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Abstract—Interoperability between different cloud platforms
is a critical requirement for letting users to smoothly switch
between different cloud providers and combine their services.
However, the lack of standard interfaces to access these cloud
platforms may result in the vendor lock-in situation, whereby
users are locked into a specific cloud provider. In this paper,
we present EasyCloud, a toolkit able to effectively support the
creation and usage of Multi-cloud Systems (MSs) by providing
interoperability, platform independence, effective resource pro-
visioning, and ease of use. We describe its architecture and
implementation, and experimentally assess the performance of
EasyCloud, and compare it to existing alternative MS toolkits that
are representative of the state-of-the-art. Our results clearly show
that EasyCloud is highly scalable, quite efficient, and outperforms
the other alternative toolKkits.

Index Terms—Multi-clouds, Toolkit, Resource provisioning

I. INTRODUCTION

In the last few years, cloud computing [1] has become a
very popular and effective solution for enterprises to provide
their services in a “pay-per-use” basis. In particular, with the
Infrastructure-as-a-Service model, users can rent virtualized
resources to run their services inside virtual execution environ-
ments like Virtual Machine (VM) instances and containers. !

Cloud providers have developed their own platforms fea-
turing proprietary web, command-line, and programming in-
terfaces, by means of which customers can manage their
VMs and analyze the performance of their applications. Un-
fortunately, the lack of standard interfaces to access these
platforms makes it difficult for customers to easily switch
between different providers. This situation often leads to the so
called vendor lock-in [2]. To overcome these limitations, Multi-
cloud Systems (MS) [3], i.e. cloud infrastructures composed
of resources drawn from different cloud platforms, have been
recently proposed as a way to allow customers to combine
services or resources of different cloud platforms by means
of a unified interface. That way, customers can exploit the
advantages of different cloud providers (e.g., in terms of
service cost, quality of service, and performance [4]-[6])
without being locked into a single one.

To create an MS, a suitable toolkit, providing the necessary
“glue” among different cloud infrastructures and the appropri-
ate level of abstraction, is required. In particular, such a toolkit
should provide the following features: (1) interoperability (the
ability to support multiple cloud platforms, so as to avoid
vendor lock-in), (2) platform independence (the provision

1'Unless otherwise stated, we refer to VM instances and containers as VMs.

of a unified, platform-agnostic user interface that hides the
API heterogeneity of these platforms), (3) effective resource
provisioning (the ability of ensuring that the VMs delivering a
given cloud service will be sufficiently resourced in a timely
manner as load increases, so as to achieve desired levels
of performance, efficiency, and availability), and (4) ease of
use (the provision of suitable mechanisms enabling users to
interact with ease and effectiveness with the MS).

Various toolkits have been proposed in the literature to
allow smooth cloud interoperability and to harness multi-cloud
heterogeneous resources but, unfortunately, they provide only
a subset of the features mentioned above [3]. To fill this gap,
in this paper, we propose EasyCloud, an MS toolkit able to
effectively support the creation and usage of MSs by providing
all the features discussed above.

In particular, EasyCloud provides interoperability and
platform-independence by means of an extensible cloud inter-
facing subsystem. EasyCloud also provides effective resource
provisioning by coupling two separate mechanisms, namely:
VM metrics collection and dispatching (that collects in (near)
real-time user-defined metric data — e.g., CPU and memory
load — from VMs and dispatches them to multiple “sinks” for
storage as well as for further analysis and processing, thus
enabling users to analyze and understand how their applica-
tions and services are performing), and VM monitoring and
provisioning (that exploits collected metric data to monitor the
performance of VMs in real time and to trigger management
actions according to user-defined policies, e.g., to implement
load balancing and autoscaling). Finally, EasyCloud provides
ease of use by means of a unified API that frees users from
learning the different proprietary APIs exposed by the various
cloud platforms it supports, and of an interactive and intuitive
user interface that allows even inexperienced users to easily
manage their VMs.

EasyCloud is written in Python (thus ensuring portability
and fast development) and its source code is publicly available
[7] (thus fostering research and providing reproducibility).

