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Abstract
The size of electronic data is currently growing at a faster rate than computer memory and disk
storage capacities. For this reason compression appears always as an attractive choice, if not
mandatory. However space overhead is not the only resource to be optimized when managing
large data collections; in fact data turn out to be useful only when properly indexed to support
search operations that efficiently extract the user-requested information.

Approaches to combine compression and indexing techniques are nowadays receiving more
and more attention. A first step towards the design of a compressed full-text index achieving
guaranteed performance in the worst case has been recently done in [10]. The novelty of that
index resides in the careful combination of the compression algorithm proposed by Burrows and
Wheeler [6] with the suffix array data structure [16]. The index is opportunistic in that, although
no assumption on a particular fixed distribution is made, it takes advantage of the compressibility
of the input data by decreasing the space occupancy at no significant asymptotic slowdown in the
query performance.

In this paper we present an implementation of this index and perform an extensive set of
experiments on various text collections. These experiments allow us to highlight properties and
drawbacks of the proposed solution, as well as identify some interesting scenarios where this novel
index may find effective application.
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1 Introduction

The study, the design and the experimentation of methods for searching and updating text collections have
attracted the attention of the algorithmic and data structural community during the last five decades.
Precious ideas have been presented in the main literature—inverted lists, Patricia trees, tries, ternary
search trees, suffix trees, suffix arrays, just to cite a few—and they constitute the heart of several software
tools currently used for processing textual data. The research in this area has been recently re-vitalized
by new interesting applications as digital libraries, office automation systems, SGML/XML tagged text
collections, document and genome databases, web search engines. In most cases the text collections are
so large that scan-based (i.e. grep-like) approaches are not appropriate, and data structures supporting
effective and powerful search operations become mandatory.

The main idea underlying data structures for text searching is to build an index that allows to focus
the search for a given pattern only on a small portion of the input text. The improvement in the query
performance is paid by the additional space necessary to store the index. Most of the research in this
field has been therefore directed to design data structures which offer a good trade-off between query
and update time versus space usage. In this context compression appears always as an attractive choice,
especially in the light of the significant increase in CPU speed that makes more economical to store data
in compressed form than uncompressed. It goes without saying that compression may also introduce
some improvements which are surprisingly not confined to the space occupancy: “space optimization is
closely related to time optimization in a disk memory” [14].

Starting from these promising considerations, many researchers have recently tried to combine text
compression with indexing techniques and searching algorithms. They have mainly investigated the
compressed matching problem under various compression schemes: for example LZ77 [8], LZ78 [1], Huff-
man [19], Antidictionaries [7]. Although these algorithms result asymptotically faster than the classical
scan-based methods, their overall time requirement may be yet too high since they rely on a full scan of
the compressed text.

Some authors have tried to plug classical indexing tools—like inverted lists [22] or suffix arrays [18]—
upon compressed texts and achieved experimental trade-offs between space occupancy and query perfor-
mance (see e.g. Glimpse [17]). Other authors [12, 15, 20] have instead proposed techniques to represent
succinctly the index itself and still support effective search operations; however, the space occupancy of
their data structures grows linearly with the size of the indexed text.

The first step towards the design of a compressed index ensuring effective search performance in the
worst case has been recently pursued in [10]. The novelty of the approach in [10] resides in the careful
combination of the Burrows-Wheeler compression algorithm [6] with the suffix array data structure [16]
to obtain a sort of compressed suffiz array (see Section 2). The resulting index is opportunistic in that,
although no assumption on a particular fixed distribution is made, it takes advantage of the compressibility
of the input data by decreasing the space occupancy at no significant asymptotic slowdown in the query
performance. More precisely in [10] it is proven that the space required to index a text 7" is O(Hy(T"))4o(1)
bits per text character, where Hy(T') is the k-th order empirical entropy of 7' (the bound holds for any
fixed k > 0). We point out that this index also includes the compressed text. The index allows to count
the number of occurrences of an arbitrary pattern P[1,p] in O(p) time, and list them in O(log® ) time
per occurrence, where € > 0 is an arbitrarily fixed constant. Since this is a Full-text index and occupies
Minute space, in the following it will be shortly called FM-index.

