
An educational toolkit for teaching cloud computing
Cosimo Anglano

University of Piemonte Orientale
Italy

cosimo.anglano@uniupo.it

Massimo Canonico
University of Piemonte Orientale

Italy
massimo.canonico@uniupo.it

Marco Guazzone
University of Piemonte Orientale

Italy
marco.guazzone@uniupo.it

ABSTRACT
In an educational context, experimenting with a real cloud
computing platform is very important to let students un-
derstand the core concepts, methodologies and technologies
of cloud computing. However, API heterogeneity of cloud
providers complicates the experimentation by forcing stu-
dents to focus on the use of different APIs, and by hinder-
ing the jointly use of different platforms. In this paper, we
present EasyCloud, a toolkit enabling the easy and effective
use of different cloud platforms. In particular, we describe
its features, architecture, scalability, and use in our cloud
computing courses, as well as the pedagogical insights we
learnt over the years.

CCS CONCEPTS
• Applied computing → Education.

KEYWORDS
Cloud computing, Educational resources,Multi-cloud, Toolkit

1 INTRODUCTION
Cloud computing [27] has become an essential technology
in practically every application domain where computing
activities need to be carried out. Teaching cloud computing
has consequently become mandatory nowadays not only
in Computer Science and Computer Engineering curricula
[1, 2] (that focus on how cloud computing technologies may
be used to build platforms and applications), but also in other
curricula where cloud computing technologies provide the
necessary substrate for carrying out various type of compu-
tational tasks (e.g., chemistry, biology, bioinformatics, etc.).
In response to this need, suitable training courses [9, 20,

29] have been devised in order to properly take into account
both the background of students (i.e., no/basic/intermedi-
ate/advanced computer science skills) and the specific train-
ing requirements of the course (e.g., focus on core technolo-
gy/application development/platform usage/etc.) as dictated
by the specific discipline under study.
Practical experimentation with a real cloud computing

platform is a must in these courses to enable students to
master both the core concepts, technologies, applications,
and usage of cloud computing. This, in turn, requires the pos-
sibility of configuring, deploying, and using such a platform.

The high capital and operational expenses needed to acquire
and maintain a cloud computing infrastructure pushes edu-
cational institutions towards the use of the public computing
platforms available today on the market (e.g., Amazon Web
Services (AWS),Google Cloud Platform (GCP),Microsoft Azure,
and IBM Cloud).
Usually, the services provided by these platforms are ac-

cessed by using the corresponding interfaces (which are
either web-based or APIs). However, these interfaces differ
from one cloud platform to another, so choosing one of them
unavoidably yields to a form of lock-in [32], where students
have to learn the specific interface of the selected platform
and use it for their practical activities (so, most likely, they
will be able to perform those activities only with the chosen
platform), and instructors will not be able to reuse existing
exercises developed for a different platform.
Furthermore, besides the lock-in, the above differences

makes it very hard to assemble computing infrastructures
that draw resources from different cloud platforms, a solution
that could be appropriate when the resources accessible from
individual providers are not enough for the specific teaching
needs (e.g., when the number of students exceeds those that
can be accommodated with resources taken from a single
provider) or when there is the need to use resources provided
by different cloud platforms at the same time (such as using
accelerator-optimized resources, including TPUs and GPUs,
not available or too expensive on a specific cloud platform).
To address the above issues, it is necessary to provide

cloud toolkits that enable:
(1) uniform access to the various cloud platforms regard-

less of the differences in their access and usage primi-
tives;

(2) simultaneous use of resources drawn from different
cloud platforms;

(3) both simplified use of the above resources (for students
that have limited computer science skill), and advanced
use through a unified interface to interact with the
various cloud platforms (for more skilled students);

(4) efficient use of both individual and composite cloud
platforms, enabling to practice with large scale sys-
tem and/or application configurations, so that realistic
activities can be carried out.

To provide an answer to the above needs, we have de-
veloped, tested, and used in the classroom EasyCloud [8], a

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



toolkit providing functionalities to simultaneously interact
with different cloud platforms in a simplified but efficient,
effective, and platform-agnostic way thanks to its unified
API, easy user interface and its internal automatic dynamic
management mechanisms.

