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Abstract
In Odonates, female colour polymorphism is common and implies the presence of two or 
more female types with different colours and behaviours. To explain this phenomenon, sev-
eral hypotheses have been proposed that consider morph frequency, population density, the 
presence of parasites, and mating behaviour. We studied the blue-tailed damselfly Ischnura 
elegans, a species with a blue androchrome morph and two gynochrome morphs (the com-
mon green infuscans, and the rare orange rufescens-obsoleta). The size of adult males 
and females, the presence of parasites, and pairing behaviour between males and the three 
female morphs was assessed in field conditions throughout the reproductive season in NW 
Italy. Moreover, growth and emergence success of larvae produced by the different morphs 
was analyzed in standardized conditions. In the field, males showed a preference for the 
gynochrome infuscans females, despite a similar frequency of androchrome females. In test 
conditions, male preference for the infuscans females was also observed. Paired males and 
paired androchrome females were larger than unpaired individuals, while there were no 
differences in size between paired and unpaired infuscans females. Males and androchrome 
females were more parasitized than infuscans females. The survival and emergence success 
of larvae produced by androchrome females was higher than those of offspring produced 
by the infuscans females. Our results suggest that a higher survival of progeny at the larval 
stage could counterbalance the higher parasitism and the lower pairing success of andro-
morph adult females and highlight the importance of considering the whole life-cycle in 
polymorphism studies.
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Introduction

Polymorphism occurs when two or more morphs coexist in the same population (Burns 
1956; Gray and McKinnon 2007). In dragonflies and damselflies, a particular kind of 
polymorphism, the female-limited colour polymorphism, is widespread (more than 100 
species in the Holarctic region, Fincke et al. 2005). Usually, the coloration of the thorax 
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and abdomen of a female morph resembles the male (androchrome female), while one 
or more morphs show a different coloration (gynochrome females). The polymorphism 
shows a strong genetic determination with the colour being controlled by a single auto-
somal locus with female-limited expression in different species studied so far (John-
son 1964, 1966; Cordero 1990; Andrés and Cordero 1999; Abbott and Svensson 2005; 
Sanmartín-Villar and Cordero-Rivera 2016).

To explain the maintenance of polymorphism in Odonates, several hypotheses were 
proposed. According to the "reproductive isolation" hypothesis (Johnson 1975) gyno-
chrome females are more cryptic, but suffer a high harassment by males of different 
species (interspecific), while androchrome females are not sexually harassed but suffer 
a greater pressure by predators. Similarly, the "male mimicry" hypothesis (Robertson 
1985) proposes that androchrome females could benefit from less intense intraspecific 
male harassment (unnecessary matings can be very costly), but suffer a higher predation 
risk due to having more showy colours. The "density-dependent" hypothesis proposed 
by Hinnekint (Hinnekint 1987) implies that androchrome females could benefit by a 
less intense male harassment at high male densities, but face greater mating failure than 
gynochromes at low densities. The existence of temporal cyclic variation in population 
density would permit the different morphs to achieve an evolutionary equilibrium.

Other hypotheses stress the behavioural component of this phenomenon and are often 
limited to a single or few species. According to the "learned mate recognition" hypoth-
esis (Miller and Fincke 1999) male choice is influenced by female morph frequency, and 
males choose the commonest morph. The "female aggression" hypothesis (Sirot et  al. 
2003) underlines that androchrome females can limit harassments, because they are 
more aggressive toward males than gynochromes, while the "female receiver" hypothe-
sis (Sirot and Brockmann 2001) highlights that androchrome aggressive females disrupt 
and interfere more with other females during oviposition, and another hypothesis by Van 
Noordwijk (1978) suggested that males might disrupt more the oviposition behaviour of 
gynochromes compared to androchromes. According to the "signal detection" hypoth-
esis (Sherratt and Forbes 2001), frequency-dependent and frequency-independent fac-
tors combine to generate a balanced polymorphism, in which andromorphs are not only 
more similar to males, but are also encountered more by males. The "male harassment" 
hypothesis (Gosden and Svensson 2007) proposes that female morphs differ in their pro-
pensity to accept male mating attempts and in their degree of resistance towards mating 
attempts. Maintenance of polymorphism within a population is an evolutionary enigma, 
because a slight consistent advantage of one morph would be sufficient for selection to 
drive the other morphs to extinction (Brockmann 2001; Galicia-Mendoza et al. 2017).