Notice that there exists in the literature another family of indices, called word-based indices, which
includes for example inverted lists and signature files [22]. Although much compact in space, these
indices support only word-based queries so that their effective application is limited to linguistic texts.
Full-text indices are more flexible. For example, they allow to search for arbitrary substrings in text
collections—like DNA sequences or oriental languages—where word delimiters are not so clear.

Given the appealing asymptotical performance and structural properties of the FM-index, it is inter-
esting to investigate its behavior in an experimental setting. In this paper we describe an implementation
of this index and perform an extensive set of experiments on various kinds of texts: plain text, DNA
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Figure 1: Example of Burrows-Wheeler transform for the string 7' = mississippi. The matrix on the right has the rows
sorted in lexicographic order. The output of the BWT is column L; in this example the string ipssm#pissii.

sequence, SGML-tagged file, .html and .java source. These experiments show that the FM-index is
compact (its space occupancy is close to the one achieved by the best known compressors), it is fast in
counting the number of pattern occurrences, and the cost of their retrieval is reasonable when they are few
(i.e. in case of a selective query). In addition, our experiments show that the FM-index is flexible in that
it is possible to trade space occupancy for search time by choosing the amount of auxiliary information
stored into it.

The paper is organized as follows. In the next section we introduce some basic notation and definitions
as well as the basic search operations on the FM-index. In Section 3 we propose an implementation of
the FM-index which we test in Section 4. Concluding remarks are given in Section 5 together with a few
examples of applications of our index.

2 Background

Let T[1,u] denote a text over the alphabet ¥. The Burrows-Wheeler compression algorithm is based
on a reversible transformation, called BW-Transform (BWT from now on) which transforms the input
text T' into a new string which contains the same characters but it is usually easier to compress. The
BWT consists of three basic steps (see Fig. 1): (1) append to the end of T a special character # smaller
than any other text character; (2) form a conceptual matrix M whose rows are the cyclic shifts of the
string T'# sorted in lexicographic order; (3) construct the transformed text L by taking the last column
of M. Notice that every column of M, hence also the transformed text L, is a permutation of T#.
In particular the first column of M, call it F', is obtained by lexicographically sorting the characters of
T# (or, equally, the characters of L). The transformed string L usually contains long runs of identical
symbols and therefore can be efficiently compressed using move-to-front coding [4], in combination with
statistical coders (see for example [6, 9]).

Note that when we sort the rows of M we are essentially sorting the suffixes of 1. Hence, there is a
strong relation between the matrix M and the suffix array of T'. This relationship is a central concept in
the design of the FM-index. The matrix M has also other remarkable properties; to illustrate them we
introduce the following notation:

e for ¢ € ¥ let C[c| denote the total number of occurrences in T of the characters which are alpha-

betically smaller than c.

e for ¢ € ¥ let Occ(c, k) denote the number of occurrences of ¢ in the prefix L[1, k] of the transformed
text L.

As an example, in Fig. 1 we have C[s] = 8 and Occ(s, 10) = 4. The following properties of M have been
proven in [6]:



Algorithm count(P[1,p])
1. i=p, c= Plp|, sp=Clc] + 1, ep = Clc + 1];
while ((sp < ep) and (i > 2)) do
c= P[i —1];
sp = Clc] + Occ(c, sp — 1) + 1,
ep = C|[c] 4+ Occ(c, ep);

1=1—1;

A T o

if (ep < sp) then return “not found” else return “found (ep — sp + 1) occurrences”.

