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ABSTRACT
Edge Computing (EC) represents the most promising solution to
the real-time or near-real-time processing needs of the data gen-
erated by Internet of Things devices. The emergence of Edge In-
frastructure Providers (EIPs) will bring the EC benefits to those en-
terprises that cannot afford to purchase, deploy, and manage their
own edge infrastructures. Themain goal of EIPswill be that ofmax-
imizing their profit, i.e. the difference of the revenues they make
to host applications, and the cost they incur to run the infrastruc-
ture plus the penalty they have to pay when QoS requirements of
hosted applications are not met. To maximize profit, an EIP must
strike a balance between the above two factors.

In this paper we present the Online Profit Maximization (OPM)
algorithm, an approximation algorithm that aims at increasing the
profit of an EIP without a priori knowledge. We assess the perfor-
mance of OPM by simulating its behavior for a variety of realistic
scenarios, in which data are generated by a population of moving
users, and by comparing the results it yields against those attained
by an oracle (i.e., an unrealistic algorithm able to always make op-
timal decisions) and by a state-of-the-art alternative. Our results
indicate that OPM is able to achieve results that are always within
1% of the optimal ones, and that always outperforms the alterna-
tive solution.

CCS CONCEPTS
• Networks → Cloud computing; • Computer systems orga-
nization → Cloud computing;
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1 INTRODUCTION
Large-scale Internet of Things (IoTs) services are becoming more
andmore commonplace. These services are based on the collection,
storage, and processing of very large volumes of data, generated by
an extremely large number of devices (e.g., sensors, smart personal
devices, vehicles) which are located at the edge of the network and
operating on a 24/7 basis.

These data often require real-time or near real-time processing
(e.g., for augmented reality services or smart traffic light systems)
[13]. Hence, the inherent high latency of the core network makes
cloud computing unsuitable to meet the above requirements. Con-
versely, Edge Computing (EC) [15] whereby compute, storage, and
network resources are provided by EdgeNodes (ENs) that are placed
at the edge of the network, in close proximity to where data are
generated, represents a very promising solution to the processing
needs of these data.

To profitably implement the EC paradigm, a very large number
of ENs must be typically placed at the end of the network to reduce
latency [29], especially when several geographically dispersed ar-
eas need to be covered. Therefore, latency reduction would be pro-
hibitively costly for an enterprise that had to purchase and deploy
its own ENs. Furthermore, these costs would be hardly amortized,
since the capacity of these ENs would be used only in part for most
of the time, because of the variations in volume, variety, and veloc-
ity of generated data [13], especially when data are generated by a
population of moving users.

The emergence of Edge Infrastructure Providers (EIPs) [29] will
enable enterprises to cut these costs: EIPs will indeed provide indi-
vidual enterprises with the computing and networking infrastruc-
ture needed to host their ENs in the edge tier on a pay-per-use ba-
sis, so that these enterprises do not need to purchase, deploy, and
manage their own edge infrastructures. Moreover, by multiplex-
ing the same physical infrastructure among multiple tenants, each
EIPs can maximize the utilization of its resources, thus amortizing
capital and operational costs and making profit.

An EIP runs the applications to process IoT data on their infras-
tructure by encapsulating each one of them into a set of Virtual
Machines (VMs) that are hosted in its ENs. The owner of an applica-
tion and the EIP that runs it are bound by a contractual agreement
defining the amount of money that the owner of the application
will correspond to the EIP for running its application and also the
monetary penalty that the EIP will pay to the owner of the appli-
cation when the agreed QoS is not met.

To improve its net profit (i.e., the difference between its revenues
and costs), an EIP can thus reduce its costs by either switching off
(part of) its infrastructure to save energy or by allocating as much
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Figure 1: System architecture.

resources as required by the hosted application to avoid paying
QoS penalties [16, 17]. To do so, an EIP can rely on server consoli-
dation [28] to allocate several VMs on each EN, in the attempt to
use as little ENs as possible. The maximization of the consolidation
level that is achieved by allocating on each EN as many VMs as
possible has thus become one of the major goals of an EIP, that
however is a challenge to achieve because it requires to decide the
best way to allocate the required VMs onto the EIP infrastructure
in face of time-varying workload.