In this paper, we describe a new and extended version
of EasyCloud, whose design and implementation have been
revised and greatly enhanced with respect to the version
presented in [8]. In particular, this paper provides the following
contributions:

o We present the architecture of the new version of Easy-
Cloud, whose design and implementation have been con-
siderably improved and extended compared with the prior
version presented in [8]. Specifically, we extended the



monitoring functionality of EasyCloud with the ability to
dispatch metric data gathered from VMs (e.g., memory
and CPU utilization) to multiple “sinks” for storage,
analysis and processing, so as users can understand how
their applications and services are performing. Also, for
performance reasons, we partially rewrote some com-
ponents of EasyCloud to replace the use of Apache
Libcloud [9] with direct calls to the native APIs provided
by the supported cloud platforms (e.g., to interact with
OpenStack we use directly the OpenStack SDK).

o We present an extensive experimental evaluation where
(1) we show the ability of EasyCloud to scale with
respect to the number of VMs to manage, (2) we assess
the impact of the monitoring functionality on its perfor-
mance, and (3) we compare its performance with the
one achieved by both the version of EasyCloud proposed
in [8], and by a representative set of state-of-the-art
alternatives.

II. RELATED WORK

Various MS toolkits, similar in spirit and purposes to
EasyCloud, have been proposed in the literature.

Apache JClouds [10] is an MS toolkit for the Java platform
that facilitates developing applications for a wide range of
cloud platforms. JClouds supports many cloud providers and
software stacks, including AWS, OpenStack and Google Cloud.
Despite its many features, JClouds does not provide any
effective resource provisioning mechanisms (e.g., it is not
possible to check the health of VMs), and provides ease of
use to a limited extent, as it requires Java programming skills.

Apache Libcloud [9] is an MS toolkit written in Python
that supports several popular cloud providers through a unified
API able to hide differences between the APIs of different
cloud providers. As JClouds, Libcloud does not provide any
effective resource provisioning mechanisms (e.g., monitoring
and gathering performance metrics), and provides ease of use
to a limited extent, as it requires Python programming skills.

Cloudmesh [11] is another MS toolkit able to provide access
to various cloud platforms, such as AWS, Azure, Google
Cloud and OpenStack. It has a variety of repositories that add
features to Cloudmesh based on needs by the user. Unlike
JClouds and Libcloud, Cloudmesh is easier to use, but like
them it does not provide any effective resource provisioning
mechanism.

Finally, Terraform [12] is an open source tool that allows to
define an infrastructure as code using a declarative language
and to deploy and manage that infrastructure across a vari-
ety of public cloud providers (e.g., AWS, GCP, MS Azure)
and private cloud (e.g. OpenStack) using a few commands.
Terraform provides only partially the effective resource pro-
visioning since, for instance, it has not a unique interface to
describe an auto-scaling policy for the various cloud platforms.
In particular, it provides a specific auto-scaling library for
each cloud platform supported; this means that the user has
to implement different code to apply the same auto-scaling
policy.
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Fig. 1: The architecture of EasyCloud.

With respect to the above works, EasyCloud is the only MS
toolkit that provides interoperability, platform independence,
effective resource provisioning, and easy of use, while the
other toolkits fail to provide one or more of them.

III. ARCHITECTURE

EasyCloud has been designed with the following key ob-
jectives in mind: interoperability (to avoid vendor lock-in),
platform-independence (to abstract the API heterogeneity of
the various cloud platforms), flexibility (to enable users to
exploit platform-specific features), effective resource provision-
ing (to enable users to monitor their VM instances in (near)
real-time and to trigger actions in response to specific events),
and ease of use (to enable ease and fast management of VM
instances).

The resulting system architecture is shown in Figure 1,
where solid boxes denote the components of EasyCloud (and
stacked boxes represent components that may be instantiated
multiple times), dashed shapes represent external components
(e.g., components of a cloud platform) outside of EasyCloud
with whom EasyCloud interacts with, and arrows denote inter-
actions between components (e.g., an arrow from component
C; to component C'; means that C; uses the functionality of
).

As shown in the figure, the components of EasyCloud are
grouped into three subsystems, namely VM Management, VM
Monitoring and Ul, that present a unified interface (indepen-
dent by any cloud platform) that allows users to transparently
interact with different cloud platforms at the same time,
without worrying about the high heterogeneity between the
APIs provided by the various cloud platforms. At the same
time, these subsystems give users full control to use, if needed,
platform-specific features (e.g., to access instance information
available only on a given cloud platform) by also presenting
a low-level interface specific to a particular cloud platform.



Currently, EasyCloud supports the following cloud plat-
forms: Amazon AWS, Chameleon Cloud [13], Google Cloud,
and OpenStack. Furthermore, thanks to its modular architec-
ture, it can be easily extended to support new cloud platforms
by just providing the concrete implementation of its interface
specific for those new platforms.

