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Abstract 

 

In this paper, we describe three algorithms for the generation of symmetric Lévy noise and we 

discuss the relative performance in terms of time of execution on an Intel Pentium M processor at 

1500 MHz. The relative performance of the three algorithm is given as a function of the Lévy stable 

index α and of the number of produced random points. 
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1 Introduction 
 
In the first section of this paper, we recall some definitions and basic properties of Lévy processes 

and α-stable stochastic variables, in section 2 we describe three different algorithms for generation 

of α-stable pseudo-random numbers, in section 3 we analyze the time performance of the 

algorithms and in section 4 we state our conclusions. 

We can define a Lévy process as a stochastic process with both stationary and independent 

increments. 

A distribution F is called infinitely divisible if for any n ≥ 1 it can be expressed as the n-th fold 

convolution G*n of some distribution G (that depends on n). 

There exist a strong link between Lévy processes and infinitely divisible distributions, in fact it can 

be shown that, if X(t) is a Lévy process, then its distribution for any t is infinitely divisible and, vice 

versa, for any infinitely divisible distribution F there exist a Lévy process for which X(1) ~ F. [1, 2, 

3, 4] 

The cumulant characteristic function of Lévy processes satisfies the Lévy-Khintchine formula 
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whereγ ∈\ , 2 0σ ≥ , and ν is a measure on \{0}\ . [5] 

These three objects are called Lévy triplet 2, ,γ σ ν   . 

A random variable Y is stable if, for each n ∈` , with 1,..., nY Y  independent identically distributed 

copies of Y, 1 n dY Y bY c+ + = +…  for some constants ( ) 0b b n= >  and ( )c c n= ∈\ . 

A stable Y is called α-stable, ( ]0, 2α ∈ , if * 1t
dY t Y cα= +  for t>0, for some constant ( )c c t= ∈\ ; 

it can be proved that the constant α is unique. Y is called strictly α-stable if ( ) 0c t =  for t>0 

The relationship between α-stable random variables and Lévy processes is determined by a theorem 

stating that a real random variable infinitely divisible Y is α-stable if and only if it has a Lévy triplet 

[ ],0,γ ν  such that 
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for some unique constants c1, c2 ≥0. 

The characteristic function is then 
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where ( ]0, 2α ∈  is the index of stability or characteristic exponent, [ ]1 2

1 2

1,1c c
c c

β −= ∈ −
+

 is the 

skewness parameter, c > 0 is a scale factor, and τ ∈\  is the location parameter (the mean value if 

( ]1, 2α ∈ ). [6] 

For Y with the above characteristic function we write ( ), ,Y S cα β τ∼ . 

There exist an explicit formula to simulate α-stable random variables, as a function of two 

independent variables w and ϕ with uniform distribution in the range ( )2, 2π π−  and standard 

exponential distribution, respectively 
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2 Description of the algorithms 
 

As stated in the introduction, we tested three different algorithms for generating α-stable random 

variables. The algorithms have been written in Matlab®. 

 

2.1 Mantegna’s algorithm 

 

The first algorithm we tested (Mantegna) is described in [7]; it can produce random numbers 

according a symmetric Lévy stable distribution. 

The function needs as input the distribution’s parameters [ ]0.3,1.99α ∈  and c > 0, the number of 

iterations n and the number of random points to be produced; without this last input, the output 

consists of a single number. If an input parameter is outside the valid range, an error message is 

displayed and the output consists of a array of NaNs. 

The algorithm can be split into three steps; the first one is to calculate 

 1
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where x and y are normally distributed stochastic variables. If we put 
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the resulting distribution has the same behaviour of a Lévy distribution for large values of the 

random variable ( 0v � ). 

Using the nonlinear transformation 

 ( ) ( ){ }1 1v Cw K e vαα −= − +    (2.3) 

the sum 
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quickly converges to a Lévy stable distribution. The convergence is assured by the central limit 

theorem. 