Recently, two hypotheses emphasize the role of internal (physiological maturation) 
or external (parasites) conditions to maintain female morphs. According to the "sexual 
status signalling" hypothesis (Huang and Reinhard 2012) sexually immature females 
change their colour from androchrome to gynomorphic to signal sexual maturity and 
regulate reproduction. The "parasitism" hypothesis (Sánchez-Guillén et al. 2013b) con-
siders an important role of parasites on morph fitness: androchrome females are more 
successful in evading male harassment, but pay a higher fecundity cost by being more 
parasitized than gynochromes.

Despite the plethora of hypotheses proposed to explain female polymorphism, its 
adaptive significance remains controversial. The fitness consequences maintaining 
female polymorphisms in natural populations are difficult to be adequately demonstrated 
(Fincke 1994; Wellenreuther et al. 2014), and different hypotheses are not always mutu-
ally exclusive.
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Odonates, like other insect taxa, show two distinct life-history stages. During the course 
of ontogeny, they switch from being aquatic larvae to being terrestrial adults. Usually, 
research has examined the effect of behaviour and/or environmental conditions during the 
adult stage on mating success (Corbet 1980; Van Gossum et  al. 2005), while less stud-
ies concerned the larval stage (Harvey and Corbet 1985). The trans generational effects of 
adult behaviour on the fitness of their progeny have been little studied (Thompson et al. 
2011). Despite the wide occurrence of female polymorphism in Odonates, few studies have 
examined the growth and survival of the progeny generated by different female morphs 
(Abbott and Svensson 2005; Bots et  al. 2010a; Bouton et  al. 2011; Abbott 2013). Such 
studies are important, since fitness will ultimately depend upon selection that operates 
along successive generations (Stearns 1992).

In this study, we examined the Blue-tailed damselfly Ischnura elegans, a species where 
males are monomorphic while females occur in an androchrome and two gynochrome 
female morphs (forma infuscans and forma rufescens-obsoleta: (Parr 1999; Sánchez-
Guillén et al. 2005). These morphs coexist in the same areas, and the frequency of each 
morph may vary among populations in the same season and among different seasons in the 
same population (Svensson and Abbott 2005; Hammers and Van Gossum 2008; Gosden 
and Svensson 2009). We collected biometrical data, sex ratio, morph frequency, mating 
success, and parasite burden for different morphs. We then tested the male preference for 
different morphs in controlled conditions through a binary test choice experiment. Finally, 
the fitness larval component for different female morphs was assessed by monitoring 
the hatching success, larval growth, and emergence success of the progeny produced by 
females.

Methods

Study areas

The studied populations were located at two artificial wetlands and one natural oxbow near 
the Po river (Alessandria, NW Italy). Lago Altafiore, Castellazzo Bormida AL (44.85785° N, 
8.59319° E) is a 4.4 ha lake dedicated to sport fishing that was artificially created after 
gravel pit extraction activity. The basin has rather deep waters and steep banks, with fairly 
abundant aquatic vegetation in the first meter at the ground-water boundary and some 
Phragmites reed. Cava Allara, Sezzadio AL (44.78991° N, 8.55177° E) is a 15.3 ha lake 
artificially created after gravel pit extraction activity, with slightly inclined shores, shallow 
water, and some floating and submerged vegetation. Phragmites and Typha are widespread. 
Lanca di San Bernardo, Valenza AL (45.03701° N, 8.65516° E) has a surface of 2.8 ha and 
has lentic water with natural habitat coenosis characterized by abundant floating and sub-
merged vegetation of different species. The vegetation is dominated by marsh plants, such 
as Carex spp., Phragmites spp., Juncus spp. and Typha spp., that are widespread along the 
shoreline.