In this paper, we propose the Online Profit Maximization (OPM)
algorithm, an approximation algorithm that aims at increasing the
profit of an EIP without a priori knowledge. We assess the perfor-
mance of OPM by simulating its behavior for a variety of realistic
scenarios, in which data are generated by a population of moving
users, and by comparing the results it yields against those attained
by an oracle (i.e., an unrealistic algorithm able to always make op-
timal decisions) and by a state-of-the-art alternative. Our results
indicate that OPM is able to achieve results that are always within
1% of the optimal ones, and that always outperforms the alterna-
tive solution.

The rest of the paper is organized as follows. Section 2 presents
details of the system model, and Section 3 discusses the problem
tackled in this paper. In Section 4, we present the algorithm we
propose to tackle this problem, and in Section 5, we evaluate its
performance via simulation. Finally, we end the paper with related
works (in Section 6) and possible future extensions (in Section 7).

2 SYSTEM MODEL
We consider a system, whose architecture is outlined in Figure 1,
where a population of geo-distributed IoT devices (either station-
ary or mobile) generates very large amounts of data that require
real-time or near-real-time processing to deliver various types of
data-analytics services. To accommodate these stringent require-
ments, a set of resource-rich ENs are deployed, either as cloudlets
[27] or as micro data centers [2], in the edge tier (i.e., in the prox-
imity of these data sources) to run a set of virtualized applications
to process the data generated by the IoT devices.

Each EN i ∈ E is characterized by its CPU capacity Ci which is
measured by means of a suitable benchmark (e.g., [25]), and by its
power consumptionwi (u), which is computed as in [26]:

wi (u) =W min
i + u ·

(
W max
i −W min

i
)

(1)

where u ∈ [0, 1] is the CPU utilization of the EN, andWmin
i and

Wmax
i denote its power consumption (in Watts) when its CPU is

in the idle state and when it is fully utilized, respectively. We as-
sume that ENs are provided by suitable dynamic resource alloca-
tion mechanisms (e.g., [4, 6–8]) enabling them to partition their
physical capacity across the VMs they run.

Each application j ∈ A is characterized by its QoS target, which
is quantified by the maximum valueQ j that the mean request pro-
cessing time D j can take (i.e., D j ≤ Q j ). To cover all the various
geographic areas of its interest, application j is deployed with one
or more instances in the various areas, whereby instances located
in a given area process all the data generated for j by the devices
located in that area. This model is representative of real-world IoT
applications, arising in a variety of domains (e.g. health-care, smart
cities, and agriculture monitoring [14]), where sensors generate
data (the IoT clouds in Figure 1) that is stored and possibly pro-
cessed at the edge of the network (the EDGE clouds in Figure 1).

The instances of any application are encapsulated in a set of
identical VMs, each one running a single instance and hosted by an
EN. Each VM of an application j is cloned from a common VM tem-
plate k which is characterized by the request processing rate µ j,k
that, without loss of generality, it is assumed to be determined only
by the amount of physical CPU capacity allocated to that VM, 1 and
that this amount is the same for all its instances, and remains con-
stant for all their lifetimes. For the same application j, we consider
different classesK of VM templates, each one with different phys-
ical resource requirements, that an EIP can choose to achieve the
maximum consolidation level on its ENs.

To ensure that all the clones of VM template k of application j
exhibit the same value of µ j,k , we assume that each one of them
receives, on the EN i on which it runs, a suitable amount of CPU
capacityUi,k computed as in [5]:Ui,k = Ux, j ·Cx /Ci , whereCi and
Cx denote the physical CPU capacity of EN i and of the reference
EN x used for profiling VM template k , respectively.