The value of K(α) can be obtained analytically 
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while C(α) is the result of a polynomial fit of the values tabulated in [7], obtained resolving the 

integral equation. 
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The requested random variable is 

 1
cnz c zα=  (2.7) 

 

2.2  McCulloch’s algorithm 

 

The second algorithm has been encoded in Matlab by J. H. McCulloch at Ohio State University [8] 

and is based on the method described in [9]; the function returns an n×m matrix of random numbers 

with characteristic exponent α, skewness parameter β, scale c, and location parameter τ. The 

minimum value for α is 0.1 because of the non-negligible probability of overflow. As in the 

previous function, when an input is out of the valid range, the output is a matrix of NaNs. 

We will only consider the symmetric case β=0. 

The algorithm uses the formula (1.4), that, if β=0, reduces to 
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Two special cases are handled separately: 

α=2 (Gaussian case) 

 ( )2 sinx c w ϕ τ= +  (2.9) 

α=1 (Cauchy case) 

 ( )tanx c ϕ τ= +  (2.10) 

 

2.3 Rejection algorithm 

 

The third algorithm relies on the rejection method [10]. 

The function needs as input the distribution’s parameters α and c, the half-width of the interval to 

be considered M and the number of random points to be produced; without this last input the output 



consists of a single number. If an input parameter is outside the valid range, an error message is 

displayed and the output consists of a array of NaNs. 

We approximate the probability density of Lévy distribution with the function 
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where ( ),cL xα  is the probability density function (pdf) of a Lévy symmetrical stable process; the 

value is obtained by numerical integration of 
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Then we extract two random numbers, x and x2, the first one belongs to a uniform distribution in 

the range [-M,M]; the second follows the same distribution but lies between 0 and the probability 

density maximum. If x2 is less than f(x), x is a valid choice, otherwise it is rejected and another 

couple of number is extracted. 

 

3 Test 
 

We run the tests using a laptop PC by HP®, model Compaq nx5000, equipped with 1.5 GHz Intel® 

Pentium® M processor, 512 MB of RAM and Windows XP home edition operating system. We set 

on the PC the Home/Office desk power scheme in order to obtain the highest performance state 

[11]. We evaluated the execution time, using the Matlab’s Profiler tool, as a function of α and of the 

number of points N; the scale factor c was set to 1. Each value is the mean of five trials. The results 

are expressed in seconds and are approximate to two decimal places, because the resolution of the 

tool is about 15 ms. 

 

3.1 Mantegna’s algorithm 

 

We tested Mantegna’s algorithm setting the number of iterations to 10, for α greater than 0.75; with 

these values, an excellent agreement between the simulated process and the Lévy distribution is 

assured. With α less than 0.75, we put the number of iterations to 100; this limited the maximum N 

to 100000, because of memory limitations. 



Table 1: Execution times (seconds) for Mantegna’s algorithm. 

α          N 1000 10000 100000 200000 450000 1000000
0.30 0.11 0.93 9.20    
0.40 0.10 0.92 9.22    
0.50 0.05 0.39 3.77    
0.60 0.10 0.91 9.25    
0.70 0.10 0.92 9.18    
0.80 0.02 0.10 0.92 1.84 4.20 9.33 
0.90 0.02 0.10 0.92 1.82 4.17 9.25 
1.00 0.00 0.05 0.44 0.84 1.97 4.37 
1.10 0.02 0.09 0.91 1.81 4.13 9.14 
1.20 0.02 0.09 0.91 1.80 4.10 9.11 
1.30 0.02 0.10 0.90 1.79 4.09 9.08 
1.40 0.02 0.10 0.90 1.78 4.07 9.03 
1.50 0.01 0.10 0.89 1.79 4.06 9.00 
1.60 0.02 0.09 0.89 1.77 4.06 8.98 
1.70 0.02 0.10 0.90 1.76 4.03 8.95 
1.80 0.01 0.09 0.88 1.74 4.02 8.89 
1.90 0.01 0.10 0.90 1.75 4.01 8.85 
1.95 0.02 0.09 0.88 1.75 4.00 8.86 
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Figure 1: Surface plot of execution time for Mantegna’s algorithm. 