Figure 2: Algorithm count for computing the number of occurrences of P[1,p] in T'[1, u].

a. Given the ith row of M, its last character L[i] precedes its first character F[i] in the original text 7.

b. Let LF(i) = C[L[i]] + Occ(L[i],7). The character in the first column F' corresponding to L[i] is
located in position LF(i). For example, in Fig. 1 we have LF(10) = C[s]+ Occ(s, 10) = 12. Indeed,
both L[10] and F[12] correspond to the first s in mississippi. We call LF(-) the LF-mapping
(Last-to-First column mapping).

c. If T'[k] is the ith character of L then T'[k — 1] = L[LF(i)]. For example, in Fig. 1 T'[3] is the 10th
character of L and we correctly have T'[2] = L[LF(10)] = L[12] = i.

The FM-index consists of a compressed representation of the transformed string L together with some
auxiliary information. We point out that from the compressed representation of L, it is possible to get
back the original text T by exploiting repeatedly Property c. In the next section we describe a practical
implementation of the FM-index. To help the reader in following the description we now give a high level
overview of the two basic search procedures supported by the FM-index: count and locate.

Procedure count takes as an input a pattern P[1,p] and returns the number of occurrences of P in T.
count exploits two nice structural properties of the matrix M: (i) all the suffixes of the text 71, u]
prefixed by a pattern P[1,p| occupy a contiguous set of rows of M; (ii) this set of rows has starting
position sp and ending position ep, where sp is the lexicographic position of the string P among the
ordered rows of M. count determines the positions sp and ep via p phases, each one preserving the
following invariant: At the i-th phase, the parameter sp points to the first row of M prefized by Pli, p)
and the parameter ep points to the last row of M prefized by Pli, p| (see the pseudo-code in Fig. 2). After
the final phase, sp and ep will delimit the portion of M containing all the text suffixes prefixed by P. The
integer (ep — sp + 1) will therefore account for the total number of occurrences of P in T'. For example,
in Fig. 1 for the pattern P = si we have sp = 9 and ep = 10 for a total of two occurrences. In [10] it
is shown how to compute Occ(c, k) in constant time, so computing count(P][1, p]) takes O(p) time in the
worst case.

Procedure locate takes as an input the index 7 of a row of the matrix M and returns the starting
position in T of the suffix corresponding to M][i] (in the following we write pos(i) to denote such a
position). For example in Fig. 1 we have pos(3) = 8 since M[3| = ippi#mississ and T'[8,11] = ippi.

If one wants to compute the positions of all occurrences of a pattern P[1, p] it suffices to call locate(7)
for i = sp,...,ep where sp, ep are the row indexes computed by count. The basic idea described in [10]
for computing locate(i) is the following. We logically mark a suitable subset of the rows of M. For
these marked rows we keep explicitly their positions in 7. Therefore, if i is a marked row pos(i) is
directly available. If 7 is not marked, the procedure locate uses the LF-mapping and Property ¢ above
to find the row i; corresponding to the suffix T'[pos(i) — 1,u]. This procedure is iterated v times until
we reach a marked row i, for which pos(i,) is available; then we set pos(i) = pos(iy) + v. Because
of Property b each LF-mapping computation requires a call to the Occ procedure and a table lookup.
Hence an effective implementation of Occ and a proper marking strategy are the key ingredients for a



fast locate. In [10] two different marking strategies are described. The first one is simpler and yields a
O(log2 u) time implementation for locate. The second strategy is more complex but significantly faster:
it yields a O(log® u) time implementation for locate for any fixed € > 0.

3 An implementation of the FM-index

In this section we describe an implementation of the FM-index. Our implementation is based on ideas
introduced in [10], but in some points we use techniques which work well in practice rather than more
cumbersome techniques with guaranteed good asymptotic worst case behavior. The implementation
described here will be extensively tested in Section 4.

We have seen in the previous section that for an efficient implementation of the count and locate
procedures it is important to be able to efficiently compute the value Occ(c, k), that is, to count the
number of occurrences of the character ¢ in the prefix L[1,k]. To this end, we partition the string L
into superbuckets of size {g. Each superbucket is in turn partitioned into buckets of size ¢}, (clearly ¢,
divides f4,). For each superbucket we store a table containing for each character ¢ € ¥ the number
of its occurrences since the beginning of the string L. In other words, for the superbucket S; we store
the number of occurrences of ¢ in S1,.S59,...,5;_1. Similarly, for each bucket we store the number of
occurrences of every character since the beginning of its superbucket. Using this auxiliary information
we can easily compute the number of occurrences of any given character from the beginning of L up to
the beginning of a bucket. In order to efficiently compute the number of occurrences inside a bucket,
instead of compressing the string L as a single unit, we compress each bucket separately.