Field census

Damselflies were captured with entomological nets and marked with a progressive num-
ber on the wing to avoid measuring the same individual twice. We never utilized observa-
tional data of individuals that were sight in the field but not captured. Sampling was carried 
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out during the hours with maximum activity, i.e. between 11:00 and 15:00, throughout 
the reproductive season from May to September in 2013 and 2014. We always collected 
individuals found in the same environment, i.e. grassy vegetation placed in a strip about 
3–10 m near the edge of the water body. Immediately after capture, a photo was taken with 
a digital camera with the animal positioned on a graph paper. The image was later analyzed 
with the ImageJ 1.48 software (Schneider et  al. 2012) and total body length was meas-
ured to the nearest 0.1 mm. In the field, we recorded sex, morphotype of females, and the 
presence/absence of parasites. Odonates are commonly parasitized by the endoparasite gre-
garine Protozoa (Córdoba-Aguilar and Munguía-Steyer 2013; Gołab et al. 2013; Sánchez-
Guillén et al. 2013b) and ectoparasite Arrenurus mites (Zawal 2006; Hassall et al. 2010). In 
this study, we only considered the ectoparasites because we could easily assess their pres-
ence when measuring adults (Forbes and Robb 2008), without killing the damselflies for 
endoparasite examination (Kaunisto et al. 2015). We did not collect any teneral individuals 
(when damselflies first emerge teneral individuals are duller in colour and their wings are 
translucent). Moreover, we did not include in statistical analysis the immature individuals 
(violacea and rufescens forms: Sánchez-Guillén et al. 2005). Immature individuals showed 
a high parasitization rate (parasitized immatures: 36.1%, N = 379; adults: 7.8%, N = 793), 
and were rarely found mating (mating immatures: 5.0%, N = 379; adults: 37.0%, N = 956).

Mate choice

We studied mate choice both by assessing the number of individuals of different morphs 
that were found unpaired or found mating (wheel position) in the field, and conducting 
mate choice standardized tests (van Gossum et  al. 1999, 2001; see Cordero-Rivera and 
Andrés 2001 cautionary note on choice experiments). To compare the body length of dam-
selfly morphs, at each visit to a site we randomly captured a sample (mean 30 ind., range 
7–124 ind.) of non-paired individuals and of individuals engaged in mating pairs.

Mate choice tests were performed in field in the same area of capture using an insec-
tary formed by a squared iron framework (60 × 100 × 100 cm), laid down on the grass and 
covered by a mosquito net. One male and two females of different morphs (androchrome 
and infuscans) were placed at the same time inside the insectary and observed for 30 min. 
During this time, any interaction (grasping, tandem, wheel mating) between the male and 
one of the two females was considered as an indication of choice. In this study, males never 
tried to approach two different females during the test session.

Growth and survival of progeny

We utilized a standard lab method to assess growth and survival of the progeny (Cordero 
1990; Bots et al. 2010a; Bouton et al. 2011; Locklin 2012; Piersanti et al. 2015). Females 
actively engaged in mating activity (wheel position) were captured in the field and suc-
cessively transported to the laboratory. Mating males were immediately released. We only 
captured androchrome and infuscans females, because rufescens-obsoleta females were 
very uncommon in our study area. In the laboratory, each female was photographed, then 
placed individually in a plastic cup containing a small piece of wet tissue paper and a small 
amount of water to stimulate the oviposition (Fincke 1984; Abbott and Svensson 2005; 
Subrero et al. 2019). Each plastic cup was closed with a mosquito net and females were left 
for about 20 h with an artificial photoperiod 16–8 L-D during which females usually laid 
their eggs on the tissue paper. After egg deposition (1937 eggs from 18 androchrome and 
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3323 eggs from 39 infuscans females, all from unparasitized individuals), each tissue paper 
was placed in a separate tray containing natural water under the same lighting conditions, 
and females were released in their original capture area.