To achieve the QoS target of application j in a given area, it is
needed to suitably choose the numberNj,k of classk VMs allocated
on ENs located in that area so as to ensure that Di ≤ Qi , which
however depends on the time-varying load intensity λj (t) that ap-
plication j faces in that area. Likewise existing works (e.g., [9, 10],
we assume that an EIP divides the time axis in equally spaced time
intervals and that for each interval τ the EIP is able to estimate the
load intensity λj (τ ) for time interval τ at the end of the preceding
time interval (τ − 1).

The values of λj (τ ) are fed as input into an M/M/c-FCFS queue-
ing model [12], with c = Nj,k (τ ), representing the set of identical
class k VMs of j allocated in a given area to process a stream of
incoming requests which is fairly distributed among them. The so-
lution of this model yields the minimum number Nj,k (τ ) of class k
VMs in time interval τ that satisfies D j ≤ Q j as follows (for read-
ability purposes, we drop the dependence on τ ):

D j =
G

µ j,kNj,k − λj
+

1
µ j,k

, (2)

Nj,k ≥ G
Q j − (1/µ j,k )

+
λj
µ j,k

. (3)

1The extension to multiple types of physical resources (e.g., RAM and storage) is
straightforward (e.g., see [18]).
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where ρ = λj
Nj,k µ j,k

andG = [1+(1−ρ)( Nj,k !

(ρNj,k )
Nj,k

)∑Nj,k−1
n=0

(Nj,k ρ )n
n! ]−1.

The owner of an application j and the EIP that runs it are bound
by a contractual agreement stating that the owner of j will corre-
spond to the EIP a certain amount of money per each unit of time,
computed according to an agreed-upon revenue rate Rj . In addi-
tion, the EIP will pay the owner of j an amount of money per each
unit of time during which the QoS target of j is not met, computed
according to the agreed-upon penalty rate Lj .

3 PROBLEM STATEMENT
An EIP aims at increasing its net profit as much as possible, given
the request for the allocation of all the applications it runs. We
assume that in each area the EIP has enough resource capacity to
meet the QoS requirements of all applications, so it never needs to
allocate VMs on resources belonging to other areas. The overall net
profit earned by EIP is therefore simply the sum of the net profits
it earns in each single area.

The net profit rate P (i.e., the profit an EIP makes per unit of
time) in a given area is computed as the following difference (for
readability purposes, we drop the dependency on time interval τ ):

P =
∑
j∈A,
k∈K

Rjnj,k −
(∑
i∈E

(
xiwi (ui )E +

∑
j∈A

max{0, yi, j,k − a(i, j, k )}Mj,k

+
∑
i∈E

[
xi

(
1 − o(i)

) ]
Ai +

∑
i∈E

[ (
1 − xi

)
o(i)

]
Si
)
+
∑
j∈A

1[0,Nj,k )(nj,k )Lj
)
(4)

where xi is 1 if EN i is powered on and 0 otherwise, yi, j,k is the
number of class k VMs that are actually allocated for application
j on EN i , nj,k ≤ Nj,k is defined as nj,k =

∑
i ∈E yi, j,k , E is the

electricity price (per unit of time),ui is the overall physical capacity
of EN i allocated to the VMs it hosts, a(i, j,k) (where a : E × A ×
K → N) is the number of classk VM for j that are already allocated
on EN i ,Mj,k is the cost for cloning or reallocating a class k VM of
j, o(i) (where o : E → {0, 1}) is 1 if EN i is already powered on and
0 otherwise, Ai and Si are the costs for powering on and off EN i ,
respectively, and 1Ω(x) is the indicator function which has value 1
if x ∈ Ω and 0 otherwise.