Summing up, the overall structure of the FM-index is the following:

e The superbuckets section which contains for each superbucket the number of occurrences of every
character in the previous superbuckets.

e The bucket directory which contains the starting position of each compressed bucket in the body of
the FM-index.

e The body of the FM-index which contains the compressed image of each bucket. The compressed
image of each bucket includes an header containing the number of occurrences of each character
since the beginning of the superbucket.

Given the above structure, in order to compute Occ(c, k) we first locate (using the bucket directory)
the starting position of the bucket B; containing L[k]. Then, we decompress B; and count the number of
occurrences of ¢ from the beginning of the bucket up to L[k]. Then, from the bucket header we get the
number of occurrences of ¢ since the beginning of the superbucket. Finally, from the superbucket section
we get the number of occurrences of ¢ since the beginning of L.

In the above description we did not mention the actual size of buckets and superbuckets, neither the
algorithm used to compress the single buckets. In [10] these parameters have been set to achieve effective
worst case bounds. Here the choice has been made on an experimental basis and is therefore discussed
in Section 4.

We have already observed that the string L is usually locally homogeneous, that is, if we look at a
small portion of it we will likely see only a few distinct characters. We have taken advantage of this
property as follows. For each (super)bucket we store a bitmap of the characters occurring in it. These
bitmaps make it possible to quickly detect if a given character occurs in a certain (super)bucket thus
possibly speeding up the computation of Occ(c, k). Additionally, these bitmaps allow to reduce the cost
of storing the auxiliary information described above; for example the header of a bucket is restricted to
the characters occurring in its superbucket.

The final point to be discussed is how we select and mark a subset of the rows of M as required by
the procedure locate. Our first design decision on this issue has been to let the user choose the fraction f
of the rows to be marked. Our second decision has been to use a marking strategy different from the one
described in [10]. Since we are mainly interested in indexing text collections, we decided to take advantage



Name Size Content Name Size Content

bible 4,047,392 | King James Bible cantrbry 2,821,120 | Canterbury corpus
e.coli 4,638,690 | DNA sequence ap90 67,108,864 | SGML-tagged text
world192 | 2,473,400 | 1992 CIA world fact book || jdk13 69,872,170 | html and java sources

Table 1: Files used in our experiments. The files bible, e.coli, world192 are from the Canterbury Corpus [2]. The file
cantrbry is a tar archive containing the small files of the Canterbury Corpus. It includes both binary files and text files in
various formats (plain text, html, c, and lisp code). The file ap90 consists of the first 64Mb of the concatenation of the files
ap90MMDD.txt from the TREC collection [13]. The file jdk13 consists of the concatenation of the .java and .html files
from the Java Jdk 1.3 documentation.

of the fact that the occurrences of each character in these texts are roughly equally spaced. Therefore,
when we construct the index we select one single character, say ¢, which occurs with frequency close to
f- Then, all the rows in M whose last character is ¢ are logically marked and the starting positions in T’
of their corresponding suffixes are stored in an array P in the order they occur in M. In particular if row
j ends with ¢, then the position pos(j) of the corresponding suffix will be stored in the entry Occ(c, 7) of
P. At search time the locate procedure computes pos(i) as follows. If L[i] = ¢ then pos(i) = P[Occ(c, ).
Otherwise (i.e. if L[i] # ¢) the locate procedure iterates the LF-mapping v times until it reaches a row i,
whose last character is ¢ (i.e. L[i,] = ¢). Then locate returns pos(i) = P[Occ(c, iy)] + v.

