
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

FC2Q: Exploiting Fuzzy Control in Server Consolidation for
Cloud Applications with SLA Constraints

Cosimo Anglano1∗, Massimo Canonico1 and Marco Guazzone1

1Department of Science and Technological Innovation, University of Piemonte Orientale, Italy

SUMMARY

Modern cloud data centers rely on server consolidation (the allocation of several Virtual Machines (VMs)
on the same physical host) to minimize their costs. Choosing the right consolidation level (how many and
which VMs are assigned to a physical server) is a challenging problem, since contemporary multi-tier cloud
applications must meet Service Level Agreements (SLAs) in face of highly dynamic, non-stationary, and
bursty workloads.
In this paper, we deal with the problem of achieving the best consolidation level that can be attained
without violating application SLAs. We tackle this problem by devising FC2Q, a resource management
framework exploiting feedback fuzzy-logic control, that is able to dynamically adapt the physical CPU
capacity allocated to the tiers of an application in order to precisely match the needs induced by the intensity
of its current workload.
We implement FC2Q on a real testbed, and use this implementation to demonstrate its ability of meeting the
above goals by means of a thorough experimental evaluation, carried out with real-world cloud applications
and workloads. Furthermore, we compare the performance achieved by FC2Q against those attained by
existing state-of-the-art alternative solutions, and we show that FC2Q works better than them in all the
considered experimental scenarios. Copyright c⃝ 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, hosting applications in a cloud has increasingly become an attractive solution that,
from the perspective of the enterprise, results in better efficiency and scalability. As consequence,
the market has seen the rise of Cloud Infrastructure Providers (CIPs), such as Amazon [1] and
Rackspace [2], that host these applications on their data centers by encapsulating each one of them
into a set of Virtual Machines (VMs), that are run on their physical infrastructures.

These applications are typically characterized by a set of Service Level Agreements (SLAs), that
specify the minimum level of service that must be guaranteed to customers. Failing to meet a SLA
usually results in monetary penalties for the CIP. Thus, the CIP has to ensure that, at any given point
in time, each application is allocated enough resource capacity to meet its SLAs.

In order to increase its profit, however, each CIP typically resorts to server consolidation [3],
which consists in allocating several VMs on each physical server, in the attempt to use as little
servers as possible to run the VMs of its customers. In this way, it may reduce the number of
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physical servers that must be switched on to run the VMs of its customers, and at the same time
maximize their utilization, so as to reduce both the cost of the energy required to feed them, and their
amortized cost [4, 5]. The maximization of the consolidation level, that is achieved by allocating on
each physical server as many VMs as possible, has thus become one of the major goals of CIPs.

However, the consolidation level on a given server cannot be increased freely, as a trade-off exists
between the number of VMs allocated on that server, and the amount of physical resource capacity
that is assigned to each one of them. Indeed, the higher the consolidation level, the lower the amount
of physical server capacity that can be allocated to each VM that, if too low, may yield to violations
of its SLA. The best consolidation level that can be attained on a given physical server is therefore
the one that maximizes the number of VMs allocated on it, without inducing SLA violations in the
corresponding applications.

In this paper, we argue that, in order to maximize the consolidation level, it is necessary to allocate
to each VM the smallest amount of capacity it needs to meet its SLAs, and nothing more. This, in
turn, requires the ability of precisely estimating the above capacity, and to enforce its allocation
when multiple VMs compete for the same resource. By smallest amount of capacity, we mean that
the aggregate capacity allocated to each VM over a medium to long time scale is, on average, the
minimum required to meet the SLA of the corresponding application.

Static provisioning techniques [6, 7, 8], where the capacity allocations are not changed at run-
time, fail to properly estimate the required CPU capacity when dealing with highly dynamic
workloads that fluctuate over multiple time scales [9] and that exhibit a significant burstiness [10].
Hence, they typically result in either SLA violations (in case of underestimation) or poor utilization
(in case of overestimation).

Conversely, dynamic VM vertical scaling techniques, whereby the CPU capacity allocated to
each VM is adjusted at run time to meet workload demand, are considered more appropriate to
tackle these issues.

Various vertical scaling approaches have been proposed in the literature (e.g., [11, 12, 13, 14, 15]).
Among them, those based on feedback control theory are considered to be very promising, as they
are particularly suited to work at a very short time scale. However, the inherent non-linearities
of computing systems [16] make the design of such controllers very challenging. Indeed, to the
best of our knowledge, existing model-based linear controllers are unsuitable to properly tackle the
problem addressed in this paper, due to the linearization operations they have to perform that lead the
controller to make inaccurate or even wrong allocation decisions (we show this in our experimental
evaluation, in Section 5, where we compare the performance of our approach with the one attained
by a state-of-the-art approach that uses linear control-theoretic techniques). To deal with such non-
linearities, fuzzy control comes to help as it has been shown that fuzzy systems have very strong
functional capabilities (e.g., see [17, 18]). However, even though works that use fuzzy control in
computing systems can already be found in literature (e.g., [15, 19]), none of them, to the best of
our knowledge, are designed for the problem we tackle in this paper.

In this paper, we propose the Fuzzy Controller for Consolidation and QoS (FC2Q), a dynamic
vertical scaling framework by means of which the CPU capacity required by each VM running on
a physical server is continuously estimated as the corresponding application delivers service to its
clients, and the allocated capacity is dynamically adjusted to cope with workload variations so that
the corresponding SLAs are met.

The core of our proposal is a fuzzy Multiple-Input Single-Output (MISO) controller that, by
using as input the deviations of performance and of used CPU capacity from the respective targets,
adjusts the CPU capacity allocation of each VM to the smallest amount of capacity that suffices to
meet the SLAs of the corresponding application in the sense discussed before, i.e. in the medium
to long time scale. Over the short time scale (i.e., when FC2Q takes decision), however, the
capacity can still possibly be over-allocated or under-allocated due to the magnitude and duration
of the incoming workload. FC2Q is capable of dealing with multi-tier applications in a shared
virtualized infrastructure, and with the inherent non-linearities resulting from the interaction of
complex applications with time-varying and non-stationary workloads. As a result, it is able to
provide percentile-based performance guarantees for both throughput and response time.
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To demonstrate the ability of FC2Q of meeting its design goals, we implement it on a real testbed,
and use this implementation to carry out a thorough experimental evaluation involving a set of
real-world cloud applications and workloads. Furthermore, we compare the performance achieved
by FC2Q against those attained by two existing state-of-the-art alternative solutions (that we also
implement).

Our results show that FC2Q is able to meet the SLAs of applications by using significantly less
CPU capacity than its counterparts in all the experimental scenarios we consider. In particular, we
show that – while existing alternatives either fail to meet application-level SLAs, or over-allocate
CPU capacity, or both – FC2Q is always able to allocate to each application as little capacity as is
required to meet its SLA, thus achieving a better consolidation level without violating any SLA.

Our contributions

In this paper, we deal with the problem of achieving the best consolidation level that may be attained
to meet the SLA of applications hosted by a CIP under highly dynamic, non-stationary and bursty
workloads. While works about the allocation of physical CPU capacity to VMs so to achieve SLAs
can already be found in literature, the problem we are tackling in this paper is different. To the best
of our knowledge, our paper is the first one focusing on this problem, since existing works focus on
the different problem of fulfilling application SLAs without constraining the amount of resources
allocated to applications. Indeed, as discussed later, existing solutions fail to achieve either the goal
of SLA satisfaction or the maximization of the consolidation level, or both of them.

