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On the muon neutrino mass
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Abstract

During the runs of the PS 179 experiment at LEAR of CERN, we photographed an event of antiproton–
Ne absorption, with a complete π+ → μ+ → e+ chain. From the vertex of the reaction a very slow energy
π+ was emitted. The π+ decays into a μ+ and subsequently the μ+ decays into a positron. At the first
decay vertex a muon neutrino was emitted and at the second decay vertex an electron neutrino and a muon
antineutrino. Measuring the pion and muon tracks and applying the momentum and energy conservation and
using a classical statistical interval estimator, we obtained an experimental upper limit for the muon neutrino
mass: mν < 2.2 MeV at a 90% confidence level. A statistical analysis has been performed of the factors
contributing to the square value of the neutrino mass, to deduce the possibility to reach experimentally the
lowest muon neutrino mass limit from the π → μν decays.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Determination of the absolute values of neutrino masses represents a most difficult problem
from an experimental point of view. Evidence in favour of non-zero neutrino masses and oscil-
lations obtained in most of the relevant neutrino experiments has made the physics of massive
neutrinos a frontier field of research in particle physics and astrophysics. All the existing terres-
trial and astrophysical data indicate that the neutrino masses are by many orders of magnitude
smaller than those of other experimentally measured lepton and hadron masses. Such a low value
is the most relevant reason for it being extremely difficult to obtain the values of neutrino masses
from experimental measurements. This is the main reason why most experimental papers only
report a confidence upper limit interval for such values. In this paper we report the upper limit
for the muon neutrino mass obtained by measuring the radii of curvature of the pion and muon
tracks of an event, in which a pion decays into a muon and a muon neutrino, recorded during the
runs of the PS 179 experiment at the beam of antiprotons of LEAR at CERN.

2. Experimental apparatus

The PS 179 experimental apparatus was designed and built for the study of antiproton in-
teractions with light and medium-light nuclei at the LEAR facility of CERN. The aim of the
research was an experimental study of the interaction of antiprotons with nuclei at low energies.
The results obtained provided information on the fundamental nucleon–antinucleon forces, on
the interaction of antiprotons with clusters of bound nucleons, on the distribution of nuclear mat-
ter, and on properties of highly excited nuclear matter, as well as a restriction on the possible
amount of antimatter present in the early Universe [1]. In order to make the most of the infor-
mation available on all the secondary charged particles produced in the reactions, in designing
the experiment a choice was made of the visualization detection technique, and a self-shunted
streamer chamber placed in a magnetic field was used. Such a detector had many advantages. It
was a low density gas target, and, at the same time, it was triggerable, offering a 4π acceptance
in which highly luminous localized particle tracks could be obtained [2]. The low density of the
target medium, i.e. of the streamer chamber filling gas at 1 atm pressure, allowed to reveal long
charged particle ranges and nuclear fragments. The experimental apparatus used is sketched in
Fig. 1. The detector provided stereo pictures of the sensitive chamber volume. The details of the
experimental apparatus have been given in Ref. [3] where a more complete description of the
characteristics and the performances of all the components of the setup can be found.

3. Analysis of the measurements

The runs of the PS 179 experiment were carried out with the streamer chamber filled at 1 atm
with different gaseous targets: 3He, 4He, Ne. The stereo pictures of events, recorded on films
during the runs, were reprojected onto measuring tables for visual scanning. The events were
measured with a digitized coordinatometer directly on the scanning tables.

In one of the photographs of the Ne run, the beautiful event, reproduced in Fig. 2, was
observed. It represents a multi-nucleon annihilation [4] of an antiproton with a Ne nucleus
(see, also, Fig. 11 of Ref. [3]). From the vertex of the interaction there “evaporated” a
(1.98 ± 0.02) MeV positive pion. From the two vertices of the pion and muon decays, three
neutrinos were emitted: From the first a muon neutrino and from the second an electron neutrino
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Fig. 1. Layout of the PS 179 experimental apparatus, including: EM-electromagnet; SC-streamer chamber; HVPG-high
voltage generator; TP-travelling platform; ES-electrostatic screening; WC1−2-wire chambers; C1−6-scintillation coun-
ters; M1−5-thin walls.

and a muon antineutrino. The peculiarity of the event consists in the noticeable length of the π+
and μ+ tracks and in that both tracks lie in the same plane (within 0.5 deg).