It goes without saying that this marking strategy heavily relies on the structure of the text and does
not ensure good performances in the worst case, as instead guaranteed by the theoretical approach of [10].
Nonetheless the simplicity of this marking strategy, its reduced space overhead, and the expected regular
structure of the indexed texts, drive us to think favorably of this scheme; its actual performance will be
investigated and commented in the next section.

4 Experimenting the FM-index

The implementation of the FM-index described in the previous section contains several parameters: the
size of buckets and superbuckets, the algorithm used for the compression of the buckets, the frequency
of the marked characters, etc.. In this section we describe the results of an extensive set of experiments
aimed at investigating the role played by each one of these parameters. We also compare the performance
of the FM-index with those of other compressors and of the suffix array. We ran all the experiments on a
machine equipped with a 600Mhz Pentium III processor with 512Kb L2 cache, 1 Gb RAM, and a 9.1 Gb
SCSI hard disk. The operating system was Gnu/Linux Debian 2.2.

We point out that searching in the FM-index requires at run time a very small amount of internal
memory. In fact, we access one bucket at a time (via the fseek/fread procedures) and therefore we need
a constant amount of internal memory independent of the size of the indexed text.

Table 1 reports the files used in our experiments. We also make use of truncated versions of the file
ap90: we write ap90-N to denote the file consisting of the first N Megabytes of ap90.

Compression of buckets. We have tested four different algorithms for the compression of single buckets.
From the simplest to the most complex they are: Unary coding (see [9, Sect. 7.1]), Hierarchical 3-level
coding (see [9, Sect. 7.2]), Arithmetic coding [23], and Huffman coding with multiple tables (following the
implementation of [21]). After a few preliminary tests we discarded Unary coding and Arithmetic coding
which turned out to be slower and less efficient in compression than, respectively, Hierarchical coding
and Multiple Tables Huffman coding (MTH coding from now on). For this reason in the following we
report the results only for Hierarchical coding, which is the fastest algorithm, and MTH coding, which
compresses better.

Size of superbuckets. It should be clear from the description in Section 3 that the purpose of super-
buckets is to reduce the amount of auxiliary information stored in each bucket (in each bucket we store,
for each character, its number of occurrences from the beginning of the superbucket, rather than from the
beginning of the file). Since each superbucket introduces some overhead of its own, in our first test we
have tried to determine which is the optimal ratio between the size of buckets and superbuckets. Table 2



Superbucket size 2Kb 4Kb 8Kb | 16Kb | 32Kb | 64Kb | 128K | 256Kb | 512Kb | 1024Kb | 4096Kb
Compression ratio | 41.04 | 35.45 | 33.05 | 32.28 | 32.34 | 32.89 | 33.64 34.68 36.06 37.47 41.16
Ave. count time 1.3 0.9 1.2 1.1 1.1 14 1.0 1.0 1.0 14 1.2
Ave. locate time 8.6 8.7 8.7 8.7 8.8 8.8 8.9 9.0 8.9 8.7 7.5

Table 2: Compression ratio (percentage), and average time (milliseconds) for the count and locate operations as a function
of the superbucket size. The FM-index was built for the file bible using MTH coding, marking 2% of the input characters
and adopting buckets of 1Kb. In each test, we searched 100 randomly chosen English words of length between 4 and 8, for
a total of 100 count operations and 1,614 locate operations. We have repeated the same set of experiments using the file
ap90-8 obtaining a similar behavior.

MTH coding bible ap90-8

Bucket size 1Kb 2Kb 4Kb 8Kb 1Kb 2Kb 4Kb 8Kb
Compression ratio || 32.28 | 29.35 | 27.63 | 26.57 || 38.67 | 34.77 | 32.44 | 30.98
Ave. count time 1.0 1.6 2.5 4.1 1.7 2.4 3.5 6.1
Ave. locate time 7.5 10.8 17.2 29.6 5.4 7.7 12.0 20.5
Hierarchical coding bible ap90-8