A preliminary version of this paper has been presented in [20]. The work presented here
significantly extends the above paper as follows:

1. we present and thoroughly discuss the design of FC2Q, a resource management framework,
based on feedback fuzzy control, that is able to achieve the best consolidation level that can
be attained without violating the SLAs of the application running on a physical server;

2. we enhance the design of the fuzzy controller by means of improved membership functions
and rule base, as well as of better algorithms for the estimation of the application performance
indices;

3. we implement this improved version of FC2Q, as well as two existing feedback controllers,
and compare FC2Q against them (and against a static provisioning technique) for a much
larger set of operational scenarios including several real-world cloud applications and realistic
workloads;

4. we show that FC2Q outperforms these existing alternatives in all the experimental scenarios
we consider.

The rest of the paper is organized as follows. In Section 2, we define the context for the problem
that we tackle. In Section 3, we describe the design of the FC2Q framework. In Section 4, we
illustrate the implementation of FC2Q on a real testbed, that we use to carry out an experimental
evaluation and, in Section 5, we present the results obtained from it. In Section 6, we discuss related
works. Finally, in Section 7, we conclude the paper and discuss possible future works.

2. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a computing infrastructure, owned by a CIP, schematically depicted in Figure 1,
consisting in a set of physical servers that are managed by a virtualization platform. This
infrastructure hosts a set of multi-tier cloud applications, each one providing services to a population
of clients. Each tier Ai (i = 1, . . . , n) of an application A is deployed in a VM, which is hosted on
one of the servers of the infrastructure. Each VM is equipped with a suitable number of virtual
CPUs (vCPUs), and suitable amounts of RAM and disk space. Each vCPU of a VM is allocated
(typically non-exclusively) on a physical CPU core. In the following, we use the terms “application
tier” and “VM” interchangeably.
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Figure 1. Architecture of the computing infrastructure. Dashed boxes represent components outside the
scope of this paper.

The workload of each application A consists in a stream of requests for service coming from the
population of its clients, and is characterized by means of its intensity WA(t), that quantifies the
amount of work that must be carried out at time t by the computing infrastructure to serve requests.
WA(t) corresponds to the sum of the computing demands of the individual requests arrived at the
application and being served or waiting to be served at that time. We assume that the workload
is non-stationary, meaning that the distributions of the number of arrived requests, and of their
computing demands, change over time.

Each application is characterized by its Service Level Objectives (SLOs), expressing the
measurable characteristics of SLAs (e.g., response time, throughput, etc.), that must be fulfilled
by the CIP in order to avoid paying penalties to its customers. We assume that SLOs are expressed
as bounds on a suitable percentile of the distribution of the performance measure of interest (in the
literature, these SLOs are termed percentile-based [21]). Percentile-based performance guarantees
are indeed considered preferable for many applications than simpler metrics like average [22], since
they are more robust to fluctuations over multiple time scales that are typical of cloud workloads
[23, 24], but they are very challenging to meet [25].

In particular, the SLO of application A is expressed as a pair (p, r)A, where r (the SLO value) is
the upper bound on the p-th percentile of the distribution of the measured performance indicator,
and states that p% of the observed values must be lower than or equal to r during a prescribed time
interval. For instance, a SLO (95, 0.1 sec)A on response time states that the 95% of the observed
response times of the requests to application A must be lower than or equal to 0.1 seconds, in the
prescribed interval. We assume that, when negotiating the SLAs of application A, the CIP and the
customer agree on the maximum value W ∗

A of the workload intensity under which the corresponding
SLO has be to guaranteed.

Given an application A, the Dynamic Resource Allocation module (see Figure 1) is in charge of
allocating to each one of its tiers Ai a suitable fraction of the capacity of the physical resources on
which the corresponding VM is running in order to meet the SLO (p, r)A.

Clearly, for a cloud application there exist multidimensional resource demands, such as CPU,
memory, network bandwidth, disk I/O bandwidth, etc. Among them, usually CPU and memory
are considered the most representative ones [19, 26], since memory is typically the determining
factor on how many VMs a server can run simultaneously, while CPU is the determining factor on
application performance. This, moreover, matches the commercial offers of most cloud providers
(e.g., Amazon [27] and Rackspace [28]), that charge their users based on their CPU and RAM
consumption only. Furthermore, the relationship between application performance and the way
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other resources are used is still unclear [29], and suitable partitioning mechanisms for such resources
are still unavailable [30].

For these reasons in this paper, without loss of generality, we assume that each server has enough
memory to accommodate the needs of all the VMs assigned to it, and we focus on controlling the
amount of physical CPU capacity CAi(t) allocated to each tier Ai at time t to match WA(t). †

CAi(t) is a real number, taking values in the interval [0, 1], that expresses the overall fraction of
CPU time that must be allocated to the vCPUs of Ai over any time interval, normalized with respect
to the number m of physical CPU cores assigned to Ai. For instance, if CAi(t) = 0.75 and m = 2,
then the two vCPUs of Ai are globally entitled to receive 75% of the total physical capacity of the
two CPU cores on which they are allocated (that amounts to 2 · 100% = 200%). The Virtualization
Management System may fulfill this obligation in various ways, e.g., by either allocating 75% of
each physical core to each vCPU, or by allocating 100% and 50% of a distinct physical core to
the first and the second vCPU, respectively or, still, by choosing any other assignment that – when
denormalized – yields a value of 200% · 0.75 = 150%.

In order to ensure performance isolation among the VMs running on the same physical machine,
we assume that non-work-conserving scheduling (whereby the unused portion of CAi(t) is not
assigned to any other VM) is in use on the virtualization platform.

We finally assume that the system we consider complements dynamic resource allocation (the
focus of our work) with two additional mechanisms, namely Admission Control (to make sure that
the workload intensity experienced by application A never exceeds the maximum level W ∗

A agreed
upon by the CIP and the customer), and Dynamic VM Placement, that is in charge of reallocating
VMs in order to ensure that each server has enough capacity to meet the SLOs of all the applications
using it. To minimize the interference of VMs co-located on the same physical server [31], we
assume that dynamic VM placement is carried out so as to place on each server only VMs exhibiting
as little interference as possible. These mechanisms, however, are outside the scope of this paper,
and we assume that existing techniques are used (e.g., [32, 33, 34, 35, 36, 37, 38, 39] for dynamic
and contention-aware VM placement, and [40, 41] for admission control).

3. THE FC2Q FRAMEWORK

The architecture of FC2Q is depicted in Figure 2, where we show the components corresponding
to a specific application (i.e., the architecture shown in the figure is replicated for each application
running on the infrastructure). ‡

FC2Q associates with each application an Application Performance Collector, that is in charge
of sampling the performance measure Y used to define the SLO (e.g., response time), and with
each one of its tier VM i a Fuzzy Controller (a feedback controller based on fuzzy logic [16, 42]),
that periodically determines the CPU capacity Ci to be assigned to VM i in order to meet the
corresponding SLO. Each fuzzy controller makes its decision on the basis of (a) the performance Y
attained by the application, (b) the SLO value r, and (c) the utilization Ui of the vCPUs of VM i.

To properly handle multi-tier applications, fuzzy controllers that are associated to different tiers
of the same application are kept synchronized, i.e. they are activated nearly at the same time instant
so that they take decisions with respect to the same workload conditions.

The fuzzy controller, whose structure in shown in Figure 3, implements a static fuzzy control
logic [42, 43, 44], and determines the CPU capacity allocated in control interval k + 1 as Ci(k +
1) = Ci(k) + ∆Ci(k) (where Ci(k) and ∆Ci(k) represent the capacity allocated in the current
interval, and the adjustment for the next one, respectively). Given that ∆Ci(k) can take both positive
and negative values, the capacity allocated in the interval k + 1 may be either higher or lower than
the one in interval k (and, of course, it may remain unchanged as well).