The temperature of the streamer chamber filling gas was 289 K, the pressure atmospheric, and
the target density (0.80 ± 0.01) mg/cm3. The magnetic field was 0.8 T (�B/B = 10−5) over the
whole volume of the chamber.

The tracks have been measured at JINR with a microscope-digitizer. The recent acquisition
of such a microscope made it possible to newly measure the πμe event, reconstructing and
digitizing tracks with a very high accuracy. The pion track has been digitized at 347 points, the
muon track at 2037 points and the positron track at 180 points. All the measured points are
approximately equidistant. Each point has been measured with a precision of about 10−2 mm.
The coordinates of all track points have been used to deduce the radii of curvature and the ranges.
Each particle transfers energy by ionization to the surrounding medium and slows down along its
path. A Fortran code has been written to estimate the radii of curvature varying along the tracks
and the total track lengths. For each track the best-fit circles were calculated taking into account
a fixed number N of points. Starting from the first measured point and taking the subsequent
N − 1 points, the first radius was calculated. If n is the total number of points measured along
a track, shifting the N points by one along the track, the subsequent n − (N − 1) radii have
been calculated. We have chosen N = 25 (a value statistically significant in order to ensure fit
stability) for each track. Program CIRCLE of the CERN library [5] has been included into the
code to calculate the best-fit radii of curvature along the tracks.

The initial pion momentum was estimated from all measured points along the first 10 cm
of its track, since the range-energy relations (and tables) for neon at NTP reveal the en-
ergy loss of a 2.00 MeV pion to be negligible for path lengths not exceeding 10 cm. The
average radius of curvature of the first 10 cm of the pion track, obtained best-fitting the
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Fig. 2. P.S. 179 picture of “The three neutrino event”. An antiproton annihilates with the Ne nucleus. From the interaction
vertex a π+ of energy inferior to 2.0 MeV is emitted. The π+ decays into a μ+, and subsequently the μ+ decays into a
positron. At the first decay vertex, a muon neutrino is, also, emitted, and at the second decay vertex an electron neutrino
and a muon antineutrino.

track with a circle, is r = (9.79 ± 0.09) cm corresponding to a momentum (p = 300 Br) of
(23.50 ± 0.22) MeV/c. The agreement between the value of the initial pion momentum and its
measured path range of (471.5 ± 0.8) mm, shows that the pion decay occurred with a momen-
tum of (0.05 ± 0.10) MeV/c. The same parameters have been measured for the muon track.
The initial muon momentum was estimated from all measured points along the first 12 cm of its
track, since, also in this case, the range-energy relations (and tables) for neon at NTP reveal the
energy loss of a 5.00 MeV muon to be negligible for path lengths not exceeding 12 cm. The value
of the average radius of curvature of the first 12 cm of the muon track, obtained with a best-fit
circle, is r = (12.50 ± 0.08) cm, corresponding to a momentum of (29.90 ± 0.19) MeV/c. In
this case, also, the agreement between the initial muon momentum and its measured path range
of (2616.0 ± 0.8) mm shows that the muon decayed with a momentum of (0.6 ± 0.6) MeV/c.
The positron was emitted with a momentum of (46.80 ± 0.08) MeV/c. The angle between the
tangent lines of the pion and muon trajectories at the decay vertex was (163.0±1.0) deg, and the
angle between the muon and positron tracks was (107.0 ± 1.0) deg. It should be pointed out that
the πμe event of Fig. 2 is the only existing of this kind whose parameters could be all measured
with high precision.