Eq.(4) has the following meaning: the first term of the difference
is the sum of the revenue ratesRj that EIP charges (per unit of time)
to each application j for hosting nj,k of its class k VMs; while the
second term of the difference represents the costs that EIP incurs
(per unit of time) to run the above VMs. This cost, in turn, is given
by the sum of five costs, namely (a) the energy cost rates result-
ing from the execution of overall CPU capacity allocated to all the
VMs it hosts (see Eq. 1), (b) the cost rates for cloning or migrating
its hosted VMs, (c) the energy cost rates for turning on the ENs
where to allocate these VMs, (d) the energy cost rates for turning
off unused ENs, and (e) the possible monetary penalty rates Lj that
EIP incurs when theQoS of some application j is notmet (i.e., when
nj,k < Nj,k ).

Maximizing this profit rate is a challenging task which involves
solving an optimization problem to find those values of xi and
yi, j,k that maximizes P for all time intervals τ , and that takes into
account the time-varying workload, the electricity price and the
application penalties. Intuitively, for each time interval, when the
number of VMs to allocate on a EN i is so small that the resulting

net profit is negative, EIP must decide whether it is more profitable
to not allocate any VM on EN i (thus opting to pay the monetary
penalties for violating the QoS of the related applications), or it is
instead better to allocate the VMs anyways to avoid paying high
application penalties. Also, when the number of VMs is so large
that it needs more than one EN to allocate them, EIP must decide
whether it is more profitable to allocate all of them, or it is instead
better to allocate only the ones that leads to a positive profit (thus
paying the monetary penalties for those applications whose QoS
is not met).

If all the system parameters were available in advance, Eq. (4)
could be maximized by solving an offline Mixed Integer Linear Pro-
gram (MILP). However, the time-varying nature of the workload
makes this assumption unrealistic for many real-world scenarios.

To cope with this uncertainty, in this paper, we propose OPM,
an online optimization algorithm that, for each time interval τ , finds
the values of xi and yi, j,k that maximize Eq. (4) in the interval τ ,
without a priori knowledge and by only assuming that the EIP can
estimate the λj (τ ) at the end of the preceding interval (τ − 1).

4 THE OPM ALGORITHM
In this section, we present the OPM algorithm we devised to max-
imize the net profit rate of an EIP. We assume that the time axis
is divided in equally spaced time intervals and that, at the end of
each interval (τ − 1), the EIP invokes the OPM algorithm to find
the VM allocation that maximizes the profit in the next interval τ .

Algorithm 1 The OPM algorithm (run for every time interval τ ).

1: procedure OPM
2: For each j ∈ A, estimate λj (τ ).
3: For each j ∈ A, i ∈ K , find Nj,k by means of Eq. (3).
4: Find π∗ = ⟨{x∗i |∀i ∈ E}, {y∗i, j,k |∀i ∈ E, j ∈ A,k ∈ K}⟩ by

solving the MILP of Figure 2.
5: Apply π∗ to the system.
6: end procedure

More specifically, as reported in Algorithm 1, at the end of time
interval (τ − 1), EIP invokes OPM to estimate the maximal work-
load intensity λj (τ ) for each application j it hosts (line 2). Subse-
quently, with the just estimated λj (τ ) and by means of Eq. (3), EIP
finds the minimum number of VMs required to meet the QoS of j
(line 3). Then, EIP solves the optimization problem of Figure 2 to
find the values of xi and yi, j,k decision variables that maximize
its net profit as defined by Eq. (4) (line 4). Finally, EIP applies the
solution of the MILP of Figure 2 (line 5).

Figure 2 shows the MILP used to maximize the profit in time
interval τ , where we use the same notation defined in Section 3,
and, to ease readability, we drop from the model the dependence
from τ .

In the optimizationmodel,xi are binary decision variables,yi, j,k
and nj,k are non-negative integer decision variables, uj are non-
negative real decision variables, and, finally, sj are binary decision
variables indicating whether some VMs have been allocated for ap-
plication j (sj = 1) or not (sj = 0).