Bucket size 1Kb 2Kb 4Kb 8Kb 1Kb 2Kb 4Kb 8Kb
Compression ratio || 40.08 | 37.64 | 36.27 | 35.49 || 48.00 | 44.71 | 42.84 | 41.79
Ave. count time 0.9 1.1 1.5 2.5 1.2 1.7 2.3 4.1
Ave. locate time 5.8 7.9 12.3 20.7 4.3 5.8 8.8 14.8

Table 3: Compression ratio (percentage) and average time (milliseconds) for the count and locate operations as a function
of the bucket size. The first table refers to the FM-index built using MTH coding, the second one refers to Hierarchical
coding. Each test consisted in searching 1,000 randomly chosen English words of length between 4 and 8. The total number
of locate operations in each test was 24,434 for bible and 55,501 for ap90-8. In all tests the FM-index was built marking 2%
of the input characters.

reports the results of our experiments. We see that this ratio does not significantly influence the average
time of count and locate operations. We also see that very large or very small ratios yield a poor overall
compression. However, there is a large range of ratios which yield a compression close to 33% (that is,
the size of the FM-index is roughly one third of the original text size). In view of these results, in the
rest of our experiments we will choose the sizes of buckets and superbuckets so that their ratio is 1:16.

Size of buckets. Intuitively, the finer is the bucket decomposition, the faster is the decompression of a
single bucket and the worse should be the overall compression because of the larger auxiliary information
kept at bucket level. Since the count and locate operations need to decompress several buckets (one bucket
is decompressed at each call of the subroutine Occ, see Section 3), we would like to set the bucket size as
small as possible; on the other side, in order to improve the compression ratio we would like to increase
the bucket size to reduce the number of buckets and hence minimize the overall auxiliary information
kept for them. Table 3 shows that there is a trade-off between compression ratio and search speed so that
the choice of the appropriate bucket size clearly depends on the resource the end-user wishes to minimize.

From the results in Table 3 we see that for a fixed bucket size Hierarchical coding induces smaller
average times for count and locate operations, whereas MTH coding compresses better. However, for a
fair comparison it is natural to ask which is the fastest when the resulting FM-index requires a similar
space occupancy. In this setting the MTH coding strategy appears to be superior. In fact the FM-index
based upon Hierarchical coding needs to use buckets of size 8Kb in order to achieve a compression similar
to the one obtained by the index based upon MTH coding with 1Kb buckets. But MTH coding with 1Kb
buckets is faster in both the count and locate operations (in both cases by a factor roughly 2.5). In other
words, the space saved by MTH coding in the compression of the single buckets makes it possible to use
smaller buckets (i.e. to increase the amount of auxiliary information), and this more than compensate
the slower decompression speed of MTH coding. The net result is thus a faster searching algorithm. For
this reason in the following we focus only on the FM-index built using MTH coding.

Percentage of marked characters. This parameter clearly introduces a trade-off between compression
and searching speed: the larger is the number of marked characters, the bigger is the space required for



bible ap90-8
Bucket size 1Kb 2Kb | 4Kb 8Kb 1Kb 2Kb 4Kb | 8Kb
1% Compression ratio || 29.54 | 26.61 | 24.89 | 23.89 || 35.71 | 31.81 | 29.48 | 28.02
Ave. locate time 15.0 21.7 34.7 59.5 15.6 22.1 34.7 58.8
2% Compression ratio || 32.28 | 29.35 | 27.63 | 26.57 || 38.67 | 34.77 | 32.44 | 30.98
Ave. locate time 7.5 10.8 17.2 29.6 5.4 7.7 12.0 20.5
5% Compression ratio || 40.25 | 37.32 | 35.60 | 34.54 || 46.67 | 42.77 | 40.43 | 38.98
Ave. locate time 2.9 4.1 6.6 11.3 3.6 5.1 8.0 13.7
10% Compression ratio || 53.70 | 50.77 | 49.06 | 47.99 || 58.25 | 54.35 | 52.02 | 50.56
Ave. locate time 1.3 1.9 3.0 5.1 1.9 2.7 4.3 7.3

Table 4: Compression ratio (percentage) and average time (milliseconds) for a locate operation as a function of bucket
size and percentage of marked characters. Each test consisted in searching 1,000 randomly chosen English words of length
between 4 and 8. The total number of locate operations in each test was 24,434 for bible and 55,501 for ap90-8. In all test
the FM-index was built using MTH coding. The percentage of marked characters is given in the first column.