The algorithm is more efficient with α = 0.5, 1 because the parameter is used as a denominator of 

an exponent (lines 36, 38, 39, 45), and the calculation of integer powers is faster. 

The execution time slightly decreases when α increases. 

Table 2: Detailed analysis of execution time of a single test; the report is generated by the Profiler tool. 

Input parameters: α = 1.5, c = 1, n = 10, N = 1000000 
Line number Code Calls Total time % time
38 v = sigx*randn(n,N)./abs(... 1 7.63 s 82% 
43 w = ((kappa-1)*exp(-abs(v... 1 1.50 s 16% 
45 z = (1/n^invalpha)*sum(w)... 1 0.14 s 2% 
49 z = g^invalpha*z; 1 0.05 s 1% 



41 p = [-17.7767 113.3855 ... 1 0.00 s 0% 
All other lines   0.00 s 0% 
Totals   9.32 s 100% 

The detailed analysis in table 2 shows that more than 80% of the total time is spent to execute the 

first step in the algorithm, the calculation of v (see (2.1)). 

 

3.2 McCulloch’s algorithm 

 

We used McCulloch’s algorithm to create one-dimensional arrays and set location parameter τ to 0. 

Table 3: Execution times (seconds) for McCulloch’s algorithm. 

α          N 1000 10000 100000 200000 450000 1000000
0.10 0.01 0.02 0.11 0.23 0.49 1.07 
0.20 0.00 0.01 0.10 0.22 0.48 1.05 
0.30 0.00 0.02 0.21 0.42 0.90 2.00 
0.40 0.01 0.03 0.20 0.40 0.91 2.00 
0.50 0.01 0.01 0.09 0.19 0.44 0.96 
0.60 0.00 0.02 0.20 0.40 0.88 1.98 
0.70 0.00 0.02 0.21 0.40 0.90 1.98 
0.80 0.00 0.02 0.21 0.41 0.89 1.98 
0.90 0.01 0.03 0.20 0.40 0.88 1.97 
1.00 0.00 0.01 0.05 0.12 0.26 0.57 
1.10 0.01 0.02 0.20 0.40 0.89 1.97 
1.20 0.01 0.02 0.20 0.40 0.90 1.99 
1.30 0.01 0.02 0.20 0.40 0.90 1.98 
1.40 0.01 0.03 0.20 0.40 0.90 1.99 
1.50 0.00 0.03 0.20 0.41 0.91 2.00 
1.60 0.01 0.03 0.21 0.41 0.91 2.03 
1.70 0.01 0.02 0.22 0.42 0.91 2.04 
1.80 0.00 0.02 0.21 0.42 0.92 2.06 
1.90 0.00 0.02 0.21 0.42 0.91 2.05 
2.00 0.00 0.01 0.08 0.15 0.32 0.74 
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Figure 2: Surface plot of execution time for McCulloch’s algorithm. 

The execution time is almost negligible for N≤10000. 

The algorithm is more efficient for α = 0.1, 0.2, 0.5 because this parameter is used as a denominator 

of an exponent (line 127), and the calculation of integer powers is faster. 

With α = 2 and α = 1 the function uses different formulae (lines 116, 125). 

Table 4: Detailed analysis of a single test. 

Input parameters: α = 1.5, c = 1, N = 1000000 
Line number Code Calls Total time % time
127 x = ((cos((1-alpha)*phi) ... 1 1.58 s 78% 
112 w = -log(rand(m,n)); 1 0.27 s 13% 
113 phi = (rand(m,n)-.5)*pi; 1 0.11 s 5% 
152 x = delta + c * x; 1 0.02 s 1% 
126 else 1 0.02 s 1% 
All other lines   0.02 s 1% 
Totals   2.02 s 100% 

In this case the analysis shows that less than 20% of the total time is spent to extract the random 

variables, and the time spent in the rest of calculations is comparable to the corresponding time in 

Mantegna’s algorithm, 1.62 s for McCulloch’s and 1.69 s for Mantegna’s. 