3.1. Kinematic and dynamic constraints

For kinematic and dynamic analysis of the reaction, the relations of conservation of momen-
tum and energy have been used. The pion decay occurs in a plane. At the decay vertex, the muon
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and the neutrino have flight directions at angles φ and θ to the pion flight direction, respectively.
For momentum conservation

pπ = pμ cosφ + pν cos θ, (1)

0 = pμ sinφ + pν sin θ. (2)

For energy conservation

Eπ = Eμ + Eν. (3)

Combining algebraically the three relations one obtains

p2
ν = p2

π + p2
μ − 2pπpμ cosφ (4)

and

Eπ − Eμ =
√

p2
π + p2

μ − 2pπpμ cosφ + m2
ν (5)

from which one can obtain the square of the neutrino mass

m2
ν = (Eπ − Eμ)2 − (

p2
π + p2

μ − 2pπpμ cosφ
)

= (Eπ − Eμ − pν)(Eπ − Eμ + pν)

= m∗m∗∗ (6)

where only the m∗ factor can approach zero and where m∗∗ � m∗ and always positive. It is
clear that from relation (6), given the masses of the pion and muon, the momenta of the pion and
muon, and the angle φ, one can calculate the square of the neutrino mass as a function of the
above-mentioned parameters.

3.2. On the upper limit of mν

A point or an interval estimator of an unknown parameter is any statistic whose value is a
meaningful guess for the value of the unknown parameter which is assumed to have some fixed
value [6]. Sometimes experimental measurement may yield non-physical values, when the para-
meter value is near zero [7]. In these cases a statistical procedure can be used for estimation of
the upper limit value of the parameter. In the present analysis the neutrino mass is the parameter
to be estimated. The upper limit of the mass of the muon neutrino [8] has a value near zero, and
is about seven orders of magnitude smaller than the values of the measured experimental quan-
tities of the π → μνμ decay. In determining such a mass in an unbiased approach one would
necessarily expect a non-physical result for m2

ν to occur half of the time. This happens because
of the uncertainties of the experimental values of the physical quantities. One should then make
statistical inferences from observation of the squared mass m2

ν ± �m2 when m2
ν is negative or

near the non-physical region. �m2 is the standard deviation. It is possible to choose a “classical”
confidence level p for the squared mass such that the corresponding classical confidence limit
m2

p,cl is in the physical region. When the variable m2 has a Gaussian distribution the upper limit
is

m2
p,cl = m2 + Zp�m2 (7)

at a p% confidence level, where Z85 = 1.036, Z90 = 1.282, Z95 = 1.645 and Z97.5 = 1.960 (see
Ref. [9]). The classical confidence limit satisfies the probability statement

P
(
m2

o < m2
p,cl

) = p. (8)
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This statement says that m2
p,cl has the probability p of being larger than the true value (m2

o),

whatever m2
o really is. It means that, if one repeats the experiment many times, and each time

one recalculates the value of m2
p,cl, then in p% of the cases m2

p,cl will be greater than the true

value m2
o.

3.3. Monte Carlo events

To obtain an interval estimate for the muon neutrino mass from our measurement of the scat-
tering angle and of the momenta of the two charged particles of the decay, a statistical procedure
has been applied. It takes into account the measured pion and muon momenta and the angle be-
tween them. These are distributed with Gaussian p.d.f.’s with means equal to the measured values
and standard deviations equal to the corresponding measured uncertainties. A code has been writ-
ten. Using the Monte Carlo method a set of 105 decays has been generated. Each element of the
set has been obtained extracting at random the momenta of the pion and of the muon, and the
angle between the two particles assuming the mass values of mπ = (139.57018±0.00035) MeV
and mμ = (105.658369 ± 0.000009) MeV, as given in Ref. [8]. The three variables were ex-
tracted independently of each other. Other relevant quantities were then calculated. The distribu-
tions of m2

ν , of m∗ and of m∗∗ in relation (6) have been obtained.

3.4. Analysis of the results

Fig. 3 shows the distributions of m2
ν (upper part), m∗ (central part) and of m∗∗ (lower part).

The m2
ν distribution is Gaussian, with a negative mean value and relatively large standard de-

viation that depends on the uncertainties in the experimentally measured quantities. The m∗
distribution is Gaussian with a negative mean value and relatively small standard deviation.
Both distributions have ratios of the standard deviation to the mean value of the same order
of magnitude. The m∗∗ distribution is Gaussian but in the physical region, with a mean value of
(59.7 ± 0.2) MeV, about two orders of magnitude greater than m∗.