After about 12–15  days, the eggs began to hatch and the larvae were fed daily with 
Artemia salina nauplii. In line with other studies (De Block and Stoks 2008; Abbott 2013; 
Álvarez et al. 2013), Artemia shrimps were the only food item used throughout the rearing 
period. Once a week, larvae were placed in a petri dish with graph paper and measured to 
the nearest 0.25  mm under a stereo microscope to evaluate growth. To assess mortality 
rates, larvae were counted three times a week. In the last part of the rearing period, the 
trays containing the developing larvae were covered by a light perforated veil and a small 
stick was inserted to allow the ones that had to transform to rise out of the water. Once 
damselflies emerged, they were counted to establish emergence success.

Statistics

The difference in adult body length throughout the season was investigated with a general 
mixed model lme4 package (Bates et al. 2015) with length as the dependent variable and 
Julian date, study site, year, and morph as predictors. Site and year were added as ran-
dom effects. The relationship between sex-ratio and Julian date and site were independent 
variables.

The effect of parasites on body length was analyzed by general mixed models only in 
males and in two female morphs, i.e. androchrome and infuscans, due to the low sample 
size of the rufescens-obsoleta morph.

Mortality was compared for androchrome and infuscans progeny using survival analyses 
(Kaplan–Meier estimates) with the survival packages (Fox and Carvalho 2012; Therneau 
2020) implemented in the R Commander plugin (Fox 2005) for the R software (R Core 
Team 2016). In the models, female ID was entered as a random effect using the "frailty" 
function.

Results

Abundance and size of morphs in the field

The sex ratio observed in the field was always male biased. There were about twice as 
many males per female at the beginning of the reproductive seasons, from June to July, 
with a significant increase in the sex ratio toward the end of the season, from August to 
September (Fig. 1a; χ2 = 41.58; d.f. = 4; P < 0.001).

There was a significantly different frequency of the three female morphs (χ2 = 203.2; 
d.f. = 2; P < 0.001, N = 410). The androchrome and infuscans morphs were the most abun-
dant, while the rufescens-obsoleta was rarely found (3.4%).

Males were significantly smaller than females  (F3,1000 = 9.58, P < 0.001, N = 1004). 
There was a tendency for infuscans females to be larger than androchrome females 
 (F2,256 = 1.805, P < 0.07). The few rufescens-obsoleta females showed a conspicuous size 
variability (Fig. 2).

The size of males and all female morphs decreased across the season (Fig.  3), with 
early-season individuals larger than end-season ones (Males: length = 32.61–0.0291 * day, 
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Fig. 1  Seasonal trend along the 
reproductive season of (a) sex 
ratio, and (b) frequency of the 
three female morphs

(a)

(b)

Fig. 2  Sizes of males (M) and 
females of three different morphs 
(androchrome, infuscans and 
rufescens-obsoleta). Different 
letters indicate significant differ-
ences among types
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 t1,490 = 336.9, P < 0.001; Androchomes: length = 32.14–0.0177 *day,  t1,58 = 4.92, P < 0.03; 
infuscans: length = 32.84–0.0302 *day,  t1,67 = 29.16, P < 0.001; rufescens-obsoleta: 
length = 33.99–0.0527 *day,  t1,5 = 15.45, P < 0.011).

Mate choice

Under field conditions, gynochrome infuscans were found mating significantly more 
than androchrome females (Logit unpaired = 0, paired = 1; effect of morph: andro-
chrome = −1.654, Z = −7.308; P < 0.001). The rufescens-obsoleta females were excluded 
from the analysis, because they were very uncommon in the study area. In relation to the 
increased proportion of males as the season progressed, the mating frequency of both 
androchrome and infuscans females increased along the reproductive period (Logit effect of 
Julian date: androchrome: effect = 0.0370, Z = 6.611, P < 0.001. Infuscans: effect = 0.0150, 
Z = 2.742, P < 0.001).