From the perspective of students, EasyCloud exposes:

• the typical mechanisms to access the services provided
by typical cloud platforms (such as, start and stop vir-
tual machines, manage network and storage, etc.), so
that students can experiment with the basic concepts
pertaining to cloud computing;

• a set of dynamic management functionalities (i.e. a
monitoring system that collects statistics about the
performance and the health of the infrastructure, and
a rule system that uses the above statistics to undertake
optimization or corrective actions) that enables them
to concretely apply the methodologies for the correct
dimensioning and configuration of cloud computing
infrastructures to effectively run applications on them.

From the perspective of instructors, the dynamic manage-
ment functionalities of EasyCloud provide instead suitable
mechanisms to ensure the business continuity, or the fulfill-
ment of desired levels of performance and/or availability of
the cloud infrastructure assembled and configured for the
experimentation needs of the classroom.
Compared to existing alternatives (e.g.,[12, 22, 33, 35],

EasyCloud is the only toolkit able to provide both basic
management functionality and advanced functionality for
monitoring Virtual Machines (VMs) and analyzing their per-
formance (such as, preventing failures and automatically
scaling in and out the computational resources provided).

EasyCloud is written in Python to ensure portability and
fast development, and is released as open source [11] to foster
research and provide reproducibility of results.
In this paper, after providing details on the capabilities

of EasyCloud (Section 2), we show how we use it in our
cloud computing courses as well as the various pedagogical
insights we learnt over the years (Section 3), and we present
an analysis of the degree of satisfaction of our students in
using EasyCloud (Section 4). We then highlight how we
designed EasyCloud (Section 5) and present how this design
makes it scalable to large classrooms (Section 6). Finally, in
Section 7, we conclude the paper and propose some future
works.

2 MAIN CHARACTERISTICS
This section gives on overview of the main andmost valuable
characteristics of EasyCloud in terms of multi-cloud support,
VM, storage and IP address management, monitoring and
policy services.

2.1 Multi-cloud support
The main characteristic of EasyCloud is multi-cloud support,
i.e. its ability to interface, at the same time, with multiple
different cloud platforms. At the moment of this writing,
EasyCloud supports OpenStack, Amazon Web Services (AWS),
Google Cloud Platform (GCP), and Chameleon Cloud [23].
As discussed in [8], support to other platforms may be eas-
ily added thanks to the modularity of its architecture (see
Section 5).

To interface with a given cloud platform, the user has to fill
a configuration file specific for that platform, whose template
– where most parameters required to access that platform
through its specific API are set with suitable default values –
is provided by EasyCloud. The bare minimum required to the
user is to fill the configuration file with his/her credentials
for the specific cloud platform. For example, for the AWS plat-
forms, the only mandatory fields to set in the corresponding
configuration file are ec2_access_key_id (corresponding to
the user account on AWS) and ec2_secret_access_key (corre-
sponding to the user access key on AWS). However, other op-
tional fields are provided by configuration files, allowing the
user to exploit more advanced features of the specific cloud
platform. For example, by setting the ec2_default_region pa-
rameter in the AWS configuration file, it is possible to fix a
specific region where the VMs will be launched; also, by set-
ting parameter freetier_only to true, only the VMs included
in the free tier will be used. 1

2.2 Virtual machine management
EasyCloud allows to easily start/stop/reboot a VM. For exam-
ple, if a user wants to start a VM on a given cloud platform,
EasyCloud automatically retrieves – for the chosen platform
– the list of available images and of the corresponding pa-
rameters, namely the flavors (i.e., the compute, memory and
storage capacity of the VMs), the security groups (i.e., a col-
lection of network access rules that are used to limit the
types of traffic that have access to VMs) and the key pairs
(i.e., the public keys to be used for accessing to created VMs).
From these lists, the user has just to select the options which
are best for his/her purposes, and the number 𝑛 of VM to
start, and EasyCloud will automatically start 𝑛 VMs with the
characteristics desired.