The objective function Eq. (5a) of the optimization model repre-
sents the overall net profit rate earned by EIP, which is defined as
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max
∑
j∈A

∑
k∈K

Rjnj,k −
[∑
i∈E

(
xiW min

i + (W max
i −W min

i )ui
)
E

+
∑
i∈E

∑
j∈A

∑
k∈K

max
{
0, yi, j,k − a(i, j, k )

}
Mj,k

+
∑
i∈E

[
xi

(
1 − o(i)

) ]
Ai +

∑
i∈E

[ (
1 − xi

)
o(i)

]
Si

+
∑
j∈A

[
(∀k ∈ K : Nj,k > 0) ∧

( (
sj = 0

)
∨
(
∃k ∈ K :

(
nj,k > 0

)
∧
(
nj,k < Nj,k

) ))]
Pj

] (5a)

s.t.

nj,k =
∑
i∈E

yi, j,k , ∀j ∈ A, k ∈ K, (5b)

ui =
∑
j∈A

∑
k∈K

yi, j,kBi,k , ∀i ∈ E, (5c)

sj =
(
∃i ∈ E, k ∈ K : yi, j,k > 0

)
, ∀j ∈ A, (5d)

∄k ′ ∈ K, k ′ , k :
(
nj,k > 0

)
∧
(
nj,k′ > 0

)
, ∀j ∈ A, k ∈ K, (5e)

ui ≤ xi , ∀i ∈ E, (5f)
nj,k ≤ Nj,k , ∀j ∈ A, k ∈ K, (5g)
xi ∈ {0, 1}, ∀i ∈ E, (5h)
yi, j,k ∈ N, ∀i ∈ E, j ∈ A, k ∈ K, (5i)
nj,k ∈ N, ∀j ∈ A, k ∈ K, (5j)
sj ∈ {0, 1}, ∀i ∈ E, (5k)

ui ∈ R∗, ∀i ∈ E . (5l)

Figure 2: The profit maximization model.

the difference between the revenues obtained by the allocation of
VMs, and the costs due both to the electricity power absorbed by
the powered-on ENs and to QoS violations (if any), as in Eq. (4).

The maximization of this objective function is bound to the fol-
lowing constraints: Eq. (5b) defines, for each application j, the value
of nj,k as the sum of the number of class k VMs allocated on the
ENs; Eq. (5c) defines, for each EN i , the value of ui as the sum of
the CPU capacity requirements Bi,k of the VMs allocated on i , over
all VM classes k ∈ K ; Eq. (5d) defines, for each application j, the
value of sj as a boolean value indicating whether some VMs have
been allocated to j (sj = 1) or not (sj = 0); Eq. (5e) ensures that all
VMs allocated for a given application belong to the same category;
Eq. (5f) ensures that the allocated CPU capacity of a powered-on
EN is not exceeded; Eq. (5g) ensures that for each application no
more VMs are allocated than needed; Eq. (5h)–Eq. (5l) define the
domain of decision variables xi ,yi, j,k , nj,k , sj , andui , respectively.

In general, the profit resulting after iteratively applying OPM
for each considered time interval is suboptimal because OPM has
a limited view of the future. In Section 5, we experimentally evalu-
ate this sub-optimality by comparing the results achieved by OPM
with the ones computed by an oracle (optimal) algorithm which
solves the offline MILP obtained by extending the model of Fig-
ure 2 to cover all time intervals.

5 EXPERIMENTAL EVALUATION
To assess the efficacy of the proposed approach in increasing the
net profits for an EIP, we perform an experimental evaluation via
simulation in which we run our algorithm for different scenar-
ios. In these scenarios, we vary the workload of each application
as well as other system parameters, and we assess the impact of
them on the performance of the proposed algorithm. Also, to eval-
uate the effectiveness of the proposed approach with respect to
the state-of-the-art, we compare the performance of our algorithm
with another alternative approach.

The results we obtain from these experiments show the ability
of our algorithm to increase the profit of EIP so as it is never less
than 99% of the optimum (as computed by the oracle algorithm),
and that it always outperforms the alternative solution.