 

3.3 Rejection algorithm 

 

We extracted random numbers with rejection algorithm in the range [-10,10]. 

Table 5: Execution times (seconds) for rejection algorithm. 

α          N 1000 10000 100000 200000 450000 1000000 
0.10 32.67 32.95 34.41 36.42 40.22 48.96 
0.20 30.95 30.98 33.21 36.08 41.66 54.36 
0.30 28.28 28.60 31.33 34.63 42.51 59.34 



0.40 19.21 19.39 20.97 22.86 27.38 37.06 
0.50 7.00 7.11 8.08 9.20 11.94 17.92 
0.60 3.93 4.00 4.71 5.52 7.53 11.92 
0.70 2.49 2.55 3.14 3.82 5.44 9.04 
0.80 1.92 1.96 2.48 3.07 4.72 7.66 
0.90 1.59 1.61 2.10 2.65 3.96 6.84 
1.00 1.28 1.34 1.79 2.28 3.53 6.24 
1.10 1.24 1.29 1.71 2.21 3.39 5.97 
1.20 1.18 1.22 1.64 2.12 3.26 5.78 
1.30 1.14 1.19 1.58 2.05 3.16 5.63 
1.40 1.07 1.11 1.52 1.97 3.06 5.48 
1.50 1.02 1.05 1.45 1.91 2.97 5.35 
1.60 0.91 0.95 1.34 1.77 2.86 5.19 
1.70 0.90 0.93 1.32 1.75 2.83 5.18 
1.80 0.88 0.91 1.30 1.73 2.79 5.11 
1.90 0.82 0.85 1.24 1.67 2.74 5.06 
2.00 0.74 0.79 1.16 1.60 2.66 4.98 
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Figure 3: Surface plot of execution time for rejection algorithm, the α axis is inverted to ease reading. 

With low values for α Matlab produces the warning: Maximum function count exceeded in 

quadl.m, during the calculations for the probability density of the Lévy distribution; for the tests we 

suppressed this warning. 

The execution time shows a strong dependence on the value of α, the main contribution comes from 

the calculation of Lévy pdf, for example increasing α from 0.2 to 1.8 reduces the time from about 

30 s to less than one second (see tables 6 and 7). The execution time is also affected by the ratio of 

accepted points to the total produced random numbers. 

With less than 100000 points, the time spent to extract random numbers is almost negligible 

compared to the calculation of Lévy pdf. 



Table 6: Detailed analysis of a single test. 

Input parameters: α = 0.2, c = 1, M = 10, N = 1000 
Line number Code Calls Total time % time
31 fx = levypdf([-M:0.2:M], ... 1 29.98 s 99.9% 
32 x2M = levypdf(0, alpha, g... 1 0.02 s 0.1% 
40 end 34474 0.00 s 0% 
38 x(k) = 2*M*rand-M; 34474 0.00 s 0% 
39 x2 = rand*x2M; 34474 0.00 s 0% 
All other lines   0.00 s 0% 
Totals   30.00 s 100% 
Table 7: Detailed analysis of a single test. 

Input parameters: α = 1.8, c = 1, M = 10, N = 1000000 
Line number Code Calls Total time % time 
40 end 5676623 1.08 s 21% 
31 fx = levypdf([-M:0.2:M], ... 1 0.83 s 16% 
38 x(k) = 2*M*rand-M; 5676623 0.37 s 7% 
39 x2 = rand*x2M; 5676623 0.27 s 5% 
37 while(x2 > fx(1+floor(... 1000000 0.19 s 4% 
All other lines   2.34 s 46% 
Totals   5.08 s 100% 

 

4 Conclusions 
 
McCulloch’s algorithm is the fastest for every value of N and α, this is due to the low number of 

random numbers used to calculate each output value: it uses two uniform random variables, while 

Mantegna’s uses 2n normal variables (where n is the number of iterations); with the rejection 

algorithm the ratio of accepted points to the total produced random numbers is strongly dependent 

on the value of α and on the width of the considered interval, for the cases we studied it 

approximately varies from 1/35 to 1/6 (see tables 6 and 7). 