2.3 IP address management
One of the key aspects of any cloud platform is IP address
management. As a matter of fact, any running VM has to be
associated with an IP address, otherwise it (and thus the ser-
vice it provides) would be unreachable. Each cloud platform
has a different API for IP address management. EasyCloud
1A free tier is a plan that enables to access some of the services provided by
a cloud platform without being charged if used within specific usage limits.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



hides the differences among them by providing users with
just three options: (i) show the list of the available IP ad-
dresses, (ii) assign an IP address to a specific VM and, finally,
(iii) detach the IP address associated to a specific VM when
it is no longer necessary.

2.4 Storage management
Every cloud platform provides permanent storage abstrac-
tions named volumes, whereby each volume is a detachable
block storage device, conceptually similar to an external hard
drive that can be created/deleted and attached to/detached
from a VM. Each cloud platform provides its own volume
API, that typically is quite different from the API of other
platforms. EasyCloud hides these differences by providing a
storage management interface that is independent from the
various cloud platforms.

2.5 Resource monitoring
As for the other services discussed above, each cloud plat-
form provides its own specific resource monitoring services,
e.g. AWS provides CloudWatch, while OpenStack provides
Ceilometer. To hide differences in the way monitoring ser-
vices are accessible through the various cloud APIs, Easy-
Cloud provides a uniform interface to them, allowing users
to activate/deactivate monitoring on the various platforms
(s)he is using. EasyCloud provides also Measures Sink com-
ponents, which collect the metric data from the monitoring
services and dispatch them to data sinks (more details on
these components will be provided in Section 5). Metric
data collected in this way can be used for various purposes,
including the computation of usage statistics and the activa-
tion of specific resource management policies (see below).
Currently, EasyCloud provides connectors for the following
measures sinks: CSV files, Apache ActiveMQ [31], Apache Cas-
sandra [18], Apache Kafka [24], MongoDB [14], Prometheus
[15], RabbitMQ [34], and Redis [17].

2.6 Resource management policies
EasyCloud allows users to define dynamic and automatic
resource management policies that are triggered by the data
collected by the monitoring services. In particular, various
policies – that can be used for purposes like energy aware-
ness, resource upscaling/downscaling, and fault tolerance –
may be easily created with EasyCloud by using its Rule En-
gine (see Sec. 5.2). For example, EasyCloud allows to define
policies like “automatically switch off a VM if its CPU usage
is lower than 10% (the threshold)”.

3 EASYCLOUD IN THE CLASSROOM
In this section, we explain how we use EasyCloud with our
students. In particular, we discuss the exercises (Sec. 3.1) we

propose to the students and some of the lessons we learnt
(Sec. 3.2) over the last 7 years using our tool.

3.1 Exercises proposed
In our student’s lab, the students are free to use one single
PC for person or to group themselves in teams of two peo-
ple. The workload provided by the exercises we proposes
can easy fit both scenarios. Students not able to attend in
presence the lessons can find all educational materials (that
is, slides, video-lessons, tutorials and exercises) by visiting
the Teaching Cloud Computing [16] website. This a public
website where we add and update all our materials. Besides
this public website, the course has a specific/private website
(built over the Moodle [19] learning platform) with access
limited to students of our university where they can interact
directly with the lecturers and other students by exploiting
the chat and forum resources. The first two lessons are based
on the theory of cloud computing (i.e., definition, service
models and deployment modes) then a lesson is dedicated
to create the SSH key pairs and the credentials for all the
cloud platforms used during the course: Google Cloud Plat-
form, Amazon Web Services and OpenStack. Starting from
the fourth lesson, the students can easily play with all the
three cloud platforms by exploiting the EasyCloud toolkit.
In particular, the exercises proposed to the students are:

• Start a webserver: in this exercise the students have
to create a Virtual Machine (VM) inside one of the
cloud platform by using EasyCloud and to install a
Linux Apache MySql PHP (LAMP) stack in order to
run a webserver and a Content Management System
(CMS) (in our lessons we propose both Joomla and
WordPress as CMS).

• Play with volume: any cloud platform provides a
storage service to save data from a running VM and
to share the data with other VMs. In particular, in
this exercise, we propose to the students to create a
volume, attach it to a VM, modify it and then attach the
volume modified to another VM. In this way, the data
generated by the first VM can be used by the second
one.