The m2
ν distribution leads to the squared muon neutrino mass

m2
ν = (−11.1 ± 12.5) MeV2 (9)

which is compatible with zero. According to the classical method [7], described in Section 3.2,
Eq. (9) corresponds to the muon neutrino mass upper limit

mν <
√−11.1 + 1.282 · 12.5 MeV = 2.2 MeV (10)

at the 90% confidence level. This is the lowest estimate of the upper limit value of the muon
neutrino mass obtained with a visualizing detector, using all the directly measured kinematic
and dynamic parameters of the π → μνμ decay, that is pπ , pμ and φ (see Refs. [10,11] and
references quoted therein). The last measurement of this kind of events has been performed with
a helium filled bubble chamber [11]. The muon tracks were only 1 cm long, and composed by
about (15 ± 2) bubbles. The authors assumed that all the stopped pions decayed at rest, because
they could not distinguish the events with the pion decayed in flight from those with pion decayed
at rest. For this reason they did not use in their analysis the values of the angle φ and did not know
the momentum of each pion.

Many experiments have been devoted to measuring the muon momentum with the high-
est accuracy. Recently, Assamagan et al. [12], using a magnetic spectrometer equipped with
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Fig. 3. Distribution of m2
ν (a), of m∗ (b), and of m∗∗ (c) generated with the Monte Carlo method. Note the different scales

along the horizontal axes. The data have been best fitted (dashed line) with Gaussians with the following respective mean
values and standard deviations: (−11.1;12.5) MeV2 (a); (−0.186;0.211) MeV (b); (59.7;0.2) MeV (c).

a silicon microstrip detector, studied the decay of pions stopped in a graphite target. The
authors measured for the muons emitted by the graphite target an average momentum of
(29.79200 ± 0.00011) MeV/c. For the pions “immediately before” their decay, they deduced
an average kinetic energy Tπ = (0.425 ± 0.016) eV, that is the pions had a residual average mo-
mentum of pπ = (10.9 ± 0.2) keV/c. Supposing that the low momentum pions could be mostly
trapped in a potential well, thermalized and decay at rest, the authors deduced a squared muon
neutrino mass of (−0.016 ± 0.023) MeV2 and, according to the Bayesian approach, deduced the
corresponding neutrino mass upper limit of mν < 0.17 MeV (C.L. = 0.9). The value of the angle
φ has been considered not to be relevant.

Applying the procedure described in Subsection 3.2, we have estimated the upper limit of
the muon neutrino mass, obtainable from the data of Ref. [12] taking into account the measured
residual kinetic energy value and assuming the pions decayed in flight, with the φ angle values
of 0◦, 40◦ and 80◦. The three corresponding distributions of m2

ν values are totally in the physical
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Table 1
Uncertainties, mean values, standard deviations of the m∗, m∗∗ and m2

ν distributions. The data have been calculated
assuming mν = 0.300 keV. For momentum uncertainties less than 10−6 MeV/c the values remain constant, as shown in
Fig. 4

σφ

(deg)

σpπ,μ

(MeV/c)

m∗
(MeV)

m∗∗
(MeV)

m2
ν

(MeV2)

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Mean
value

Standard
deviation

1.0 10 −4.3 × 10−1 15.0 59.9 11.0 −190.5 96 × 10
1.0 1 −2.7 × 10−3 1.6 59.6 1.2 −1.9 93.0
1.0 10−1 −1.0 × 10−4 16 × 10−2 59.6 1.2 × 10−1 −2.4 × 10−2 9.3
1.0 10−2 −1.9 × 10−5 1.6 × 10−2 59.6 1.2 × 10−2 −1.3 × 10−3 0.93
1.0 10−3 −1.3 × 10−5 1.6 × 10−3 59.6 1.2 × 10−3 −7.6 × 10−4 9.5 × 10−2

1.0 10−4 −1.2 × 10−5 3.0 × 10−4 59.6 2.8 × 10−4 −7.2 × 10−4 1.8 × 10−2

1.0 10−5 −1.2 × 10−5 2.5 × 10−4 59.6 2.5 × 10−4 −7.2 × 10−4 1.5 × 10−2

1.0 10−6 −1.2 × 10−5 2.5 × 10−4 59.6 2.5 × 10−4 −7.2 × 10−4 1.5 × 10−2

region. The values of the muon neutrino mass are respectively mν = (800 ± 80) keV, mν =
(700 ± 70) keV and mν = (330 ± 40) keV. However, if we set the residual momentum of the
decayed pions equal to zero, the distribution of m2

ν extends in the non-physical region. The upper
limit of the muon neutrino mass calculated using the classical approach [7] is mν < 110 keV
(C.L. = 0.9).