Paired males and paired androchrome females were larger than unpaired individuals, 
while infuscans females had similar sizes regardless of their pairing status (Fig. 4. Males: 
 t2,491 = 3.139, P < 0.002; androchrome:  t2,57 = 2.28, P = 0.02; infuscans:  t2,66 = 1.071, 
P = 0.29 n.s.; rufescens-obsoleta:  t2,4 = 1.43, P = 0.23 n.s.).

In the binary choice test, infuscans were preferred over androchrome females (only 3 
androchrome preferred out of 17 tests, Binomial test P < 0.0064). The time elapsed from 

Fig. 3  Seasonal size trend for males and the three female morphs
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the beginning of the test to the first mating interaction was significantly lower for infuscans 
females (10.0 ± 5.77 min vs 25.0 ± 5.0 min;  t1,10 = 3.09; P = 0.011).

Parasites

Males were less parisitized than females (Yates corrected chi-square = 16.82, d.f. = 1; 
P < 0.001), and this difference was largely due to androchrome females that were sig-
nificantly more parasitized than both males and the other female morphs (Fig.  5; chi-
square = 28.4, d.f. = 3; P < 0.001).

Parasitized individuals of both sexes were significantly smaller than non-parasitized 
one (Table 1). The small sample size prevented any comparison for the rufescens-obsoleta 
morph.

Mating success of unparasitized individuals was higher than that of parasitized indi-
viduals (androchrome females: 57.0% vs 10.5%, N = 98, chi-square = 13.2, P = 0.0003; 

Fig. 4  Sizes of paired vs unpaired 
individuals

Fig. 5  Percentage of parasitized individuals for males and three female morphs
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infuscans females: 69.1% vs 33.3%, N = 112, chi-square = 8.35, P = 0.0039; non-significant 
tendency for males: 21.4% vs 12.0%, N = 572, chi-square = 1.27, P = 0.25).

Hatching rate, growth and survival of progeny

The number of eggs laid by captured females of the two morphs did not significantly dif-
fer (androchrome: 107.6 ± 81.7 SD, N = 18; infuscans: 85.2 ± 90.7 SD, N = 39 females; 
Mann–Whitney test: W = 442; P = 0.12 n.s.).

The hatching rate of eggs laid by androchromes were similar to that of eggs laid by 
infuscans females (75.1% vs 71.6%; z value = 0.609, P = 0.543 n.s.).

Growth of larvae born from infuscans females was slightly higher than that of larvae 
born from androchrome females (Fig.  6a; mixed model with female identity as random 
effect: N observations = 6198, groups = 48, t = 2.433, P = 0.015). On the contrary, survival 
of progeny was significantly higher in larvae born from androchrome females (Fig. 6b; chi-
square = 31.0, d.f. = 1, P < 0.001).

Success at emergence was significantly higher for progeny of androchrome females than 
for progeny of infuscans females (androchrome: 2.57%, N = 75/2918; infuscans: 1.77%, 
N = 96/5435; chi-square = 5.86, P = 0.015).

Discussion

In this study we compared mate choice and survival of the progeny of different female 
morphs of the Blue-tailed damselfly. We found that androchrome females were slightly 
more frequent in nature and their progeny had better survival, while infuscans females 
were more chosen by males and less parasitized.

Sex ratio and morphs frequency

In our study area, sex ratio was always male-biased. Adult Odonates populations often 
have male-biased sex ratios at the breeding habitat (Corbet and Hoess 1998; Foster and 
Soluk 2006; Cordoba-Aguilar 2008). This bias could be attributed to a high female 
mortality, to females using alternative habitats (Stoks 2001; Johansson et  al. 2005; 
Torres-Cambas and Fonseca-Rodríguez 2011), or to higher female mortality in the lar-
val stage (Johansson et al. 2005). In some cases, it has been questioned as to whether 
male-biased sex ratios in Odonate populations are real or artificial, but current data 
suggest that the biased sex ratios are real (Stoks 2001). The continuous occurrence of 
a large number of males in our study species poses the basis for the presence of both 
intrasexual (male-male) and intersexual competitions.