†We note, however, that our framework can be extended to incorporate also other types of resources. This extension is
however left as future work.
‡To enhance readability, we drop the identifier of the application from all the subscripts whenever it is clear from the
context (i.e., we will denote as i instead of Ai the entities and the quantities corresponding to tier i of application A).
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Figure 2. Architecture of the FC2Q system.

The fuzzy controller contains the following four building blocks:

• the Rule Base, that stores a set of fuzzy rules through which control decisions are made;
• the Fuzzifier, that converts real input values into equivalent fuzzy values;
• the Inference System, that decides which rules can be applied to the current system state on

the basis of the values computed by the fuzzifier, and determines a fuzzy output;
• the Defuzzifier, that combines the fuzzy output into a single real value ∆Ci(k).
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Figure 3. The fuzzy controller component.

3.1. Controller inputs and output

As shown in Figure 3, the fuzzy controller uses two inputs, namely the relative error e(k) (the
normalized difference between the desired value r and the incremental estimate of the achieved
one Ŷ (k)) and the residual capacity Cres,i(k) (the difference between Ci(k) and the actual CPU
utilization of the VM), to compute its single output ∆Ci(k).

The relative error e(k) is computed as in Eq. (1) (in Figure 3 this operation is denoted as X),
where we differentiate response time-based from throughput-based SLOs:

e(k) =

{
r−Ŷ (k)

r , for response time SLOs,
Ŷ (k)−r

r , for throughput SLOs.
(1)
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where Ŷ (k) is computed by means of the Stochastic Approximation algorithm [45]. The error e(k)
is used to determine whether the SLO is actually respected (e(k) ≥ 0) or not (e(k) < 0).

The value of Cres,i(k) is instead computed as in Eq. (2):

Cres,i(k) = Ci(k − 1)− Ûi(k) (2)

where Ûi(k) is a smoothed value that suitably combines past values of Ui by means of the
Exponentially Weighted Moving Average (EWMA), that is:

Ûi(k) = β · Ui(k) + (1− β) · Ûi(k − 1) (3)

where β is the smoothing factor (a real number taking values in the [0, 1] interval).
Cres,i(k) is used to enable the controller to rapidly determine whether (a) the SLO is met (i.e.,

e(k) ≥ 0), since the right amount of CPU capacity has been allocated to tier i (Cres,i(k) ∼= 0), so that
no corrective actions are needed, or (b) too much capacity has been allocated to tier i (Cres,i(k) ≫ 0),
so that Ci(k + 1) can be suitably decreased without violating the SLO. Furthermore, it can be used
to tell whether the system is approaching saturation (Cres,i(k) = 0) before e(k) drops below 0, so
that Ci(k + 1) can be suitably increased before it is too late.

To show that the joint use of e(k) and Cres,i(k) enables a controller to properly distinguish
among the above situations, while controllers using e(k) and its first-order difference ∆e(k) (e.g.,
DynaQoS [15]) are not provided with this ability, let us discuss the results we collected in an
experiment in which we use DynaQoS to control the CPU capacity allocated to Olio [46], a Web
application featuring two tiers (named Web and DB, respectively), under a time-varying workload
featuring 100 users for the first 750 seconds of the experiment, 150 users for the next 300 seconds
and, finally, 50 users for the last 750 seconds.

In Figure 4 we plot the values of e,∆e, Cres,Web, Cres,DB, as well as the CPU capacity allocated to
the Web tier (CWeb) and to the DB tier (CDB), as a function of time.
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Figure 4. Comparison between ∆e and Cres control variables: ∆e does not provide enough information about
the system state.

As can be seen from this graph, after time t = 1500, the value of e(k) becomes more and more
negative, indicating that the SLO is being violated, while CWeb(k) and CDB(k) are not promptly
increased to react to these violations.
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The explanation of this behavior of the DynaQoS controller lies in the fact that ∆e(k) remains
practically constant even after e(k) has dropped below 0. This is due to the fact that e(k) remains
constant for a long time after the workload intensity has increased (t = 1050), since it takes a
possibly large number of measurements to affect the current estimate of the percentile used to define
the SLO, and these constant values make also hard for ∆e(k) to quickly vary.

To suitably react to workload increases, DynaQoS would need a way to tell whether each tier is
running short of CPU capacity before too much time has elapsed from the increase, even if e(k) ∼= 0.
Unfortunately, as discussed above, e(k) (and, consequently, ∆e(k)) vary too slowly to carry such an
information.

Conversely, as shown in Figure 4, the values of Cres,Web and Cres,DB start to decrease immediately
after the workload intensity increases, so that they can be used as indicators that the system is
quickly approaching saturation even when e(k) is still close to 0 and, consequently, the controller
could be able to quickly raise CWeb and CDB as soon as e(k) becomes negative.

3.2. The Rule Base

The actual fuzzy logic is implemented as a set of If-Then rules, stored in the Rule Base, that translate
human expert’s control knowledge into a form that can be used by the Inference System.

Fuzzy rules are defined by means of linguistic variables that take linguistic values and represent
the control inputs and outputs. In particular, each rule defines the conditions under which it can be
applied (the “If” part, or antecedent), and the output deriving from its application (the “Then” part,
or consequent).

We design the Rule Base by taking into consideration the objective of our controller, namely to
meet the SLO (i.e., to keep e(k) ≥ 0) and, at the same time, to minimize the allocated CPU capacity
(i.e., to keep Cres,i(k) ∼= 0). Furthermore, while doing so, we want to avoid that our controller be too
aggressive so to limit oscillations that would make the controlled system unstable.

Intuitively, the various rules in the Rule Base encode the following behaviors, as defined by the
following situations referring to three distinct scenarios:

• scenario 1: if the residual CPU capacity is lacking (i.e., Cres,i(k) = 0), then the allocated CPU
capacity must be either:

– a) increased by a suitably small amount if the SLO is currently met (i.e., e(k) ≥ 0), so
to avoid that a worsening of the operating conditions (e.g., an increment of the workload
intensity) in the next control interval leads to SLO violations, or

– b) increased by a suitably large amount if the SLO is currently being violated (i.e.,
e(k) < 0), so as to escape from the situation of SLO violation.

• scenario 2: if the allocated CPU capacity is not completely saturated (i.e., Cres,i(k) ∼= 0), then
it must be either

– a) increased by a suitably small amount if the SLO is being violated (i.e., e(k) < 0), so
to make the achieved value Ŷ (k) approaching to the target value r, or

– b) decreased by a suitably small amount if the SLO is met but the achieved value Ŷ (k)
is too far from the target value r (i.e., e(k) ≫ 0), or

– c) unchanged if the SLO is met and the achieved value Ŷ (k) is near to the SLO value r
(i.e., e(k) ≥ 0).

• scenario 3: if the residual CPU capacity is abundant (i.e., Cres,i(k) > 0), then the allocated
CPU capacity must be either

– a) decreased by a suitably small amount if the SLO is currently met (i.e., e(k) ≥ 0), just
to be careful that the allocated CPU capacity is reduced without leading to any SLO
violation, or

– b) decreased by a suitably large amount if the SLO is met and the achieved value Ŷ (k) is
far from the target value r (i.e., e(k) ≫ 0), as this is a clear situation of over-allocation,
or
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– c) unchanged if the SLO is violated (i.e., e(k) < 0), as neither an increment nor a
decrease would lead to any benefit.