File bible e.coli world | cantrbry jdk18 | ap90-8 | ap90-16 | ap90-32 ap90

FM Compr. ratio 32.28 33.61 33.23 46.10 21.41 38.69 37.43 36.36 35.49
index | Ave. count time 1.0 2.3 1.5 2.7 2.6 1.7 1.7 1.7 1.6
Ave. locate time 7.5 7.6 9.4 7.1 32.8 5.4 5.3 5.5 5.3

suffix | Compr. ratio 375.00 | 387.50 | 375.00 375.00 | 437.50 | 400.00 412.50 425.00 | 437.50
array | Ave. search time 0.5 0.6 0.5 0.5 1.0 0.7 0.8 1.1 1.6

Table 5: Compression ratio (percentage) and average search time (milliseconds) for the FM-index and the suffix array on
different types of input files. Each test consisted in searching 1,000 randomly chosen English words of length between 4
and 8 (for e.coli we used random DNA sequences of length between 8 and 15). In all tests the FM-index was built using
1Kb buckets compressed with MTH coding and marking 2% of the input characters. The search time for the suffix array
accounts for the cost of retrieving all pattern occurrences.

storing their positions, the smaller is the number of LF-steps required for a locate operation. Of course
count is not affected by the value assigned to this parameter since it does not use marked characters.

Table 4 reports the performance of the FM-index built using MTH coding and different bucket sizes
and percentages of marked characters. Although we do not have sufficient data to draw a general rule,
our results suggest that it is preferable to use small buckets. For example, the index built upon 1Kb
buckets and 2% marked characters is more compact and supports faster searches than the index with
8Kb buckets and 5% of marked characters.

Robustness of the FM-index. Our next set of experiments are designed to test the performances of
the FM-index on different types of input files. We have built the FM-index for all files in Table 1 using
MTH coding, setting the bucket size to 1Kb, and marking 2% of the input characters. We emphasize
that these were arbitrary choices (even if reasonable ones) since our previous experiments show that,
depending on the application, other parameters could be more appropriate.

Table 5 summarizes the results of our tests. The first point to be noted is that the data for the
files ap90-N show that the searching time is not significantly influenced by the size of the input file. In
addition, for most of the files the average count and locate time have similar values, the only exception
being the average locate time in jdk13. We believe that the reason for this exception resides in the simple
marking technique described in Section 3 which does not work well for this file. The assumption that
the occurrences of a given character are evenly distributed in the input file is probably not valid for
jdk18 which consists of .html and .java files. Table 5 also shows the performance of the suffix array
highlighting that it is very fast in searching but requires a large space occupancy, a factor in the range
[8, 13] more than the FM-index.

FM-index vs gzip/bzip. We have compared the compression ratio and the (de)compression speed of
the FM-index with those of gzip (the standard Unix compressor) and bzip2 (the best known compressor
based on the BWT, see [21]). We have considered two versions of the FM-index: a “fat” index with 1Kb
buckets and 2% marked characters (its performance is the one reported in Table 5) and a “tiny” index
with 8Kb buckets and no marked characters (the tiny index supports only the count operation which



File | bible | e.coli | world | cantrbry | jdk18 | ap90-8 | ap90-16 | ap90-32 | ap90

FM-index | Compression ratio 21.09 | 26.92 | 19.62 24.02 6.94 25.06 23.93 22.96 | 22.14
(tiny) Construction time 2.24 2.19 2.26 2.21 3.48 2.49 2.64 2.81 3.04
Decompression time 0.45 0.49 0.44 0.38 0.42 0.48 0.50 0.52 0.57