Table 1  Sizes of parasitized versus unparasitized individuals in relation to Julian date and presence/absence 
of parasites

Morph Constant Julian date Parasites t p

Males 32.878  − 0.0340 −1.667 5.142  < 0.001
Androchromes 33.456  − 0.0280 −2.458 5.696  < 0.001
Gynochrome infuscans 33.257  − 0.0333 −0.889 2.032  < 0.046
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We found a different frequency of the three female morphs, with the andromorph 
slightly more abundant, the gynomorph infuscans rather frequent, and the gynomorph 
rufescens-obsoleta very rare. The morph frequency of female Odonates can vary across 
environmental gradients (Inomata et al. 2015; Bybee et al. 2016) or can vary cyclically 
when there is a fitness advantage of the rarer morph (Takahashi and Kawata 2013). In 
one study of Ischnura elegans, the morph frequencies had a pattern similar to those 
found in our study area, and were found to be stable over ten generations (Le Rouzic 
et al. 2015), while in other studies the proportion of the morphs varies between years, 
with more androchrome females in younger populations (Svensson and Abbott 2005), 
or with very large differences among nearby populations (Fincke et al. 2005; Sánchez-
Guillén et al. 2005; Svensson et al. 2005).

Fig. 6  Larval growth (a) and 
mortality of progeny (b) from 
androchrome and infuscans 
gynochrome females

(a)

(b)
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Mate choice

We found that androchrome females had a lower probability of being found in copula 
compared to the gynochrome morph: androchromes represented 55% of females but were 
involved in 43% of matings. Our result is similar to that reported for other populations of 
the same species (Cordero et  al. 1998; Cordero-Rivera and Sánchez-Guillén 2007; Gos-
den and Svensson 2007, 2009; Hammers and Van Gossum 2008; Gosden et  al. 2011). 
In the congeneric species Ischnura graellsii, mating success was similar for andro- and 
gynochrome morphs at high population densities, but the proportion of mated females was 
greater in gynochromes at low densities (Cordero 1992a). In Ischnura ramburi, andro-
morphs were less likely than gynomorphs to receive mating attempts by males, but did not 
mate less frequently than other females (Sirot et al. 2003).

The larger proportion of gynochrome females copulating in the field likely reflects the 
preference of males for that morph. The results of our experimental binary choice test con-
firm this hypothesis: the males preferred the gynochrome female when allowed to choose 
between the androchrome and infuscans. Our results on female pairing are in line with two 
other studies on the Blue-tailed damselfly, where a preference for gynochrome females was 
also found (Svensson et al. 2005; Sánchez-Guillén et al. 2017), but differs from other stud-
ies where males did not prefer gynochrome females but mated predominantly with the most 
common morph in the population (van Gossum et al. 1999). In general, male–female inter-
actions may be very complex (Cordero et al. 1998; Cordero-Rivera and Sánchez-Guillén 
2007; Sánchez-Guillén et  al. 2013a), and may involve image search ability and learning 
(Punzalan et  al. 2005; Nityananda 2016; but see Piersanti et  al. 2021), multiple sensory 
cues (Van Gossum et al. 2008; Winfrey & Fincke 2017; review in Rebora et al. 2018), and 
female behaviour in responding to mating attempts by males. Recent studies report that the 
preference for a specific morph may not be innate, but that male preference can be influ-
enced by experience, i.e. naive males at their first encounter with a female did not show 
a clear preference for gynomorph individuals but the preference is shown later (Sánchez-
Guillén et al. 2013a), and there is no long term memorization of preference because choice 
can vary the following day (Takahashi and Watanabe 2009).