In the rest of this section, we first provide the settings we use
in our experimental scenarios (Section 5.1), and then we show the
results we obtain by applying our proposed algorithm to these sce-
narios (Section 5.2).

5.1 Setup
Given a rectangular geographic area of size 100 × 100, we con-
sider 2 applications, whereby Q1 = 0.5 sec and Q2 = 1.0 sec.
For all applications, we consider 3 classes of VM such that µ1,k =
µ2,k = [ 2 4 6 ], M1,k = M2,k = [ 0.001 0.002 0.003 ] req/sec, and
Bi,k =

[ 0.05 0.10 0.20
0.085 0.17 0.34
0.1445 0.289 0.578

]
. Each application serves a population

of 1000 users that moves inside the considered area according to
the random waypoint model [21], with a minimum and maximum
speed of 1 m/sec and 2 m/sec, respectively, and with a pause time
of 1 sec. Each user issues requests to the associated application at
a rate of 0.5 req/sec for the first application and of 1 req/sec for the
second application.

We assume that the electricity price E is charged hourly to EIP
and we set it to 0.0001 $/Wh. The edge infrastructure of EIP con-
sists of 9 ENs (initially, all powered off) wherebyWmax

i = 200, for
i = 1, . . . , 9, and: (i)Wmin

i = 100 W, Ai = 0.002 $ and Si = 0.001
$, for i = 1, . . . , 3; (ii)Wmin

i = 50 W, Ai = 0.001 $ and Si = 0.0005
$, for i = 4, . . . , 6; (iii) Wmin

i = 25 W, Ai = 0.0005 $ and Si =
0.00025 $, for i = 7, . . . , 9. The considered infrastructure is power-
ful enough to meet the QoS of all applications at their maximum
load intensity.

In our experiments we set the same revenue rate Rj and QoS
penalty rate Lj for all applications j, and we vary them as a func-
tion of E as follows: (i) Rj = 50E, Rj = 100E, and Rj = 500E, (ii)
Pj = 0, Pj = Rj , and Pj = 2Rj .

Finally, we set the discretization time interval to 1 hour, so as
the EIP aims at increasing its hourly profit.

To run our experiments, we develop an ad hoc discrete-event
systems simulator in C++wherewe use the independent replications
as output analysis techniques [11] (where each independent replica
is 24 hours long and where the whole simulation stops when the
relative precision of the 95% confidence interval is ≤ 4%) and we
use the IBM ILOG CPLEX solver 12.8 [19] for solving the optimiza-
tion problem discussed in Section 4.
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5.2 Results
The results attained by our proposed solution are compared with
MCAPP-IM, an alternative state-of-the-art approach proposed in
[10]. The authors of [10] extend the classical Hungarian algorithm
for solving the assignment problem and propose an approximation
algorithm for the efficient placement of multi-component appli-
cations in edge computing systems. Since the authors of [10] do
not specify if the servers where they place the application compo-
nents are physical servers (i.e., ENs) or virtual servers (i.e., VMs),
we implemented two variants of MCAPP-IM, one (called MCAPP-
IM (alt#1)) that assigns one application component to a different
EN, and another one (named MCAPP-IM (alt#2)), that assigns one
application component to a different VM, and for both variants we
select as class k VMs the ones that minimize the total EN resource
demands. UnlikeMCAPP-IM (alt#1), MCAPP-IM (alt#2) can exploit
server consolidation to allocate on the same ENs two or more VMs
running different application components. Thus, we expect that
the MCAPP-IM (alt#2) performs better than MCAPP-IM (alt#1) be-
cause it is able to achieve a greater consolidation level.

To compare the performance of the various algorithms, we use
the competitive ratio r defined as the ratio between the profit P ob-
tained by a specific (approximation) algorithm and the profit P∗ as
computed by the oracle algorithm (i.e., by solving the offline profit
maximization problem over all considered time interval), that is
r = P/P∗. The nearer to 1 is r , the closer is the solution of the
approximation algorithm to the optimal one. Thus, given two al-
ternative approximation algorithms, the best one is the one with
the greater value of r .

