nHk(T ) + O
(
n log |�|/ log log(n/|�|k)

) + O
(|�|k+1 log n

) + O((n log log n)/ log n) .

Since for any k ≤ α(log|�| n) − 1, with 0 < α < 1, the preceding bound is
nHk(T ) + o(n log |�|), we can state the following theorem.

THEOREM 4.4. Let T [1, n] be a string over an alphabet �, with |�| = O(nβ)
and β < 1. It is possible to index T [1, n] within nHk(T ) + o(n log |�|) bits for any
k ≤ α(log|�| n)−1 and 0 < α < 1. This index can count the number of occurrences
of any string P[1, p] in T in O(p log |�|/ log log n) time, locate each occurrence
in O(log |�| log1+ε n/ log log n) time, and display any text substring of length � in
O((� + log1+ε n) log |�|/ log log n) time.

As an alternative to Theorem 4.4, we can handle large alphabets by decreasing
the arity r of our generalized wavelet tree. This reduces the space occupancy of
our index at the cost of an increased query time. Here we only discuss the ex-
treme case r = 2 in which we use the traditional binary wavelet tree instead of
our sequence representation. Using binary wavelet trees we can represent each
Si in |Si |H0(Si ) + O(log |�|(|Si | log log |Si |)/ log |Si |) bits of storage. Combining
this representation with the compression booster we get an index of size bounded
by nHk(T ) + O(log |�|(n log log n/ log n)) bits for any k ≤ (α log|�| n) − 1
and α < 1. Since querying a binary wavelet tree takes O(log |�|) time, our
simplified index can count the number of occurrences in O(p log |�|) time, lo-
cate each occurrence in O(log |�|(log2 n/ log log n)), and display any text sub-
string of length � in O(log |�|(� + log2 n)/ log log n)) time. The details on the
analysis of the preceding simplified index can be found in Ferragina et al.
[2004].

5. Conclusions

The contribution of this article is twofold. First, we have presented a compressed
representation of sequences S[1, n] that requires nH0(S) + o(n) bits of space and
is able to retrieve individual symbols S[q] and answer rank and select queries in
constant time. The technique works whenever the alphabet size of the sequence
satisfies the condition |�| = O(polylog(n)). This is a nontrivial generalization of
previous results on binary sequences [Raman et al. 2002] and an improvement of
previous results on general sequences [Grossi et al. 2003].

Secondly, we have combined the aforementioned result with an existing com-
pression boosting technique to obtain a compressed full-text index for a text T [1, n],
which uses nHk(T ) + o(n) bits whenever the alphabet size is O(polylog(n)). Our
index has the smallest-known space occupancy, is a self-index, is faster than other
indexes of the same size, and the first compressed index with query time indepen-
dent of alphabet size. We have also shown that on larger alphabets we can still
improve the best existing results.
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After the first publication of this article, some new techniques have been proposed
that enable improving our bounds on rank and select queries slightly: Golynski
et al. [2006] propose a succinct structure that supports rank in O(log log σ ) time
and select in constant time. Their structure is, however, not compressed, as it uses
n log σ +o(n log σ ) bits. Hence, it cannot be coupled with the compression boosting
technique. Sadakane and Grossi [2006] propose a technique to represent a sequence
X in nHk(X ) + o(n log |�|) bits supporting constant access to its short substrings.
However, even using this more powerful representation, compression boosting still
appears necessary to achieve a space usage bounded by nHk(T ) + o(n) bits (see
González and Navarro [2006]).

There are several future challenges on compressed full-text indexes: (i) obtaining
better results when the alphabet size is not O(polylog(n)); (ii) removing the limit on
the maximum entropy order k that can be achieved, which is currently k ≤ α log|�| n
for any 0 < α < 1; (iii) achieving optimal query times within nHk(T )+o(n) space,
that is, O(p / log|�| n) for counting and O(1) for locating, as opposed to our O(p)
and O(log1+ε n) (this has been partially achieved [Grossi and Vitter 2006; Ferragina
and Manzini 2005] in some cases); (iv) coping with updates to the text and secondary
memory issues (see e.g. Ferragina and Manzini [2005], Chan et al. [2004], and Hon
et al. [2004]); (v) handling more sophisticated searching, such as approximate and
regular expression searching (see e.g. Huynh et al. [2004]).

It should be clear, however, that some limits cannot be surpassed. For example,
one cannot achieve an nHk(T )+o(n) space bound without any restriction on |�| or
k. To see this, consider the extreme case in which |�| = n, that is, the input string
consists of a permutation of n distinct characters. In this case we have Hk(T ) = 0
for all k ≥ 1, and any representation of such a string must require �(n log n) bits.
Hence a self-index of size nHk(T ) + o(n) bits cannot exist. Understanding which
are the limits and the space-time tradeoffs that can be achieved on compressible
strings (compare with Demaine and López-Ortiz [2003]) is an extremely interesting
open problem.
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