The rejection algorithm is faster than Mantegna’s for large values of N and α; it could be more 

efficient using a different method to calculate the Lévy probability density, instead of numerical 

integration. 

Mantegna’s algorithm can be a valid choice for hardware implementation, because it relies on 

simpler calculations than McCulloch’s; it is faster when α is in the range [0.75,1.95]. 
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Appendix: Matlab programs 
 
1 % MANTEGNA.M 
2 % Stable random number generator 
3 
4 % Based on the method of R. N. Mantegna "Fast, accurate algorithm for 
5 % numerical simulation of Lévy stable stochastic processes" 
6 % Physical Review E 49 4677-83 (1994) 
7 
8 function z = mantegna(alpha, c, n, N) 
9  
10 % Errortraps: 
11 if (alpha < 0.3 | alpha > 1.99) 
12     disp('Valid range for alpha is [0.3;1.99].') 
13     z = NaN * zeros(1,N); 
14     return 
15 end 
16 if (c <= 0) 
17     disp('c must be positive.') 
18     z = NaN * zeros(1,N); 
19     return 
20 end 
21 if (n < 1) 
22     disp('n must be positive.') 
23     z = NaN * zeros(1,N); 
24     return 
25 end 
26 if nargin<4 
27     N=1; 
28 end 
29 if (N <= 0) 
30     disp('N must be positive.') 
31     z = NaN; 
32     return 
33 end 
34 
35 invalpha = 1/alpha; 
36 sigx = ((gamma(1+alpha)*sin(pi*alpha/2))/(gamma((1+alpha)/2)... 
37     *alpha*2^((alpha-1)/2)))^invalpha; 
38 v = sigx*randn(n,N)./abs(randn(n,N)).^invalpha; 
39 kappa = (alpha*gamma((alpha+1)/(2*alpha)))/gamma(invalpha)... 
40     *((alpha*gamma((alpha+1)/2))/(gamma(1+alpha)*sin(pi*alpha/2)))^invalpha; 
41 p =  [-17.7767  113.3855 -281.5879  337.5439 -193.5494   44.8754]; 
42 c = polyval(p, alpha); 
43 w = ((kappa-1)*exp(-abs(v)/c)+1).*v; 
44 if(n>1) 
45     z = (1/n^invalpha)*sum(w); 
46 else 
47     z = w; 
48 end 
49 z = c^invalpha*z; 
 
1 % STABRND.M 
2 % Stable Random Number Generator (McCulloch 12/18/96) 
3 
4 function [x] = stabrnd(alpha, beta, c, delta, m, n) 
5 
6 % Returns m x n matrix of iid stable random numbers with  
7 %   characteristic exponent alpha in [.1,2], skewness parameter 
8 %   beta in [-1,1], scale c > 0, and location parameter delta. 
9 % Based on the method of J.M. Chambers, C.L. Mallows and B.W. 
10 %   Stuck, "A Method for Simulating Stable Random Variables,"  
11 %   JASA 71 (1976): 340-4.   
12 % Encoded in MATLAB by J. Huston McCulloch, Ohio State 
13 %   University Econ. Dept. (mcculloch.2@osu.edu).  This 12/18/96 
14 %   version uses 2*m*n calls to RAND, and does not rely on  
15 %   the STATISTICS toolbox. 