In Table 1, we report the results of the experimental simulations
grouped by the different combinations of ⟨Rj , Pj ⟩ considered in our
evaluation and described in Section 5.1. In this table, the rows cor-
respond to the results obtained by the various algorithms, and the
columns report the name of the algorithm (column “Algorithm”),
the profit obtained at the end of the simulation averaged over all
the independent replicas alongwith its standard deviation (column
“Mean Profit (s.d.)”), and the competitive ratio (column “r”).

As shown in Table 1, OPM is always able to achieve a competi-
tive ratio r ≥ 0.99, meaning that, for the evaluated scenarios, the
EIP obtains a profit which is at least 99% of the optimal one. Instead,
MCAPP-IM is not able to do so, for both of its variants. Specifi-
cally, since MCAPP-IM (alt#1) cannot exploit server consolidation,
the resulting VM allocation leads to higher energy consumption
costs because it requires more powered on ENs than the other ap-
proaches. Also, MCAPP-IM (alt#1) is often unable to allocate all the
VMs required to meet application QoS in face of the current work-
load, thus resulting in a lower revenue and in the payment of the
monetary penalties for QoS violation. The performance attained by
MCAPP-IM (alt#2) is better than the one achieved by MCAPP-IM
(alt#1) because it can exploit server consolidation and thus can con-
sume less energy and reduce QoS violations, but it is worse than
the one of OPM because, in general, the resulting VM allocation in
each time interval is not optimal for that interval as instead it is for
the one computed by OPM (e.g., when deciding where to allocate
the various VMs, MCAPP-IM (alt#2) does not take into account the
possible monetary penalties that EIP will incur for not allocating
all the required VMs for a given application).

Therefore, OPM always outperforms both algorithms because,
for any time interval, it is able to find the VM allocation that max-
imizes the profit for that interval, by taking into account several
factors like the current workload conditions, the current VM allo-
cation, the current power status of ENs, and the revenues and the
costs resulting from the VM allocation.

For the way the values of Rj and Pj affect the quality of the so-
lution achieved by OPM, we note from Table 1 that an increment
of Rj leads to a nearly large increment in the resulting profit (e.g.,
compare “Case ⟨Rj = 50E, Pj = 0⟩” with “Case ⟨Rj = 500E, Pj =
0⟩”, where the profit obtained in the former case is nearly half the
one achieved in the latter case). Instead, the effects of a change in
Pj have a little impact on the resulting profit (e.g., compare “Case
⟨Rj = 500E, Pj = 0⟩” with “Case ⟨Rj = 500E, Pj = 2Rj ⟩”, where the
profits achieved in both cases are nearly equal). This is due to the
way experimental scenarios have been set, whereby it is always
possible to find an optimal VM allocation that it is able to accom-
modate the resource demands of all the VMs required to meet ap-
plications QoS, and to the ability of OPM to find this optimal VM
allocation, thus enabling OPM to never violate any QoS.

Finally, we note that the execution time of OPM (on a server
equipped with 2 Intel Xeon E5-2665 CPUs and 96 GiB RAM, and
running Linux 4.15.14) is always < 17 seconds.

6 RELATEDWORKS
In the last years, edge computing has attracted lot of interest in the
scientific community.

In [3, 24], authors propose algorithms to share compute resources
among ENs in order to satisfy users’ compute demands. They de-
fine a utility metric that accounts for communication costs and re-
source sharing benefits, and design an algorithm to make resource
sharing decisions according to this metric. In [1, 20], authors pro-
pose task scheduling algorithms for cellular networks, where ENs
are located in the network cells to provide computing capabilities.
Unfortunately, the above works do not scale properly considering
that edge systems are expected to covermillions of IoT devices [22].
Conversely, OPM is able to manage a large number of components
by dynamically provisioning the right number of VMs to meet QoS
targets.