• Load balancing: in this exercise the student has to
use EasyCloud to create at least 3 VMs running a web-
server (they can use the same VM from the first exer-
cise) and implement a load balancer able to split the
workload among the various server. The student can
increase/decrease the workload by using a work gen-
erator tool (we suggest the stress app [26]) and also
switch-off/switch-on VMs during the exercise in order
to check if the load balancer is working properly.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



• Performance comparison: thanks to EasyCloud, the
students can easily reproduce the same exercises men-
tioned before on different cloud platforms. For instance,
we ask to the students to start several Web Servers on
different cloud platforms, and compute how long each
platform takes to start all servers. The best platform is
the one able to provide all web server up and running
in the shortest possible amount of time.

Once the students have confidence with EasyCloud and the
cloud platforms, we propose them to create new exercises
and provide step-by-step tutorials to carry out the exercises.
The best tutorials are published in the “Tutorial” session of
the Teaching Cloud Computing website.

3.2 Lessons learnt
In this section, we describe some of the lessons we learnt over
the last 7 years of teaching cloud computing by exploiting
our toolkit.

• Interactingwith a cloudplatformdirectly through
its API and/or its command-line interface may
be challenging: besides the web console provided by
any cloud platform, when a student needs to interact
with the VM to configure advanced settings or to in-
stall a specific software, it is necessary to access it by
the SSH protocol. This generated several problems for
our students, since most of them had very minimal
experience with command-line interfaces, terminal
consoles (like Xterm) and text editors for the terminal
(like Vim or GNU nano). EasyCloud enabled students
to overcome these difficulties by providing them with
the possibility of performing the same task using both
the simplified text-based interface and its API, and
by requesting them to carry out exercises using first
the text-based interface, then the API, and finally to
compare the results.

• Cloud unpredictability poses unnecessary chal-
lenges: one of the informal definitions of cloud com-
puting says “Cloud computing simply increases the
number of things that can go wrong. And go wrong
they do.” [21] and from our experience this is true. The
same exercise running on the same platform can fail
for one student and can succeed for another student.
We use public cloud computing and one of the various
components of the cloud platform can have a tempo-
rary problem that can affect the whole exercise. As a
matter of fact, sometimes it is just a matter of time.
The cloud console could show that a service is "up and
running" but it is actually still booting. For example,
concerning the exercise related to the load balancer
previously mentioned, we note that the students have

to wait at least 2 minutes after the load balancer pro-
cess is shown as "running". From our experience we
note that if they start to use the load balancer immedi-
ately after it is shown as "running", the cloud console
starts to generate some generic error message difficult
to diagnose even if nothing is wrongwith their configu-
rations. EasyCloud hides, to a reasonable extent, some
sources of unpredictability, such as the need to wait
until services complete their startup, thus simplifying
the tasks of the instructor and of the students.

4 STUDENT EXPERIENCE EVALUATION
In this section, we present the results of a study we carried
out among our students to evaluate their degree of satisfac-
tion in using EasyCloud.
We have been teaching distributed computing systems

since 2000 and in the last ten years we have introduced
cloud computing as one of the main topics of our courses.
Initially, our courses were tailored only to graduate students
with either a computer science or a computer engineering
background. 2 Subsequently, given the widespread use of
cloud computing not only in the computing-related fields but
also in many other scientific fields, we then started to teach
distributed computing system courses also to non-computer
science students like biologists, economists, and chemists,
just to name a few. Currently, we teach distributed computing
systems to plenty of students with different backgrounds
(e.g., computer science, biology, economy and chemistry, just
to mention a few) and different levels of education (ranging
from undergraduates to PhD students), by covering cloud
computing and related topics at different levels of detail [9].
Every course we teach includes a series of hands-on ses-

sions (similar to the one described in Section 3) where stu-
dents interact with different cloud platforms (either via a
textual interface or through an API) by using both EasyCloud
and also the native interfaces provided by each cloud plat-
form. As also confirmed by the feedback from our students
(see below), for all classes, EasyCloud has been a valid tool
to simplify the first approach to cloud computing platforms
for any kind of student. For most of the non-computer sci-
ence students, EasyCloud is just enough to provide them
the features necessary to run their applications in to the
cloud, while, for computer science students, EasyCloud is
good to quickly test applications since it provides an easy
and convenient interface to start experiments by exploiting
concurrently various cloud platforms.