To express the above behaviors, in our Rule Base we use the following linguistic variables and
values:

• “e”, which is the linguistic counterpart of the e(k) control input, that can take NEG, OK, or
POS as linguistic values. The NEG value (which stands for “negative”) represents the case
e(k) < 0 (i.e., the SLO is violated), the OK value describes the condition e(k) ≥ 0 (i.e., the
achieved value Ŷ (k) is near to the SLO value r, and the SLO is essentially met), and POS
value (which stands for “positive”) is used for the case e(k) ≫ 0 (i.e., the SLO is surely met).

• “Cres”, which is the linguistic counterpart of the Cres,i(k) control input, that can take LOW,
FINE, or HIGH as linguistic values. The LOW value is for the situation where Cres,i(k) ∼= 0
(i.e., the allocated CPU capacity is being saturated), FINE (i.e., the allocated CPU capacity is
not saturated), and HIGH (i.e., the allocated CPU capacity is underutilized).

• “∆C”, which is the linguistic counterpart of the ∆Ci(k) control output, that can take BUP,
UP, STY, DWN, or BDW as linguistic values, whose meaning is defined as follows (where the
notation x.(y) denotes situation y of scenario x above):

– BUP (which stands for “big up”) represents the output ∆C(k) ≫ 0 (i.e., the allocated
CPU capacity must be increased by a large amount) and is used in situation 1.(b);

– UP (which stands for “up”) describes the output ∆C(k) > 0 (i.e., the allocated CPU
capacity must be increased by a small amount) and is used in situations 1.(a) and 2.(a);

– STY (which stands for “stay”) is for the output ∆C(k) ∼= 0 (i.e., the allocated CPU
capacity must be unchanged) and is used in situations 2.(c) and 3.(c);

– DWN (which stands for “down”) represents the output ∆C(k) < 0 (i.e., the allocated
CPU capacity must be decreased by a small amount), and is used in situations 2.(b) and
3.(a);

– BDW (which stands for “big down”) is for the output ∆C(k) ≪ 0 (i.e., the allocated
CPU capacity must be decreased by a large amount), and is used in situation 3.(b).

The resulting Rule Base is expressed in a compact form as a table (see Table I) where rows and
columns report the values of “Cres” and “e”, respectively, and where each cell (A,B) contains the
value taken by “∆C” when “Cres” is A and “e” is B. In the following, we denote each rule as a pair
(A,B), each one representing respectively the linguistic value of “Cres” and “e”.

“∆C” “e”
NEG OK POS

“Cres”
LOW BUP UP UP
FINE UP STY DWN
HIGH STY DWN BDW
Table I. The Rule Base.

For instance, (LOW, NEG) corresponds to the rule: if “Cres” is LOW and “e” is NEG then “∆C”
is BUP. This rule encodes the control knowledge stating that if the CPU capacity value used by the
VM is close to that allocated by the controller (encoded by the “Cres” is LOW condition), and the
interested percentile of the observed SLO performance metric is close to or worse than the reference
one (encoded by the “e” is NEG condition), then the fuzzy controller has to significantly increase
the allocated CPU capacity value (encoded by the “∆C” is BUP proposition).

The agnosticism of the Rule Base with respect to the workload characteristics is a purposely-
designed feature of our approach. Indeed, any change in the workload behavior is reflected in the
values taken by the performance measures of interest (e.g., a steep increase of the arrival rate induces
smaller values of Cres,i(k) and negative values of e(k)). Therefore, given that the Rule Base (and the
membership functions, see below) has been conceived in such a way to deal only with changes on
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10 C. ANGLANO ET AL.

the performance measures of interests as induced by the workload, our controller is able to closely
follow any change in the workload, provided that it does not saturate the maximum capacity of the
physical resource.

3.3. The Fuzzifier

The Fuzzifier converts each real input value (either e(k) or Cres,i(k)) into the equivalent linguistic
variable (either “e” or “Cres”, respectively), and assigns it one or more linguistic values.

In fuzzy logic, indeed, a single real value may correspond to different linguistic values, each one
characterized by a (possibly different) degree of certainty. The fuzzifier, therefore, given an input
value α, computes the certainty µ(α) (a value between 0 an 1) that α corresponds to each one of the
possible linguistic values assumable by the corresponding linguistic variable.

This is accomplished by using a Membership Function (MF) for each (numeric) input variable
x that expresses, for each possible linguistic value m it may take, the certainty µ(m) that the
corresponding linguistic variable “x” falls into the range defined by m, and we denote it as
µ(“x”,m). In our controller, we use the triangular-shaped and ramp-shaped MFs, which are the
most commonly used membership functions in practice, that are shown in Figure 5.

e

µ

−1.0 −0.4 0.1 0.3 1.0

0
1 NEG OK POS

(a) MF for the “e” input variable.

Cres

µ

0.0 0.1 0.3 0.4 1.0

0
1 LOW FINE HIGH

(b) MF for the “Cres” input variable.

Figure 5. The MFs for the input variables “e” and “Cres”.

As shown in this figure, we have two MFs (one for each input variable). In each MF, each possible
linguistic value (i.e., LOW, FINE, and HIGH for the “Cres” variable, and NEG, OK, and POS for
the “e” variable) corresponds to a distinct curve (labeled correspondingly). Each curve is actually a
function that, given a value α of the numeric input (reported in the x-axis), yields the certainty that
α maps to the corresponding linguistic value.

To exemplify, if e(k) = 0.2, the MF in Figure 5a associates to this input the value OK with
certainty 1.0, since in the MF the value 0.2 projects up to a peak of the membership function
corresponding to the linguistic value OK. This corresponds to state that the linguistic variable “e”
takes the value OK with certainty 1.0, i.e., that µ(“e”,OK ) = 1.0.

Note also that, if e(k) = 0.15, then “e” takes two linguistic values (namely, NEG and OK), since
its projection up intersects the curves of both these values, each one characterized by its own
certainty value.

3.4. The Inference System

The Inference System determines the set of rules (the active rules) that can be applied given the
current values of the input linguistic variables provided by the Fuzzifier. To determine these rules,
the Inference System checks whether at least one of the linguistic expressions in its antecedent has
a certainty value higher than 0, and, to do so, it applies the min or the max function depending on
whether the antecedents are joined by a conjunction (i.e., “AND”) or by a disjunction (i.e., “OR”),
respectively.

To exemplify, assume that µ(“Cres”,HIGH ) = 1.0 and µ(“e”,OK ) = 0.6 (and that the certainties
of all the other linguistic values are 0). By looking at Table I, we see that only the rule corresponding
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to (HIGH, OK) applies, thus resulting in a consequent with a certainty of 0 for all the linguistic
values but DWN, whose certainty is given by:

µ(“∆C”,DWN ) = min
(
µ(“Cres”,HIGH ), µ(“e”,OK )

)
= min(1.0, 0.6) = 0.6

Conversely, if µ(“Cres”,FINE ) = 0.133, µ(“Cres”,LOW ) = 0.6, and µ(“e”,OK ) = 1.0 (while
the certainties of all the other linguistic values are 0), then two rules apply, namely (LOW, OK) and
(FINE, OK), each one with a different certainty degree. According to the Rule Base (see Table I),
the consequent of (LOW, OK) is UP, while the one of (FINE, OK) is STY. The certainty of these two
consequents, namely µ(“∆C”,UP) and µ(“∆C”,STY ), is computed as

µ(“∆C”,UP) = min
(
µ(“Cres”,LOW ), µ(“e”,OK )

)
= min(0.6, 1.0) = 0.6,

µ(“∆C”,STY ) = min
(
µ(“Cres”,FINE ), µ(“e”,OK )

)
= min(0.133, 1.0) = 0.133.