16 % The CMS method is applied in such a way that x will have the  
17 %   log characteristic function  
18 %        log E exp(ixt) = i*delta*t + psi(c*t),  
19 %   where 
20 %     psi(t) = -abs(t)^alpha*(1-i*beta*sign(t)*tan(pi*alpha/2)) 
21 %                              for alpha ~= 1, 
22 %            = -abs(t)*(1+i*beta*(2/pi)*sign(t)*log(abs(t))), 
23 %                              for alpha = 1. 
24 % With this parameterization, the stable cdf S(x; alpha, beta,  
25 %   c, delta) equals S((x-delta)/c; alpha, beta, 1, 0).  See my  
26 %   "On the parametrization of the afocal stable distributions," 
27 %   _Bull. London Math. Soc._ 28 (1996): 651-55, for details. 
28 % When alpha = 2, the distribution is Gaussian with mean delta  
29 %   and variance 2*c^2, and beta has no effect. 
30 % When alpha > 1, the mean is delta for all beta.  When alpha  
31 %   <= 1, the mean is undefined. 
32 % When beta = 0, the distribution is symmetrical and delta is  
33 %   the median for all alpha.  When alpha = 1 and beta = 0, the  
34 %   distribution is Cauchy (arctangent) with median delta. 
35 % When the submitted alpha is > 2 or < .1, or beta is outside  
36 %   [-1,1], an error message is generated and x is returned as a  
37 %   matrix of NaNs. 
38 % Alpha < .1 is not allowed here because of the non-negligible  
39 %   probability of overflows.   
40 
41 % If you're only interested in the symmetric cases, you may just  
42 %   set beta = 0 and skip the following considerations: 
43 % When beta > 0 (< 0), the distribution is skewed to the right  
44 %   (left). 
45 % When alpha < 1, delta, as defined above, is the unique fractile 
46 %   that is invariant under averaging of iid contributions.  I  
47 %   call such a fractile a "focus of stability."  This, like the  
48 %   mean, is a natural location parameter. 
49 % When alpha = 1, either every fractile is a focus of stability,  
50 %   as in the beta = 0 Cauchy case, or else there is no focus of  
51 %   stability at all, as is the case for beta ~=0.  In the latter 
52 %   cases, which I call "afocal," delta is just an arbitrary  
53 %   fractile that has a simple relation to the c.f. 
54 % When alpha > 1 and beta > 0, med(x) must lie very far below  
55 %   the mean as alpha approaches 1 from above.  Furthermore, as  
56 %   alpha approaches 1 from below, med(x) must lie very far above 
57 %   the focus of stability when beta > 0.  If beta ~= 0, there   
58 %   is therefore a discontinuity in the distribution as a function 
59 %   of alpha as alpha passes 1, when delta is held constant. 
60 % CMS, following an insight of Vladimir Zolotarev, remove this 
61 %   discontinuity by subtracting  
62 %          beta*c*tan(pi*alpha/2) 
63 %   (equivalent to their -tan(alpha*phi0)) from x for alpha ~=1 
64 %   in their program RSTAB, a.k.a. RNSTA in IMSL (formerly GGSTA). 
65 %   The result is a random number whose distribution is a contin- 
66 %   uous function of alpha, but whose location parameter (which I  
67 %   call zeta) is a shifted version of delta that has no known  
68 %   interpretation other than computational convenience.   
69 %   The present program restores the more meaningful "delta"   
70 %   parameterization by using the CMS (4.1), but with  
71 %   beta*c*tan(pi*alpha/2) added back in (ie with their initial 
72 %   tan(alpha*phi0) deleted).  RNSTA therefore gives different  
73 %   results than the present program when beta ~= 0.  However, 
74 %   the present beta is equivalent to the CMS beta' (BPRIME). 
75 % Rather than using the CMS D2 and exp2 functions to compensate 
76 %   for the ill-condition of the CMS (4.1) when alpha is very  
77 %   near 1, the present program merely fudges these cases by  
78 %   computing x from their (2.4) and adjusting for  
79 %   beta*c*tan(pi*alpha/2) when alpha is within 1.e-8 of 1.  
80 %   This should make no difference for simulation results with  
81 %   samples of size less than approximately 10^8, and then  
82 %   only when the desired alpha is within 1.e-8 of 1, but not  
83 %   equal to 1. 
84 % The frequently used Gaussian and symmetric cases are coded  
85 %   separately so as to speed up execution. 
86 
87 % Additional references: 
88 % V.M. Zolotarev, _One Dimensional Stable Laws_, Amer. Math.  
89 %   Soc., 1986. 
90 % G. Samorodnitsky and M.S. Taqqu, _Stable Non-Gaussian Random 
91 %   Processes_, Chapman & Hill, 1994. 
92 % A. Janicki and A. Weron, _Simulaton and Chaotic Behavior of  
93 %   Alpha-Stable Stochastic Processes_, Dekker, 1994. 
94 % J.H. McCulloch, "Financial Applications of Stable Distributons," 