FM-index | Compression ratio 32.28 | 33.61 | 33.23 46.10 | 21.41 38.69 37.43 36.36 | 35.49
(fat) Construction time 228 | 217 2.33 239 | 3.51 2.59 2.74 2.88 | 3.10
Decompression time 0.46 0.51 0.46 0.41 0.44 0.51 0.52 0.55 0.59

bzip2 Compression ratio 20.90 | 26.97 | 19.79 20.24 7.23 27.38 27.33 27.32 | 27.36
Compression time 1.16 1.28 1.17 0.89 1.52 1.16 1.17 1.16 1.16
Decompression time 0.39 0.48 0.39 0.31 0.28 0.43 0.43 0.43 0.43

gzip Compression ratio 29.07 | 28.00 | 29.17 26.10 | 10.97 37.21 37.28 37.31 | 37.35
Compression time 1.74 | 10.48 0.87 5.04 0.39 0.96 0.97 0.97 0.97
Decompression time 0.07 0.07 0.06 0.06 0.04 0.07 0.07 0.07 0.07

Table 6: Compression ratio (percentage) and (de)compression speed (microseconds per input byte) of the FM-index
compared with those of gzip (with option -9 for maximum compression) and bzip2 (version 1.0.1). The “fat” FM-index uses
1Kb buckets and 2% marked characters, whereas the “tiny” FM-index uses 8Kb buckets and no marked characters.

takes about 6 milliseconds on average).

From the results in Table 6 we see that the tiny FM-index takes significantly less space than the
corresponding gzip compressed file. In addition, for all files except bible and cantrbry, the tiny FM-index
compresses better than bzip2. This may appear surprising since bzip2 is also based on the BWT and MTH
coding. The explanation is that the FM-index computes the BWT for the entire file whereas bzip2 splits
the input in 900Kb blocks. This compression improvement is payed in terms of speed; the FM-index is
slightly slower than bzip2 in both compression and decompression, the difference being more noticeable
for larger files.

We have already observed that the FM-index includes the compressed text as well as some auxiliary
information for supporting the count and locate operations. The comparison of the “tiny” FM-index with
bzip2 shows that the auxiliary information used by count is negligible for proper bucket sizes. On the
other side, the “fat” FM-index performs slightly worse than gzip but supports both count and locate.

5 Concluding remarks

The bottom line of our extensive set of experiments is that the FM-index is compact (its space occupancy
is close to the one achieved by the best known compressors), it is fast in counting the pattern occurrences,
and the cost of their retrieval is reasonable when they are few (i.e. in case of a selective query). These
algorithmic features make the FM-index interesting in various contexts. We briefly mention three of
them.

e In CD-ROM production the space issue is the primary concern, hence the compactness of the FM-
index may result useful in squeezing in small space both the text and a complete index for it. This
can be done in a flexible way since the FM-index allows to trade space occupancy for search time.

e In spell checkers and virus detectors we are only interested in retrieving few occurrences, possibly
a single one, from a dictionary of words. The literature about dictionary implementations is huge,
and basic tools are tries, hash-tables and ternary search trees (T'ST) [5]. None of them, however,
offer any kind of compression. Some preliminary experiments comparing the TST and the FM-index
have shown that the former is up to 200 times faster in searching but occupies about 15 times more
space.

e The FM-index can be used as a basic block in more complex indexing tools. In [10] it is shown
how to plug the FM-index into the Glimpse tool [17]. The resulting index allows to achieve both
sublinear space occupancy and sublinear search-time complexity in the worst case. Conversely,
inverted lists allow to achieve only the second goal, whereas the classical Glimpse achieves both
goals but under some restrictive conditions (see [3]).



As a future research we plan to investigate and implement new marking strategies which are simple
and whose performance do not degenerate with biased distributions of the characters in the indexed
text. This would make the locate procedure less sensitive to the text structure. Another interesting
issue is the extension of the search procedure to more complex queries, like approximate matches and
regular expressions searching. We believe that the structural properties of the FM-index may allow to
easily adapt the algorithms known for the suffix array [11]. Finally, we are currently implementing a
text retrieval system based on the combination of Glimpse and the FM-index following the ideas detailed
in [10].
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