After the Inference System determines the consequents implied by the active rules, it passes their
certainties to the defuzzification process to obtain a single real output value (i.e., ∆Ci in our case).

3.5. The Defuzzifier

Finally, the Defuzzifier combines the active rules by means of the centroid method [42] and
calculates the control output resulting from the combination of the conclusions of all the rules
identified by the Inference System.

In the centroid method, the numeric value of the control output is computed as a weighted average
of the certainty of the fuzzy conclusions, where the weight of each conclusion is the center point
of the output membership function (i.e., the MF for the output variable). Similarly to what we do
for the fuzzifier component, we quantify the linguistic values by means of the triangular-shaped
membership functions shown in Figure 6.

∆C

µ

−1.0 −0.2 0.2 1.0

0
1 BDW DWN STY UP BUP

Figure 6. The MF for the output variable “∆C”.

The centroid method returns the center of the area under the curve of the MFs involved in the
active rules. For instance, if µ(“∆C”,UP) = 0.6 and µ(“∆C”,STY ) = 0.133, the area under these
MFs is the gray one shown in Figure 7. As expected, the gray area for the UP MF is greater than
the gray area for the STY MF. This is due to the fact that the degree of certainty of UP is higher
than the one of STY. Figure 7 also shows the centroid of the gray area (i.e., the black-filled circle at
(0.097, 0.168)). The x-coordinate of the centroid is the output of the defuzzification process which
in our case corresponds to the value for ∆Ci(k). In particular, in our example, ∆Ci(k) = 0.097
which means that the fuzzy controller has to increase the allocated CPU capacity value by 9.7% of
the full capacity.

4. SYSTEM IMPLEMENTATION

In order to asses the capability of FC2Q to achieve its design goals, we experimentally evaluate it
by using a testbed (whose architecture is shown in Figure 8) that we developed for this purpose.
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∆C
µ

−1.0 −0.2 0.2 1.0

0
1

0.097

0.
13

3
0.

60
0

BDW DWNSTY UP BUP

Figure 7. Defuzzification of the aggregate output with the centroid method. The black-filled circle at
(0.097, 0.168) is the centroid of the gray area.
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Figure 8. Architectural diagram of our experimental testbed.

As shown in the figure, the testbed includes a virtualized computing infrastructure, running a set
of cloud applications APP1, . . . ,APPk exposed to a suitably chosen workload (generated by the
Workload Driver). The Application Manager implements a feedback controller that allocates CPU
capacity to the various tiers on the basis of the inputs provided by the VM Utilization Collector and
the Application Performance Collector. According to the FC2Q approach, each tier is associated to
its own controller.

Both the Application Manager and the Workload Drivers are pluggable, that is they allow for
an easy replacement of the control algorithm and of the workload generator. As indicated in the
figure, we have currently integrated into the testbed three distinct controllers (FC2Q, DynaQoS
[15], and AutoControl [12]), and two distinct workload generators (RAIN [47] and YCSB [48]).
These components are used to carry out the experimental evaluation discussed in Section 5.

4.1. Physical Testbed

Our testbed consists of two Fujitsu Server PRIMERGY RX300 S7, connected via a Gigabit Ethernet
switch, each one equipped with two 2.4GHz Intel Xeon E5-2665 processors with eight cores each,
and with 96GB of RAM. Both machines run the Linux kernel version 3.10.11 and the Xen [49]
version 4.2 virtualization platform.

One of these machine is used to run the virtualized cloud applications, and it is configured to
use the Xen credit scheduler to enable non-work-conserving scheduling. Under this scheduler, each
VM i is associated with a weight wi (representing the scheduling priority of VM i with respect to
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other VMs) and a cap Γi, an integer value taking values in the interval [0, 100 ·mi] (where mi is the
number of physical CPU cores allocated to VM i), representing the maximum percentage of CPU
cycles that VM i is entitled to consume (even if the host has idle CPU cycles). Thus, to implement
non-work-conserving scheduling, at each control interval k we set the weight of all VMs to the same
value, and we set the cap assigned to VM i as Γi = ⌈Ci(k) · 100 ·mi⌉ (recall that Ci(k) ∈ [0, 1]).

The libvirt daemon [50] is also run on this machine in order to enable the Application Manager to
remotely interact with the hypervisor to set the cap to all the various VMs, and to the VM Utilization
Collector to harvest their utilization values.

The other physical machine is instead used to run the Application Manager, the Application
Performance Collector, the VM Utilization Collector, and the Workload Driver.

4.2. Implementation of FC2Q

The various modules composing FC2Q have been implemented in C++, and are publicly available
on [51].

The Application Performance Collector The Application Performance Collector gathers SLO-
defined performance measures (e.g., application response time or throughput) from a specific
virtualized application by interacting with the Workload Driver used to generate its workload. In
particular, given that both RAIN and YCSB write into their own log files the measures delivered
by the application they target, for each application we write a specific module able to extract from
these log files the performance measures of interests.

The VM Utilization Collector The VM Utilization Collector collects the information concerning
the utilization of the vCPUs of each VM i by using the libvirt API to query Xen for the CPU
utilization induced by each one of the VMs running on the testbed.

The Application Manager The Application Manager is responsible to manage the VMs of a
virtualized application in order to guarantee the related SLO. It incorporates a controller, and various
mechanisms enabling it to interact with both the collectors discussed above to obtain the information
that are given as input to the controller. The Application Manager has a pluggable architecture, that
allows a simple replacement of the controller used to handle applications. As already mentioned, we
have implemented three different controllers, namely our fuzzy controller, as well as AutoControl
and DynaQoS. For the implementation of both FC2Q and DynaQoS, we use the fuzzylite library [52].

5. EXPERIMENTAL RESULTS

To assess the ability of FC2Q to use as little CPU capacity as possible to meet the application SLO
(so as to maximize the consolidation level), we carry out an extensive experimental evaluation in
which several cloud applications, processing a stream of requests generated according to suitably
chosen workloads, are executed on our testbed.

In particular, we consider two distinct scenarios. In the first one, named Isolation, we run each
application alone to verify the performance of FC2Q when no resource contention is present. In the
second one, named Consolidation, we instead simultaneously run pairs of cloud applications on the
testbed in order to assess the ability of FC2Q to effectively multiplex these applications on the same
physical infrastructure when resource contention is present.

To compare FC2Q against state-of-the-art alternative solutions, we also run experiments in which
the control is carried out by two different controllers, namely the already mentioned DynaQoS
(which is based on fuzzy control theory) and AutoControl (a model-based adaptive feedback linear
controller), that we implemented for this purpose.

In this section, after describing the performance metrics (Section 5.1) and the experimental
settings (Section 5.2 and Section 5.3), we discuss the results of our experiments, showing that
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FC2Q outperforms its alternative counterparts in both the scenarios we consider (Section 5.4.1
and Section 5.4.2), and that it is able, at the same time, to closely track workload variations and
to precisely allocate to each application tier the amount of CPU capacity it needs to meet the
corresponding SLO (Section 5.4.3). Finally, we close this section with a summary discussion of
our findings (Section 5.5).

5.1. Performance Metrics

In our experiments, controller performance is assessed by computing two distinct metrics, namely:
(a) the Mean CPU Capacity (MCC ) allocated to each application tier, defined as the average of the
CPU capacity allocated in each control interval, and (b) the percent error Ê, defined as the relative
percentage change between the achieved value Ŷ and the SLO value r, that is:

Ê =

{
100 Ŷ−r

|r| , for response time SLOs,

100 r−Ŷ
|r| , for throughput SLOs.