95 %   _Handbook of Statistics_ Vol. 14, forthcoming early 1997. 
96 
97 % Errortraps: 
98 if alpha < .1 | alpha > 2 
99   disp('Alpha must be in [.1,2] for function STABRND.') 
100   alpha 
101   x = NaN * zeros(m,n); 
102   return 
103   end 
104 if abs(beta) > 1 
105   disp('Beta must be in [-1,1] for function STABRND.') 
106   beta 
107   x = NaN * zeros(m,n); 
108   return 
109   end 
110 
111 % Generate exponential w and uniform phi: 
112 w = -log(rand(m,n)); 
113 phi = (rand(m,n)-.5)*pi; 
114 
115 % Gaussian case (Box-Muller): 
116 if alpha == 2 
117   x = (2*sqrt(w) .* sin(phi)); 
118   x = delta + c*x; 
119   return 
120   end 
121 
122 % Symmetrical cases: 
123 if beta == 0 
124   if alpha == 1   % Cauchy case 
125     x = tan(phi); 
126   else 
127     x = ((cos((1-alpha)*phi) ./ w) .^ (1/alpha - 1)    ... 
128         .* sin(alpha * phi) ./ cos(phi) .^ (1/alpha)); 
129   end 
130 
131 % General cases: 
132 else 
133   cosphi = cos(phi); 
134   if abs(alpha-1) > 1.e-8 
135     zeta = beta * tan(pi*alpha/2); 
136     aphi = alpha * phi; 
137     a1phi = (1 - alpha) * phi; 
138     x = ((sin(aphi) + zeta * cos(aphi)) ./ cosphi)  ... 
139         .* ((cos(a1phi) + zeta * sin(a1phi))        ... 
140         ./ (w .* cosphi)) .^ ((1-alpha)/alpha); 
141   else 
142     bphi = (pi/2) + beta * phi; 
143     x = (2/pi) * (bphi .* tan(phi) - beta * log((pi/2) * w ...  
144         .* cosphi ./ bphi)); 
145     if alpha ~= 1 
146       x = x + beta * tan(pi * alpha/2); 
147       end 
148   end 
149 end 
150  
151 % Finale: 
152 x = delta + c * x; 
153 return 
154 % End of STABRND.M 
 
1 % REJFAST.M 
2 % Stable random number generator, based on rejection method 
3 
4 function x = rejfast(alpha, c, M, N) 
5  
6 % Errortraps: 
7 if (alpha <= 0 | alpha > 2) 
8     disp('Valid range for alpha is (0;2].') 
9     x = NaN * zeros(1,N); 
10     return 
11 end 
12 if (c <= 0) 
13     disp('c must be positive.') 
14     x = NaN * zeros(1,N); 
15     return 
16 end 
17 if (M <= 0) 
18     disp('M must be positive.') 



19     x = NaN * zeros(1,N); 
20      
21 end 
22 if nargin < 4 
23     N=1; 
24 end 
25 if (N <= 0) 
26     disp('N must be positive.') 
27     x = NaN; 
28     return 
29 end 
30 
31 step=0.2; 
32 fx = levypdf([-M:step:M], alpha, c); 
33 x2M = levypdf(0, alpha, c); 
34 x = zeros(1,N); 
35 for k = 1:N; 
36     x2 = x2M+1; 
37     x(k) = 0; 
38     while(x2 > fx(1+floor((x(k)+step/2+M)/step))) 
39         x(k) = 2*M*rand-M; 
40         x2 = rand*x2M; 
41     end 
42 end 
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