In [23, 30], authors propose a strategy to offload homogeneous
devices at low transmission and energy costs, while ensuring a
high utility and meeting the applications’ deadline. Unlike these
works, OPM is able to cope with heterogeneous devices.

Finally, in [10], the authorsmodel the problem of efficiently plac-
ing multi-component applications in edge computing systems as
an assignment problem and propose an extension of theHungarian
algorithm to reduce EIP costs by taking into account communica-
tion costs between application components. In contrast, as already
discussed in Section 5, OPM is able to exploit server consolidation
and resource heterogeneity to increase the EIP profit and by taking
into account QoS targets.

7 CONCLUSIONS
In this paper, we propose OPM, an approximation algorithm for
profit maximization that aims at increasing the profit of EIPs in
face of time-varyingworkload, by taking into account energy costs
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Table 1: Experimental results.

Algorithm Mean Profit (s.d.) r

Case ⟨Rj = 50E, P J = 0⟩

OPM 2.119 (0.113) 0.993
MCAPP-IM (alt#1) -0.903 (0.023) -0.421
MCAPP-IM (alt#2) 1.159 (0.058) 0.545

Case ⟨Rj = 50E, Pj = Rj ⟩

OPM 2.111 (0.110) 0.993
MCAPP-IM (alt#1) -1.000 (0.040) -0.471
MCAPP-IM (alt#2) 1.162 (0.057) 0.547

Case ⟨Rj = 50E, Pj = 2Rj ⟩

OPM 2.114 (0.108) 0.993
MCAPP-IM (alt#1) -1.107 (0.069) -0.519
MCAPP-IM (alt#2) 1.160 (0.056) 0.546

Case ⟨Rj = 100E, P J = 0⟩

OPM 5.039 (0.264) 0.997
MCAPP-IM (alt#1) 0.158 (0.022) 0.031
MCAPP-IM (alt#2) 2.359 (0.127) 0.470

Case ⟨Rj = 100E, Pj = Rj ⟩

OPM 5.033 (0.254) 0.997
MCAPP-IM (alt#1) -0.075 (0.055) -0.015
MCAPP-IM (alt#2) 2.364 (0.124) 0.469

Case ⟨Rj = 100E, Pj = 2Rj ⟩

OPM 5.013 (0.260) 0.997
MCAPP-IM (alt#1) -0.310 (0.109) -0.061
MCAPP-IM (alt#2) 2.364 (0.119) 0.469

Case ⟨Rj = 500E, P J = 0⟩

OPM 28.409 (1.513) 0.999
MCAPP-IM (alt#1) 8.516 (0.154) 0.300
MCAPP-IM (alt#2) 11.980 (0.665) 0.423

Case ⟨Rj = 500E, Pj = Rj ⟩

OPM 28.395 (1.453) 0.999
MCAPP-IM (alt#1) 7.472 (0.277) 0.263
MCAPP-IM (alt#2) 12.012 (0.659) 0.423

Case ⟨Rj = 500E, Pj = 2Rj ⟩

OPM 28.335 (1.414) 0.998
MCAPP-IM (alt#1) 6.292 (0.626) 0.221
MCAPP-IM (alt#2) 11.977 (0.636) 0.423

and applications’ QoS, and by exploiting server consolidation. Ex-
perimental results show that OPM is able to achieve a profit that
is very close to the optimum that can be earned, and it also outper-
forms alternative state-of-the-art solutions.

We plan to extend this works in several ways. First, we want to
assess the impact of the lookahead on the performance of OPM, by
enabling it to make workload predictions over multiple time inter-
vals. Also, we want to evaluate the way the prediction error affects
the achieved profit.Moreover, we intend to consider scenarioswith
limited resource capacity in each area that will require cross-area
allocation of VMs. Finally, we consider to implement and validate
OPM on a real testbed.
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