(4)

These metrics are used to rank controllers as follows: if Ê > 0, than the controller is violating
the SLO, and as such is not considered to be suitable to solve the problem addressed in this paper.
Conversely, if Ê ≤ 0, the lower the achieved MCC value, the better the controller (i.e., among two
controllers that both meet the SLO, the best one is that which uses less CPU capacity).

Finally, to take into account variability, we run each experiment three times, and we compute each
metric as an average of the results collected in each individual run.

5.2. Cloud Applications and Workloads

We consider three applications representative of those that run on today’s CIP virtualized
infrastructures [53], namely:

• RUBiS [54], a two-tier Web 1.0 Internet application that implements an auction site prototype
modeled after eBay.com. For our experiments, we choose the RUBiS PHP version developed
by the OW2 Consortium [55], that we patched in order to fix some bugs we found during our
experimentation (we release the patched version in the public domain [51]).

• Olio [46], a two-tier Web 2.0 Internet application for social events modeled after the Yahoo!
Upcoming service. For our experiments, we choose the PHP-based Olio from the Apache
Software Foundation [56], that we patched in order to fix some bugs we found during our
experimentation (we release the patched version in the public domain [51]).

• Cassandra [57], a Java-based NoSQL data serving application (originally developed by
Facebook) designed to handle large amounts of data across many commodity servers.

We deploy and run each application tier inside a separate VM. Specifically, for both RUBiS and
Olio, we setup two VMs, one for the Web tier and another one for the DB tier, each one with 1 vCPU,
2GB of RAM, and 30GB of disk space. Instead, for Cassandra, being a single-tier application, we
setup a unique VM equipped with 10 vCPUs, 16GB of RAM, and 30GB of disk space.

To drive the workload of the above applications, we rely on the RAIN toolkit [47] (for both RUBiS
and Olio) and the Yahoo! Cloud Serving Benchmark (YCSB) [48] (for Cassandra), two widely used
workload generators for cloud applications that we extended whenever needed to make them fit
within our testbed (these extensions are now part of their official repositories).

In particular, for both Olio and RUBiS we use the “default mix” matrix of RAIN (that includes a
mix of the various operations supported by the benchmark) with a negative exponentially distributed
think-time whose mean is set to 7 seconds. For Cassandra we instead use an YCSB setup featuring
the loading of 5, 000, 000 records and 100, 000 operations per second as target.

To reproduce realistic operational conditions, characterized by time-varying and bursty
workloads, for each cloud application we create a step-like workload with three phases (one phase
for each burst), each one characterized by a specific intensity and duration, as shown in Table II. As
shown in this table, each workload starts with a medium intensity (Phase 1), then continues with a
higher intensity phase (Phase 2), and then it ends with a lower intensity phase (Phase 3).
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Cloud 1st Phase 2nd Phase 3rd Phase
Application Load Duration Load Duration Load Duration

RUBiS 30 usr 750 sec 45 usr 350 sec 15 usr 750 sec
Olio 100 usr 750 sec 150 usr 350 sec 50 usr 750 sec
Cassandra 12 thd 30, 503, 520 op 3 thd 13, 816, 440 op 6 thd 11, 556, 540 op

Table II. Experimental setup – Three-phase workload parameters. The abbreviations “op”, “usr” and “thd”
mean “number of operations”, “number of users”, and “number of threads”, respectively.

The SLO (p, r) for each cloud application, shown in Table III, has been set as follows to make
it feasible with the physical resources available in our testbed. Each application has been profiled
by exclusively assigning a distinct physical CPU core to each one of its vCPUs, and by running it
in isolation under the maximal intensity workload (i.e., under Phase 2). In each of these profiling
experiments, we computed the empirical distribution of the values of the SLO performance metric
of interest (i.e., the response times for Olio and RUBiS, and the throughput for Cassandra), from
which we determined the value r corresponding to the p-th percentile, and we set the SLO to (p, r).

In particular, for Olio and RUBiS we chose p = 95. For Cassandra we instead chose p = 5 since,
being the throughput the performance metric of interest, the higher the throughput, the better the
performance. Thus, if the 5th percentile of the throughput distribution is T , it means that 95% of the
observed throughput values are greater than or equal to T .

Application p r

RUBiS 95 0.6186 sec
Olio 95 0.1292 sec
Cassandra 5 6, 348.504 op/sec

Table III. Experimental setup – Application SLOs.

5.3. Controller Parameters

Each controller we consider in our evaluations needs specific parameters to be set. The values used
in our experiments are reported below.

All the controllers require to set the value of the sampling time s (representing the distance in
time between two consecutive measurements of the SLO performance metric of interest), and of the
control time c (representing the distance in time between two consecutive controller activations). In
our experiments, we set s = 2 seconds and c = 10 seconds for all the controllers.

Furthermore, for each controller we set its specific parameters as follows. For FC2Q, we set
β = 0.9 (where β is the smoothing factor, see Section 3.1). For DynaQoS, we set the discount
factor γ to 0.8, as suggested in [15]. Finally, for AutoControl, we set the stability factor q to 2 (as
suggested in [12]) and the forgetting factor λ, used by the RLS algorithm, to 0.98 (a commonly used
value which means that the weight of past observations decays very rapidly with time).

5.4. Results

Let us now discuss the results collected in our experiments. We start with those obtained with the
Isolation scenario (Section 5.4.1), and then we move to those corresponding to the Consolidation
scenario (Section 5.4.2). Finally, we show and discuss, for selected applications and scenarios, how
FC2Q is able to track workload variations and to precisely allocate to each application tier the
amount of CPU capacity it needs to meet the corresponding SLO (Section 5.4.3).

5.4.1. The Isolation Scenario As already anticipated, in the Isolation scenario we execute a single
application at a time, and, for every associated VM, we pin each vCPU to a dedicated physical CPU
core (the remaining CPU cores are allocated to Xen’s Domain-0).
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The results we collect for each applications are shown in Tables IV (Olio), V (RUBiS), and VI
(Cassandra), where rows correspond to applications, and columns report the values of Ê (together
with a textual annotation indicating whether the SLO has been satisfied or not) and of MCC attained
for each application.

SLO MCC

Satisfied? Ê Web (%) DB (%)

AutoControl No 1041.26 86.21 64.94
DynaQoS No 26.09 82.92 82.92
FC2Q Yes −44.55 76.45 61.95

Table IV. Isolation scenario – Results for the Olio application.

SLO MCC

Satisfied? Ê Web (%) DB (%)

AutoControl Yes −52.99 100.00 100.00
DynaQoS No 1099.41 62.36 62.36
FC2Q Yes −24.42 55.78 65.25

Table V. Isolation scenario – Results for the RUBiS application.

These results indicate that FC2Q outperforms both DynaQoS and AutoControl for all the
applications we consider, since it is always able to meet the corresponding SLOs (Ê is negative)
by allocating the smallest MCC value.

The ranking between DynaQoS and AutoControl varies according to the specific cloud
applications.

For Olio (Table IV), DynaQoS ranks to the second place since, although it meets the SLO, its
MCC value is much higher than FC2Q, while AutoControl ranks to the last place, since it achieves
a very large value of Ê (corresponding to an achieved Ŷ value 10 times larger than the target SLO
value) and a MCC value larger than the other two controllers. This is due to the use of a linear
model to describe the relationships between controller inputs and output, that are instead strongly
nonlinear. As a consequence, in many cases AutoControl generates negative values of Ci(k + 1) that
(given that the CPU capacity assigned to a VM cannot be negative) are translated into no control
action (the alternative would be that of lowering Ci(k + 1) to 0, which is clearly unacceptable).