The design and implementation of the VM Management and
the VM Monitoring subsystems have been presented in detail in
[8]. In this section we thus focus on the new components that
have been added to the version of EasyCloud presented in [8],
namely (a) the Measure Sink component of the VM Monitoring
subsystem, and (b) the UI subsystem; due to space limits, we
instead omit new implementation features and optimizations.

A. The Measure Sink component

The Measure Sink component provides support for the
analysis of the metrics collected by the Monitor component
of the VM Monitoring subsystem. In particular, it receives a
collection of metrics from the Monitor and forwards them
to a “sink”, that is to a third-party component external to
EasyCloud (e.g., a database server, or a message broker), for
further processing or storage. Since there can be multiple
instances of the Measures Sink component at the same time
(e.g., one connected to a database server, and another one
connected to a message broker), these instances will receive
from the Monitor component the same collection of metrics.
Currently, EasyCloud supports the following sinks: Apache
ActiveMQ, Apache Cassandra, Apache Kafka, CSV files, Mon-
goDB, Prometheus, RabbitMQ, and Redis. Furthermore, thanks
to its modular architecture, it can be easily extended to support
new sinks by just adding new Measures Sink components
specific for such sinks.

B. The UI subsystem

The UI subsystem provides an APl and a Text-based
User Interface (TUI), built on top of the API, to access
the functionality provided by the VM Management and VM
Monitoring subsystems. Specifically, at the lowest level, it
exposes an object-oriented API in Python that allows de-
velopers to use EasyCloud as a framework to interact with
the services of different cloud providers in a programmatic
and platform-agnostic way. This API provides a high-level
(platform-independent) interface, to transparently interact with
the various cloud platforms without caring of the heterogeneity
of the API provided by such platforms. Furthermore, to
achieve flexibility, the API also provides a low-level (platform-
dependent) interface to fully exploit platform-specific features
(i.e., to access platform-specific information about a given VM
instance that is not provided by the higher-level interface).
Moreover, on top of the platform-independent API, the Ul
subsystem provides a user-friendly TUI through which users
can use EasyCloud interactively, via a text-based interface.

IV. EXPERIMENTAL EVALUATION

In order to assess the scalability and performance of Easy-
Cloud, we perform an experimental evaluation in which (1)

we evaluate the ability of EasyCloud to scale with respect to
the number of managed instances, (2) we assess the overhead
caused by monitoring, and (3) we compare its performance
against that attained by alternative state-of-the-art MS toolkits.

Our results clearly indicate that EasyCloud is able (1) to
perform the above operations very quickly, (2) to scale very
well with respect to the number of managed VMs, even when
monitoring is activated (although, as shown below, it adds
some overhead), and (3) to outperform the state-of-the-art
alternatives considered in our experiments.

In the rest of this section, after describing the experimental
settings (Section IV-A), we discuss the results concerning the
scalability of EasyCloud (Section IV-B), and the performance
comparison against state-of-the-art MS toolkits (Section IV-C).

A. Experimental settings

Our experiments feature a set M of VM instances, hosted
on a given public cloud infrastructure, that are managed either
by using EasyCloud (in the scalability experiments) or one
of the alternative MS toolkits (in the performance comparison
experiments).

In each experiment, we measure the CPU time (both in
kernel space and in user space) taken by the MS toolkit under
consideration to both retrieve the detailed information of the
M VM instances and to start just N < M of them. Note that,
by considering the CPU time instead of the wall-clock time,
we are sure that our results are not influenced by other external
and non-controllable factors, like the scheduling policy of
the operating system running on the same host where the
MS toolkit components are run, unpredictable network load
conditions, and API rate limiting policies specific to a given
cloud provider (e.g., [14]).

We use as performance index the average CPU time that we
compute by averaging the CPU time obtained in the various
runs of an experiment, until the relative error of its 95%
confidence interval is of at most 4% [15]. Therefore, the
number of runs of a single experiment is computed online,
and may change from one experiment to another.

Our experiments are performed by using a physical testbed
composed of:

o a front-end system, consisting of two Fujitsu Server
PRIMERGY RX300 S7 (equipped with two 2.4 GHz
Intel Xeon E5-2665 processors with 8 cores and 96 GiB
of RAM, and running the Linux kernel version 5.9.13)
located in Italy, running both the components of each MS
toolkit and the server-side components of the EasyCloud’s
measures sinks (see later);

o a back-end system, consisting in a public cloud infras-
tructure hosting the set of M VMs that was managed
either with EasyCloud, or with one of the alternative MS
toolkits considered for comparison purposes.