A higher pairing success of gynochrome morphs was found in several damselfly species 
too. Indeed, male preference for gynochrome females seems to be a widespread pattern in 
Odonates (Cordero-Rivera and Andrés 2001).

Size

We found a strong sexual size dimorphism, with females larger than males. Sexual size 
dimorphism has been observed in several insect taxa. Fecundity selection acting on female 
body size usually produces female-biased dimorphism through increasing fecundity in 
larger females, but variations with respect to this pattern have been frequently found. For 
example, male-male competition can end with male-biased size dimorphism in species 
in which males compete for females on the ground, or female biased size dimorphism in 
species in which males compete in the air and manoeuvrability is favoured by small size 
(Serrano-Meneses et  al. 2008). In Odonates, a female-biased sexual size dimorphism in 
non-territorial species and monomorphism for territorial species has been shown (Wong-
Muñoz et al. 2011). Dimorphism can progress even from the early stages of life in eggs 
(Takahashi and Watanabe 2010a; Iserbyt et al. 2013).
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In our study, we found that gynochrome females were larger that androchrome females. 
Hence, androchrome females were somehow similar to the males even for size besides col-
our. A similar pattern was found in the same species in Sweden (Abbott and Gosden 2009), 
but this is not a general pattern of our study species (Cordero et al. 1998), nor within this 
damselfly genus, because in Ischnura graellsii either no difference or the reverse pattern 
was found (Cordero 1992a), nor is it a general pattern in other damselflies (Lajeunesse and 
Forbes 2003).

Our results indicated that both female and male Blue-tailed damselflies reached a 
smaller body size as the season progressed. The decrease in size within season is a com-
mon pattern in Odonates with the opposite having been found in a few species only (Wong-
Muñoz et al. 2011).

Interestingly, paired males were larger than unpaired males. The morphometric differ-
ence between mated and unmated males suggests the presence of sexual selection acting 
on this trait. Our result contrasts with the small-male mating advantage hypothesis (Stoks 
2000; De Block and Stoks 2007) which predicts that small males are advantaged by bet-
ter manoeuvrability in flight. In Sweden’s Blue-tailed damselflies, it has been reported 
that sexual selection on the male body size is mediated by densities of the two common 
female morphs, androchromes and gynochromes. High densities of androchrome females 
selected for small male body sizes, whereas high densities of gynochrome females selected 
for larger males (Gosden and Svensson 2008). Adult size is a highly hereditable trait in 
the Blue-tailed damselfly morphs (Abbott and Svensson 2010), as well as in other species 
(Cordero 1992b; Andrés and Cordero 1999; Abbott and Svensson 2005; Sánchez-Guillén 
et al. 2005). If larger males enjoy a higher pairing success, then a selective trend toward 
larger sizes should be at work. However, this predicted trend may hold only in gyno-
chrome-rich populations. Moreover, it is difficult to predict pressures acting on adult size 
by considering just a single behavioural trait. Indeed, in the Common blue damselfly Enal-
lagma cyathigerum, studies have failed to observe morph differences in size despite highly 
different levels of a behavioural trait in the form of male harassment (Bots et al. 2009).

Parasites

In our study, we found a noticeable difference between sexes and morphs in water mite 
parasitization rate. Males were less intensely parasitized than androchrome females which, 
in turn, were more parasitized than gynochrome females. Our result contrasts with the 
trend outlined in a recent review on parasite infestation, according to which the two sexes 
are generally equally parasitized in both dragonflies and damselflies (Ilvonen et al. 2016). 
However, a study on six species of damselflies showed that androchrome females suffer 
from a higher degree of parasitism than gynochrome females and males (Sánchez-Guillén 
et al. 2013b). Furthermore, a study on the Blue-tailed damselfly found that males were less 
parasitized than both gynochrome and androchrome females (Willink and Svensson 2017). 
From these contrasting findings, it appears that a general pattern of parasitic infestation in 
relation to sex and morph is difficult to extract from Odonate research. Probably, parasitiza-
tion condition is mainly shaped by large between-species and between-populations differ-
ences. Parasite resistance too can differ between sexes and morphs. Recently, a comparison 
between male and female immunity identified genes with sex-biased expression, and gyno-
chromes differed more from males than the androchrome females (Chauhan et al. 2016).