For RUBiS (Table V) the ranking between DynaQoS and AutoControl is the opposite.
AutoControl ranks to the second place, as it meets the SLO but over-allocates CPU capacity, as
demonstrated by its high MCC value (that translates into a large negative value of Ê, corresponding
to an achieved value Ŷ much lower than necessary). Conversely, DynaQoS ranks to the last place
since it does not meet the SLO and allocates more CPU capacity than FC2Q to both application tiers.
This is due to the problem already discussed in Section 3.1, i.e., to the inability of ∆e to quickly
track changes in workload intensity.

SLO MCC

Satisfied? Ê Single Tier (%)

AutoControl No 91.49 45.79
DynaQoS No 98.28 58.17
FC2Q Yes −0.29 67.84

Table VI. Isolation scenario – Results for the Cassandra application.
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Finally, for Cassandra (Table VI), both controllers ranks to the last place, since they both do
not meet the SLO of the application, since they do not allocate enough CPU capacity to the
corresponding VMs.

Thus, we can conclude that FC2Q outperforms its counterparts in scenarios where applications
run in isolation, i.e., when no resource contention is present.

5.4.2. The Consolidation Scenario As already anticipated, in the Consolidation scenario we run
experiments in which a pair of distinct applications is executed on the same cores of the physical
CPU, so that resource contention arises. More specifically, we consider all the three distinct pairs
that can be obtained by combining the three cloud applications. To reduce space, in this paper we
report the results for two of these pairs namely, ⟨RUBiS ,Olio⟩ and ⟨RUBiS ,Cassandra⟩ (however,
the results for the third pair do not differ significantly from these ones).

To ensure that competing VMs are executed on the same physical CPU cores, we use vCPU
pinning as follows. For the ⟨RUBiS ,Olio⟩ pair, we pin the VMs running the same application tier
(either Web or DB) to the same physical CPU core (e.g., the two VMs running the Web tiers were
assigned to the physical CPU core 0). Conversely, for the ⟨RUBiS ,Cassandra⟩ pair, we pin the two
VMs of RUBiS to two of the 10 physical CPU cores used by the Cassandra’s VM (recall that this
VM has 10 vCPUs).

To provide a more thorough comparison, we add a static capacity provisioning approach (that
we name Static), in which each application tier receives a fixed CPU capacity, to AutoControl and
DynaQoS. The capacity allocated to each tier is set to the 75th percentile of the CPU utilization
measured for that tier during the experiment performed to compute the SLO of the application
(as discussed in Section 5.2). We consider such a percentile a good compromise between the
need of achieving a reasonable consolidation level and of allocating enough CPU capacity to each
application to meet its SLO.

The results corresponding to the ⟨RUBiS ,Olio⟩ and to the ⟨RUBiS ,Cassandra⟩ pairs are shown
in Table VII and Table VIII, respectively.

(a) RUBiS Application.

SLO MCC

Satisfied? Ê Web (%) DB (%)

AutoControl Yes −23.66 95.77 88.37
DynaQoS No 762.81 42.39 42.38
FC2Q Yes −16.07 60.03 70.10
Static Yes −21.83 58.00 82.00

(b) Olio Application.

SLO MCC

Satisfied? Ê Web (%) DB (%)

AutoControl No 220.99 91.02 97.23
DynaQoS No 2459.59 46.29 46.29
FC2Q Yes −12.52 56.83 42.36
Static No 140.67 31.00 12.00

Table VII. Consolidation scenario – Results for RUBiS and Olio.

From these results, we see that in both cases FC2Q is the best controller, being it the only one able
to meet the SLO of both applications. Conversely, none of the other alternatives is able to do the
same: each one of them is able to meet at most the SLO for one of the applications, but not for the
other one. In particular, DynaQoS fails to satisfy the SLO for both applications, while AutoControl
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(a) RUBiS Application.

SLO MCC

Satisfied? Ê Web (%) DB (%)

AutoControl Yes −53.28 99.66 99.95
DynaQoS No 1691, 18 63.88 63.88
FC2Q Yes −17.69 55.05 64.53
Static Yes −19.97 58.00 82.00

(b) Cassandra Application.

SLO MCC

Satisfied? Ê Single Tier (%)

AutoControl No 88.74 51.10
DynaQoS No 98.47 38.03
FC2Q Yes −0.62 78.88
Static No 1.06 54.00

Table VIII. Consolidation scenario – Results for RUBiS and Cassandra

and Static are able to do so only for RUBiS, but by allocating an MCC value much higher than
FC2Q to both tiers (AutoControl), or to the DB tier (Static).

Thus, we can conclude that FC2Q outperforms its counterparts also in scenarios where resource
contention is present.

5.4.3. Workload Tracking and Allocation Precision To show that FC2Q is able to track changes in
workload variations, i.e. to increase or decrease the amount of CPU capacity allocated to each tier
in response to increases or decreases in workload intensity, in this section we report the graphs in
which we plot – for selected applications and scenarios – the CPU share allocated to each tier, as well
as the actual CPU utilization of that tier. In particular, we report the graphs for Olio (Figure 9) and
RUBiS (Figure 10) in the Isolation scenario, and those for the pair ⟨RUBiS ,Cassandra⟩ (Figure 11)
in the Consolidation scenario. The results for the other cases, however, do not significantly differ
from those reported here.
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Figure 9. Isolation scenario – Olio: CPU share and utilization as observed under the control of FC2Q.
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Figure 10. Isolation scenario – RUBiS: CPU share and utilization as observed under the control of FC2Q.

By comparing, for each tier, the allocated CPU share and its actual CPU utilization, it is possible
to determine whether FC2Q is able to track changes in the workload. The actual CPU utilization
of a tier represents indeed the smallest amount of CPU capacity that must be allocated in order
to meet the corresponding application SLO. Thus, its evolution over time (the dashed line in each
graph) represents the value that must be tracked by FC2Q when allocating the CPU share to the
corresponding tier.

As shown in all the figures, the CPU share allocated by FC2Q to each tier (the solid line) as
time goes by exhibits practically the same profile of the corresponding actual CPU utilization. This
means that FC2Q is able to determine the actual capacity needs of each tier, and to allocate it a
suitable CPU share.

However, at any time instant t, the two curves present a practically constant offset, meaning that
FC2Q allocates to each tier more CPU capacity than strictly needed. In particular, at any time t,
the difference between allocated and used CPU capacity is reasonably small and, for all tiers and
applications, it ranges between 20% and 25%. This effect is not unexpected, but it is instead a design
choice. Our rules (and, more precisely, the membership functions) have been indeed designed in
such a way to allocate to each tier a small amount of extra CPU capacity with respect to the optimal
value, so that small workload variations can be tolerated without violating the SLO before the next
activation of FC2Q takes place.

Indeed, the membership function for the “Cres” input variable (see Figure 5b) implies that if the
residual CPU capacity lies in between 10% and 40% (i.e., it is FINE), then no CPU share adjustments
are made if the SLO is being met (i.e., “e” is OK). This means that an average over-allocation of
25% (corresponding to the middle point of the triangle representing the value FINE) is considered
to be normal by FC2Q.

In case a smaller average over-allocation is desired, the triangle corresponding to the FINE fuzzy
value in the membership function for “Cres” needs to be changed (in particular, its base has to be
shortened accordingly).

5.5. Discussion

The main reason of the ability of FC2Q to suitably allocate resources to application tiers stems from
its ability to rapidly determine whether the SLO is being met or not, and whether too much capacity
has been allocated to an application tier or not. This is achieved by the use of fuzzy control (which,
as discussed in Section 6 below, unlike approaches based on linear control, is able to deal with non-
linearities) and by the information used as control inputs, namely the “relative error” e(k) and the
“residual capacity of tier i” Cres,i(k) (which, as discussed in Section 3.1, are used both to assess
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Figure 11. Consolidation scenario – ⟨RUBiS ,Cassandra⟩: CPU share and utilization as observed under the
control of FC2Q.

the SLO achievement and to determine if the CPU capacity of each tier is either well-provisioned,
over-provisioned, or under-provisioned).