To understand whether and how much the specific back-
end cloud infrastructure impacts on the performance attained
by EasyCloud, in the experiments we consider three different
public cloud infrastructures, that is AWS EC2 (region “us-east-
2”, located in Virginia, USA, and instance type “t2.micro”),



Chameleon Cloud (site “KVM@TACC”, located in Texas,
USA, and instance flavor “ml.tiny”) and Google Compute
Engine (hereafter, GCE; regions “us-centrall” and “us-west1”,
located in Towa and Oregon, USA, respectively, and machine
type “e2-medium”), where we hosted M = 45 Linux in-
stances. 2

B. Scalability of EasyCloud

As anticipated, to asses the scalability of EasyCloud we run
a set of experiment in which we progressively increase the
number N of VM instances started on the back-end, until the
maximum value M is reached, and we measure the average
CPU time taken by this operation.

Specifically, we first assess the scalability of EasyCloud
with the monitoring functionality disabled (see Section IV-B1).
Then, we repeat the same experiments by enabling the moni-
toring functionality of EasyCloud, and by activating different
number and type of measures sinks (see Section IV-B2).

1) Scalability of EasyCloud without monitoring: In Fig-
ure 2, we present the results of the experiments with the
monitoring functionality disabled, both for AWS EC2 (see
Figure 2a), Chameleon Cloud (see Figure 2b) and GCE
(Figure 2c) cloud platforms. In these figures, each filled
point represents the average CPU time (in seconds) taken by
EasyCloud to perform the operations in each run for a given
number of instances N (with N ranging from 5 to 45), and
the associated error bar denotes its 95% confidence interval.

Also, for comparison purposes, we show the performance
of both the current version of EasyCloud (simply labeled as
“EasyCloud”) and its previous version [8] (labeled as “Easy-
Cloud (old)”), where we use Apache Libcloud [9] (version
3.2.0) as the abstraction layer to interact with different cloud
infrastructures.

These figures show that both versions of EasyCloud are
able to scale well with respect to the number of instances to
manage, as the average CPU time just grows linearly as a
function of the number of managed instances. In particular,
while for AWS EC2 both versions of EasyCloud do not show
any relevant performance difference, for Chameleon Cloud the
current version significantly outperforms the older one, thanks
to directly using the native APIs of the cloud infrastructure
that avoids the overhead due to the additional abstraction layer
provided by Apache Libcloud.

2) Scalability of EasyCloud with monitoring: To investigate
the impact of the monitoring functionality on the scalability of
EasyCloud, we repeat the above experiments with the moni-
toring functionality enabled and by activating an increasing
number of measures sinks. In particular, we incrementally
activate the following sinks: “file” (that writes data to CSV
files), “activemq” (that sends data to an Apache ActiveMQ
server), “kafka” (that sends data to an Apache Kafka server),
“mongodb” (that stores data into a MongoDB server), and
“redis” (that sends data to a Redis server). Therefore, we carry

2For GCE, due to its default per-region quota limits, we placed the first
24 instances in region “us-centrall” and the remaining 21 instances in region
“us-west1”.

out a set of experiments first with only the “file” sink enabled;
then, we repeat the same experiments with both “activemq”
and “file” enabled; and so on, until the case with all sinks
enabled.

To avoid cluttering, here we show only the results related to
the Chameleon Cloud infrastructure. The results obtained for
the other cloud infrastructures, however, do not significantly
differ as they show very similar patterns.

The results of such experiments are shown in Figure 3,
where each point denotes the average CPU time (in seconds)
taken by EasyCloud to manage a given number of instances
N (with N ranging from 5 to 45), the associated error bar
denotes its 95% confidence interval, and each line labeled
as “EasyCloud with monitoring (sinks: X, Y, ...)” represents
the scenario where the monitoring functionality is enabled
and only the sinks “X”, “Y” and so on are active. The
figure reports also the results for two other cases, namely
“EasyCloud with monitoring (sinks: none)” and “EasyCloud,”
where the former denotes the case where we carry out the
above experiments with the monitoring functionality enabled
(included the interaction with the telemetry services of the
cloud platform) but without any sink activated (so as to assess
the impact on the performance of the monitoring framework,
regardless the type and the number of sinks activated), while
the latter (which is the same one showed in Figure 2b) denotes
the case with the monitoring functionality disabled and is used
as a baseline for comparison purpose.