To evaluate the effectiveness and usefulness of EasyCloud
from an educational point of view, at the end of a course
we ask our students to provide us a feedback about their

2Unless otherwise stated, in the rest of this paper, we use the terms “com-
puter science” and “computer engineering” interchangeably.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



experience with both EasyCloud and the native interfaces
of cloud platforms they used during the hands-on sessions.
Specifically, our survey consists of the following four close-
ended questions posed as statements:

• Q1: “The EasyCloud textual interface simplified the
management of VM instances in a multi-cloud environ-
ment with respect to using the native textual interfaces
of the various cloud platforms.”

• Q2: “The EasyCloud textual interface is useful to man-
age VMs in a multi-cloud environment also outside
the context of this course.”

• Q3: “The EasyCloud API simplified the development of
applications in amulti-cloud environment with respect
to using the native APIs provided by the various cloud
platforms."

• Q4: “The EasyCloud API is useful to develop applica-
tions in a multi-cloud environment also outside the
context of this course.”

Each question uses a 5-point Likert scale [25], where stu-
dents must answer by choosing one of the following options:
“Strongly disagree”, “Disagree”, “Neutral” (i.e., neither agree
nor disagree), “Agree”, and “Strongly agree.” The same survey
also includes an optional open-ended question where stu-
dents can put free comments to complement their answers
to the above four questions.
In the rest of this section, we present the results of the

above survey we conducted for three different distributed
computing systems courses we taught in the 2019/2020 aca-
demic year, hereafter denoted as CS basic, CS advanced and
non-CS, targeted to computer science undergraduates, com-
puter science graduate students, and non-computer science
graduate students, respectively. All students who enrolled
for the three courses completed the survey. Specifically, 81
students enrolled for CS basic, 26 students enrolled for CS
advanced, and 63 students enrolled for non-CS.

Figure 1 shows the results of our survey as four diverging
stacked bar charts [30], one for each close-ended question.
Each chart has three horizontal bars (one for each course),
and for each bar the percentages of students who agree with
the associated question are shown to the right of the zero line
(in variations of blue), while the percentages who disagree
are shown to the left (and colored in variations of red); also,
the percentages of students who neither agree nor disagree
are split down the middle and are shown in grey color.
According to the answers provided to question “Q1”, all

students agree that the textual interface of EasyCloud simpli-
fied the management of VMs hosted by multiple cloud plat-
forms with respect to the various textual interfaces specific
to each cloud platform. Also, the percentage of students that
strongly agree decreases with the increase of the computer
science skills of our students; this is somewhat expected,

Percent

R
o
w

 C
o
u
n
t 
T
o
ta

lsNon−CS

CS basic

CS advanced

63

81

26

Q1

63

81

26

Q2

Non−CS

CS basic

CS advanced

0 20 40 60 80 100

63

81

26

Q3

0 20 40 60 80 100

63

81

26

Q4

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 1: Results of the survey related to the CS ad-
vanced, CS basic and non-CS courses offered for the
2019/2020 academic year. There is a separate diverging
stacked bar chart for each close-ended question of the
survey (i.e., “Q1”, “Q2”, “Q3”, “Q4”) and, for each chart,
there is a separate horizontal bar for each course (i.e.,
CS advanced, CS basic and non-CS). Each bar of a di-
verging stacked bar chart shows the degree of agree-
ment to the right of the zero line, the degree of dis-
agreement to the left, and the neutral opinion (i.e., nei-
ther agree nor disagree) in the middle.

considering the greater experience of computer science stu-
dents in using several commands during their daily practical
activity.
Similarly, the answers to question “Q2” show that the

majority of students would like to use the textual interface
of EasyCloud (rather than the native one provided by each
cloud platforms) also in practical activities outside our course.
However, we also note that some students (i.e., 15.39% of CS
advanced and 11.11% of CS basic) are indifferent or think that
they will not use the textual interface of EasyCloud in their
future projects. By analyzing the comments provided in the
open-ended question, we found that most of such students
suggested that EasyCloud should provide a command-line
interface or a RESTful API for using EasyCloud in a shell
script. Also, some non-CS students stated that they would
like to use EasyCloud from a Web browser rather than from
the console.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