In our study, parasitized damselflies were smaller than non-parasitized. Our result 
is similar to findings on males of the Variable damselfly Coenagrion pulchellum  
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(Hughes et  al. 2016). Reduced size could be related to the negative effects of parasites, 
because water mites extract body fluids from their hosts. However, mites are acquired when 
tenerals leave the water during emergence (Forbes and Robb 2008; Stoks and Cordoba-
Aguilar 2012). Therefore, a negative effect of parasites on size seems to be unlikely in 
damselflies, which had already developed to their full body size after emergence (Hughes 
et al. 2016). Other possible explanations include the behavioural and the immune reactions 
of damselflies to parasites. Water mites attach themselves on to the ventral side of the host, 
and larval damselflies have been found to get rid of attached mites by grooming. It is pos-
sible that larger individuals can free themselves of the mites more effectively (Forbes and 
Baker 1990). Besides, body size could also be related to immunity. If larger individuals are 
able to allocate more resources towards their immune reaction, then their response (mite 
encapsulation) may be more efficient and the observed parasitization rate lower (Hughes 
et al. 2016). Lastly, the difference in size could be related to the age of damselflies. Arrenu-
rus mites are found mainly in young individuals, and usually drop-off from the damsel-
flies when they start to reproduce (Rolff 1999). Larger individuals may be able to survive 
longer and will also have less parasites, because they detach when the damselflies begin to 
reproduce. In this study, we excluded immature individuals (violacea and rufescens forms: 
Sánchez-Guillén et  al. 2005), but in adults we did not control whether the unparasitized 
and larger individuals were older than parasitized ones. This hypothesis needs detailed 
studies in the future.

In Odonates, negative effects of parasites have also shown to be related to reduced egg 
production (Forbes and Baker 1991; Rolff 1999; Canales-Lazcano et  al. 2005; but see 
Kaunisto et al. 2017), reduced mating success (this study; Forbes and Baker 1991; Andrés 
and Cordero 1998; Rolff 1999; Canales-Lazcano et al. 2005), or to increased mortality. In 
the Azure damselfly Coenagrion puella, mite load influenced the probability of daily re-
sighting (Sherratt et al. 2010), or increased the likelihood of dispersal (Conrad et al. 2002).

Larval growth

In order to compare the two female morphs fitness, aside from pairing success and parasiti-
sation rate, it is important to consider other fitness-related parameters, e.g. clutch size, egg 
hatching rate, and growth of the progeny.

In previous studies, female morphs of some species have been shown to differ in clutch 
size (Bots et al. 2009, 2010b; Bouton et al. 2011; Sánchez-Guillén et al. 2017; Khan 2020) 
and egg size (Takahashi and Watanabe 2010b; Takahashi and Kawata 2013), but in other 
species there was no difference (Iserbyt et  al. 2013). In our study, we found a similar 
growth of larvae born from andromorph and gynomorph B-females. This result on growth 
rate is in line with the findings of (Abbott and Svensson 2008), who found that offspring 
from androchrome and infuscans have similar growth rates, but a different growth rate was 
found for offspring of the rare rufescens-obsoleta morph. However, we found that survival 
of the progeny during the growing period and the emergence rate differed between the two 
morphs, with a higher mortality of gynomorph progeny.

In conclusion, our results suggest that a higher survival of progeny of andromorph 
females at the larval stage could counterbalance the higher parasitization and the lower 
pairing success of andromorph adult females. Indeed, female fitness is related to adult mat-
ing behaviour and to ectoparasite burden (Thompson et al. 2011), but our results highlight 
the importance of considering the whole life-cycle in polymorphism studies (Cordoba-
Aguilar 2008).
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