From the figure, we note that, with respect to the baseline
case, the monitoring functionality adds some overhead. For
instance, in the case “EasyCloud with monitoring (sinks:
none)”, the average CPU time increases by 50% on average,
with a maximum of 81.6% at 45 instances. This is mainly
due to the fact that the monitoring framework spends some
CPU time to periodically gather metric data from the managed
instances.

However, we also note that, even with the monitoring
functionality enabled and regardless the number and the type
of sinks activated, EasyCloud is able to scale well at least
until 40 instances. Conversely, starting from 45 instances, the
CPU time shows a steeper growth. This can be ascribed to the
way the Python interpreter handles multi-threaded execution
(more specifically, the so-called Global Interpreter Lock [16],
a mechanism that assures that only one thread executes Python
bytecode at a time) that may prevent programs to take fully
advantage of running in multiprocessor systems [17].

Finally, we note that among the number and the type of
sinks activated, the factor that has a stronger negative impact
on CPU time is the latter, as the interaction protocol of
a particular sink with its server-side components (e.g., the
interaction of the “kafka” sink with the Apache Kafka server)
may be quite complex. For instance, the figure shows that the
impact of activating “kafka” or “mongodb” on the CPU time
is larger than the one of “redis”.
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C. Comparison agains state-of-the-art alternative MS toolkits

To compare the performance of EasyCloud with the state of
the art, we repeat the above experiments by using the following
MS toolkits to manage the VMs running on the back-end
system: Cloudmesh [11] (ver. 4), Apache Libcloud [9] (ver.
3.2.0), and Apache Jclouds [10] (ver. 2.2.1) . For completeness,
we also use the native APIs provided by the various cloud
infrastructure through their Python clients, namely AWS SDK
for Python for AWS (ver. 1.16), Google API Client for
Python for Google Cloud (ver. 1.12.8), and OpenStack SDK
for Chameleon Cloud (ver. 0.52), that are used internally by
EasyCloud and hence can be employed as a baseline.

In Figure 4, we show the results of such experiments, both
for AWS EC2 (see Figure 4a), Chameleon Cloud (see Fig-
ure 4b) and GCE (Figure 4c), where each filled bar represents
the CPU time (in seconds and in log scale) spent by a specific
library to manage a given number of instances N (with N
ranging from 5 to 45) and the associated error bar denotes its
95% confidence interval.

These results show that, except for the native APIs (which
clearly provide the best performance), EasyCloud and Lib-
cloud always take the lowest CPU time. In particular, they
outperform the alternative MS toolkits (namely, CloudMesh
and Apache JClouds) we consider for the comparison.

In particular, with respect to the native APIs, EasyCloud
adds a little overhead (especially with respect to AWS SDK,
as shown in Figure 4a) due to the abstraction layer built on top
of them so as to provide a unified interface. Also, with respect
to Libcloud, EasyCloud shows similar (see results for AWS
EC2) or better performance. Finally, with respect to the other
competitors, EasyCloud always shows better performance.
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V. CONCLUSION

In this paper, we presented EasyCloud, a toolkit able to
effectively support the creation and usage of MSs by provid-
ing interoperability, platform independence, effective resource
provisioning, and ease of use.

We have experimentally assessed the performance of Easy-
Cloud, and compared it to existing alternative MSs toolkits that
are representative of the state-of-the-art. Our results clearly
show that EasyCloud is highly scalable (even with monitoring
enabled), quite efficient (it adds little overhead to the native
APIs of cloud platforms when monitoring is not used), and
outperforms the other alternative toolkits (with the exception
of Libcloud, that in some cases delivers similar performance).

As future work, we plan to reduce the overhead added
by the abstraction layer of EasyCloud; in particular, the
significant overhead for the AWS platform that we noted
in the experimental evaluation leaves room for improvement.
Moreover, we want to extend EasyCloud to support additional
cloud platforms, like Microsoft Azure and Kurbernetes, and
more measures sinks, like Fluentd [18] and intelligent fault-
detection systems [19], [20]. Finally, we plan to integrate
EasyCloud with our prior works concerning the management
[51, [21], [22] and experimentation [23] of cloud/edge infras-
tructures.
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