In summary, from the results obtained in the experimental evaluation we can conclude that FC2Q,
with respect to state-of-the-art works, provides the following benefits:

• Unlike approaches that use model-based linear control (e.g., [12, 58, 59, 60]), FC2Q is able
to deal with non-linearities in the controlled system and to properly handle non-stationary
workloads thanks to the use of fuzzy control (thus avoiding any linearization operation [16]
that would introduce inaccuracies).

• Unlike approaches that do not consider the sign of the performance deviations (e.g.,
[12, 15, 19, 58, 59, 60]), FC2Q is able to distinguish between situations where the deviation
of performance is due to a SLA violation or to resource over-provisioning.

• Unlike approaches that do not consider resource utilization at each application tier (e.g., [15]),
FC2Q is able to take into consideration resource bottlenecks at different application tiers, thus
assigning them a different resource capacity in order to meet SLAs.

• In all the experimental scenarios we consider, FC2Q outperforms the other state-of-the-
art approaches, as it is able to achieve a better consolidation level without violating any
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application SLAs, unlike competing solutions that fail to achieve either one of these goals,
or both of them.

6. RELATED WORKS

The dynamic management and provisioning of physical resources for virtualized cloud applications
with SLO constraints is a topic that has been actively investigated in the past years. Existing
approaches can be classified into three categories, namely VM placement, VM horizontal scaling
(also known as VM provisioning) and VM vertical scaling (also referred to as VM sizing). However,
to the best of our knowledge, only few works focus also on the maximization of the consolidation
level (as we instead do).

VM placement approaches [35, 37, 61, 62] exploit live VM migration to dynamically move VMs
to the set of physical machines that allow them to meet their SLAs and, possibly, to increase the
consolidation level. VM placement techniques, however, are unsuitable to work at a short time
scale, given the relatively high costs of VM migration both in terms of performance and energy, that
can become prohibitive if migrations occur too frequently.

VM horizontal scaling approaches [63, 64, 65] focus on dynamically varying the number of VMs
provisioned to a given application in order to provide it with more or less CPU power to match
workload demand. As VM placement techniques, horizontal scaling is unsuitable to operate at short
time scales, because of the large overhead of starting and stopping a VM, that must be amortized
over a relatively long time scale.

Dynamic VM vertical scaling approaches (like ours) focus on dynamically provisioning physical
resources to one or more VMs in order to achieve the SLOs of the applications they run. Various
approaches have been proposed in the literature.

Utility-driven approaches [11, 66] base their decisions on the maximization of a suitable utility
function that quantifies the goodness of each possible decision, and typically rely on analytical
models of applications and computing resources to develop a suitable optimization problem. The
main problems of these approaches are the difficulty to build accurate models of applications and
systems, and the possibly high computation time required to perform optimization (that makes them
suitable only to work at a long or medium time scale).

Time-series based approaches [67, 13] use historical data to build black-box models to mimic the
behavior of the application, and to forecast its resource requirements, so that it can be adjusted at
run time. However, to be able to produce accurate forecasts for a short time scale, these techniques
usually require that specific patterns (e.g., trends and/or seasonality) or stationarity are present in
the historical data at that time scale, a characteristics that the workloads we consider in this work
not always exhibit. Thus, the scarcity (or even the lack) of such properties can introduce delays in
the reaction time, thus making such approaches ineffective.

Machine learning approaches [14, 68], as time-series ones, use historical data too to build models
able to accurately capture system behavior without any explicit performance model. However, the
training process of these models tends to be very long in time before a sufficiently accurate model
is learned, and this may be unacceptable for applications with strict SLO requirements.

Finally, control-theoretic approaches able to work at a short time scale (as the one proposed in
this paper) have been proposed as well in the literature.

Model-based approaches relying on linear feedback control and using adaptive and optimal
control to cope with time-varying workloads [12, 58, 59, 60] fail to properly handle non-stationary
workloads [15, 69], as effect of the errors induced by the linearization [16] they have to perform
when dealing with non-linear systems (like those addressed in this paper). Furthermore, they do
not take into account the sign of the error between the observed and the reference value, and are
therefore unable to differentiate a SLO violation from a resource overallocation.

In contrast, FC2Q is able to deal with non-linearities in the controlled system thanks to the use
of fuzzy control, that does not require any linearization operation, and to the consideration of the
sign of the error, that makes it able to differentiate between SLO violations and CPU capacity
overallocation and, therefore, to make better control actions.
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Fuzzy control has been also used in [15], that proposes the already-discussed DynaQoS, a fuzzy
proportional-derivative controller. However, as discussed in previous sections, this controller is
unable to react to workload changes because of the choice of using ∆e as control input. Conversely,
FC2Q has been shown to be able to work well under these conditions, and to outperform DynaQoS
in all the experimental scenarios considered in this paper.

In [19], a neural-fuzzy model is used to describe the relationship between the application
performance measure (the control output) and the resource allocations (the control inputs), and
to design a model predictive controller that aims at reducing the control error by minimizing the
allocated physical resources. However, the above input-output model does not take into account the
resource usage of the various application tiers, so it cannot detect the tiers that represent a bottleneck
and, consequently, suitably differentiate the amount of capacity allocated to each tier. Furthermore, it
needs to use linearization to design the model predictive controller, with consequent errors deriving
from this operation, and does not consider the sign of the error.

In contrast, FC2Q is able to take into consideration resource bottlenecks at different application
tiers (thus assigning them a different resource capacity), and to make different decisions according
to the sign of the control error (thus differentiating between deviations from the SLO value due to
SLO violations and ones due to SLO achievement but with over-provisioned resource).

7. CONCLUSIONS AND FUTURE WORKS

In this paper we presented FC2Q, a dynamic vertical scaling framework, based on fuzzy control,
that is able to achieve the best consolidation level that can be attained on a physical server without
violating the SLAs of the applications running on it. FC2Q works by continuously monitoring
application performance and resource usage in order to determine whether, when, and how to adjust
the amount of physical CPU capacity allocated to each application tier, so that it is able to properly
cope with the time-varying and bursty workloads that characterize contemporary cloud applications.

To assess the efficacy and performance of FC2Q, we implemented it on a real testbed, that
we used in an extensive experimental evaluation in various scenarios, involving three real-world
cloud applications (namely, RUBiS, Olio, and Cassandra), that can be considered representative of
typical cloud applications that run today on Internet data centers, exposed to time-varying and bursty
workloads both in absence and in presence of resource contention. Furthermore, we compare FC2Q
against two existing, state-of-the-art controllers tailored to virtualized cloud applications with SLA
constraints, namely DynaQoS and AutoControl, as well as against a static approach.

Or results show that, in all the experimental scenarios we considered, FC2Q outperforms the other
approaches, as it is able to achieve a better consolidation level without violating any application
SLAs, unlike competing solutions that fail to achieve either one of these goals, or both of them.

Future works are planned along two distinct directions. First, we plan to extend FC2Q to
incorporate also other types of physical resources (e.g., memory and disk bandwidth) in addition to
CPU. Second, we plan to investigate the use of adaptive control techniques (like the adaptive neuro-
fuzzy inference framework [70]) and evaluate its possible benefits in obtaining a better consolidation
level, while still achieving application SLAs.
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