On the other hand, since the residual pion momentum (50±100) keV is compatible with zero,
we must consider the alternative hypothesis, where the pion could be thermalized in the Ne gas
before it decays, so that the angle φ value becomes irrelevant. If we assume a 1/v2 law for the
pion energy loss per unit length, some algebra shows that the pion should be thermalized after
about 12.5 ns, corresponding to a survival probability of 60%. The decay at rest cannot be ruled
out; in this case the upper limit for the muon neutrino mass happens to be 2.56 MeV, slightly
higher than (10) and should conservatively be taken as the limit of our experiment.

These exercises reveal the necessity, for an accurate estimation of the squared muon neutrino
mass, of precise and direct measurements of all kinematic parameters of individual π → μνμ

decay in flight events, like those we performed for the event reproduced in Fig. 2.
Analysing the distributions shown in Fig. 3, we studied the characteristics of the statistical

variables m2
ν , m∗ and m∗∗. Although both m∗ and m∗∗ have the same Gaussian distribution, the

m∗∗ distribution is shifted toward large positive values. The m∗ distribution is close to zero and
the m∗ values may be negative (this is true, also, for the m2

ν distribution).
Using the formulae of Subsection 3.1 we calculated the kinematic parameters of the decay

π → μνμ, assuming the mass values of mπ and mμ as given in Subsection 3.3, and a value for
the muon neutrino mass of 0.300 keV. The choice of this value for the neutrino mass is related to
the actual precision of the pion and muon masses [8]. The mean value of the pion momentum was
set to 0.05 MeV/c and of the angle φ to 163.0 deg in order to allow a direct comparison with our
measurements. Applying the procedure described in Subsection 3.3 and running the Monte Carlo
code with different values of the uncertainties in the input variables (within 10−10–10 MeV/c

for the momenta pπ and pμ, and 10−5–1 deg for the angle φ), sets of 105π → μνμ decays have
been generated. Each decay has been obtained extracting at random, independently, the three
Gaussian variables pπ , pμ and φ. The procedure gives in output all the relevant kinematic and
dynamic quantities of the decay, in particular, m∗, m∗∗ and m2

ν .
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Fig. 4. Behaviour of the upper limits of mν (open triangles, squares, stars, circles), m∗ (full triangles, squares, stars,
circles), and m∗∗ (open rhombs) calculated from the m2

ν , m∗ and m∗∗ distributions at 90% confidence level, as a function
of the experimental uncertainties in the momenta, and for uncertainties in the angle φ of 1.0 deg (open triangles, full
triangles), of 10−2 deg (open squares, full squares), of 10−4 deg (open stars, full stars) and of 10−5 deg (open circles,
full circles). The lines (a) and (b) are drawn to guide the eye for �φ = 10−5 deg and σp > 10−9 MeV/c. The line (c)
represents the upper limit value of 60 MeV. The values of 2.2 MeV and 85 keV are from Table 2.

In Table 1 we present the results for different sets of Monte Carlo events, all obtained with an
uncertainty of 1◦ in the measurement of the φ angle. The choice of this value was again dictated
by the uncertainty of our measurement. In the first two columns the uncertainties of the input
variables are reported. The third, the fourth and the fifth columns show the mean values and the
standard deviations of the m∗, m∗∗ and m2

ν distributions. Both m∗ and m2
ν distributions have

negative mean values. The m∗∗ mean values are always positive. So, for all the experimental
uncertainties reported in Table 1, the distributions of m∗ and m2

ν extend into the non-physical
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Table 2
Upper limits of the muon-neutrino mass (deduced from m2

ν )
and of m∗ at a p% confidence level, for the event of Fig. 2
measured and analysed by the method described in the text

mν (MeV) m∗ (keV) p (%)

1.4 33 80
2.2 85 90
3.1 161 95

region. Using the same classical method applied to deduce the muon neutrino upper limit mass
from the m2

ν distribution [7], we calculated an upper limit from the m∗ distribution. Fig. 4 shows
the muon neutrino mass upper limits calculated from the m2

ν distributions as a function of the
uncertainties of the momenta of the π and μ for different values of the φ angle, and for mν =
0.300 keV. In the same Fig. 4, the m∗ and m∗∗ (C.L. = 0.9) upper limits are also reported.
The values calculated from formula (7) follow straight lines. The lines (a) and (b) have been
drawn to guide the eye, the line (c) represents a constant upper limit value of 60 MeV. For
momentum uncertainties less than 10−9 MeV/c and for angular uncertainties less than 10−5 deg,
the upper limit values of mν reach the assumed value of 0.300 keV, confirming the validity of
the classical approach [7] we used. Moreover, one can see that the limit values of mν attainable
with present modern techniques correspond to measurement uncertainties in momenta higher
than 10−4 MeV/c.

To analyse the case of pions decaying in flight with higher momenta, we calculated the kine-
matic parameters of the π → μνμ decay for a pion momentum of 200 MeV/c and neutrino mass
of 0.300 keV. This value of the pion momentum has been choosen because, at the JINR Pha-
sotron, the DUBTO experiment [13] studies pion interactions at 200 MeV/c in a 1 atm helium
filled self shunted streamer chamber and we intend to collect several π → μνμ decays in flight.
In this case the allowed values of the φ angle are less than 11 deg. Setting the value of the angle
φ equal to 5 deg, we applied the procedure described in Subsecton 3.2. The uncertainties of the
momenta were varied in the range 102–10−9 MeV/c and of the angle φ in the range 1–10−5 deg.
Fig. 5 shows the same mν , m∗ and m∗∗ upper limits as in Fig. 4, calculated using the m2

ν , m∗ and
m∗∗ distributions as functions of the momentum uncertainties in the range 102–10−9 MeV/c,
and with an error for the angle φ of 10−4 deg. As one can see, at 200 MeV/c the mν upper limit
values follow the line (a) of Fig. 4, which was drawn for pions decaying at lower energies. The
behaviours of the m∗ and m∗∗ upper limits appear to be nearly parallel to those of Fig. 4.

Considering the experimental uncertainties actually attainable in laboratories and taking into
account the present values of pion and muon masses and their uncertainties, it appears impossible
to perform experiments, based on the measurement of all the kinematic parameters of the π →
μνμ decay, from which an upper limit of the muon neutrino mass less than about 1 keV can be
deduced.

In the frame of the results of the present analysis, using the distributions of Fig. 3 relative to the
measurement of the event displayed in Fig. 2 and with the uncertainties of the present experiment
and with the hypothesis of π+ decayed in flight, we obtained the upper limits of mν and m∗, at
given confidence levels, reported in Table 2 using the classical statistical approach. The values
have been deduced with formulae (7); in particular, m∗ = (−0.186 + 1.282 · 0.211) MeV =
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Fig. 5. Behaviour of the upper limits of mν (open stars), m∗ (full stars) and m∗∗ (open rhombs) calculated from the m2
ν ,

m∗ and m∗∗ distributions at 90% confidence level, as a function of the experimental uncertainties in the momenta, and
for �φ = 10−4 deg, for pions of 200 MeV/c. The lines (a) and (b) are those drawn to guide the eye in Fig. 4. The line (c)
represents the upper limit value of 60 MeV.

0.0845 MeV, at 90% confidence level. It must be noted that, with the upper limit of m∗∗ =
59.96 MeV, one obtains√

m∗m∗∗ = √
0.0845 · 59.96 MeV = 2.2 MeV. (11)

The above values of m∗, m∗∗ and mν upper limits are reported in Fig. 4.

4. Conclusions

This paper describes the determination of the confidence upper limit for the muon neutrino
mass by measuring the momenta of a decaying pion and of the produced muon in a unique (πμe)
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event recorded in the PS 179 experiment at LEAR of CERN. A sizeable technical improvement
of previous results obtained using visualizing detectors has been achieved. The possibility to
improve the upper limit of the muon neutrino mass is discussed.
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