Concerning question “Q3”, essentially all students agree
that the unified API of EasyCloud simplified the development
of applications in a multi-cloud environment rather than
using native APIs of cloud platforms; only 3.85% students of
CS advanced are uncertain about that.
Finally, for question “Q4”, the majority of students think

that EasyCloud simplifies the development of applications
in multi-cloud environments even outside the context of the
course they attended. However, we also note some degree
of dissatisfaction. Specifically, 6.35% of students of non-CS
neither agree nor disagree with the statement of question
“Q4”, 9.87% of students ofCS basic either disagree or is neutral,
and 11.54% of students of CS advanced either disagree or is
neutral. The analysis of the comments in the open-ended
question revealed that most of such students (in particular,
those with a computer science background) believe that a
lower-level API could be sometimes useful to exploit features
specific to a particular cloud platform.
Overall, we conclude that there is a high degree of sat-

isfaction in using EasyCloud (both by means of its textual
interface and through its API) among our students, especially
to carry out the assignments of our hands-on sessions. Also,
students that are less satisfied essentially gave us positive
feedback by suggesting adding to EasyCloud new features to
improve its usability (e.g., a command-line interface to use
inside shell scripts) and its flexibility (e.g., a low-level API to
access features specific to a particular cloud platform). In par-
ticular, as discussed in Section 5.3, we already extended the
EasyCloud API with a lower-level platform-dependent API
to enable students to exploit features specific to each cloud
platform that are not exposed by the higher-level platform-
independent API.

5 ARCHITECTURE
The key design goals of EasyCloud are: interoperability (to
avoid the vendor lock-in issue), platform-independence (to ab-
stract away from the API heterogeneity of the different cloud
platforms), flexibility (to exploit platform-specific features),
effective resource provisioning (to monitor VM instances in
(near) real-time and to trigger actions in response to specific
events), and ease of use (to manage VM instances easily and
fastly).
Figure 2 presents the system architecture of EasyCloud

resulting from the above design goals, where solid boxes
denote the components of EasyCloud (and stacked boxes rep-
resent components that can be instantiated multiple times),
dashed shapes represent components external to EasyCloud
(e.g., components of a cloud platform) with whom EasyCloud
interacts with, and arrows denote interactions between com-
ponents (e.g., an arrow from component𝐶𝑖 to component𝐶 𝑗

means that 𝐶𝑖 uses the functionality of 𝐶 𝑗 ).

Figure 2: The architecture of EasyCloud.

As shown in the figure, the components of EasyCloud are
grouped into three main subsystems, namely VM Manage-
ment, VM Monitoring and UI. These subsystems provide a
unified interface (independent by any cloud platform) that
enables users to transparently interact with different cloud
platforms simultaneously, without caring about the hetero-
geneity of the APIs provided by the various cloud platforms.
At the same time, these subsystems also provide a low-level
interface specific to each cloud platform that gives users full
control to use, if needed, platform-specific features (e.g., to
access VM instance attributes available only on a specific
cloud platform).

The cloud platforms that EasyCloud currently supports are
the following: Amazon AWS, Chameleon Cloud [23], Google
Cloud, andOpenStack. Furthermore, thanks to its highly mod-
ular architecture, EasyCloud can be easily extended to sup-
port new cloud platforms by just providing the implementa-
tion of its interface specific to those new platforms.

The design and implementation details of the architecture
of EasyCloud have been presented in detail in [8] (where we
introduced a preliminary version of EasyCloud) and in [10]
(where we presented an extended and improved version of
EasyCloud). Therefore, in this section, we present just an
overview of the functionality provided by the subsystems of
EasyCloud so as to make this paper self-contained.

5.1 The VM Management subsystem
TheVMManagement subsystem provides platform-independent
functionality for the life-cycle management of VM instances
and volumes hosted by cloud infrastructures.

This subsystem consists of two main components, namely
the Manager and the ConfManager, each of which may be

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



instantiated multiple times as the number of supported cloud
platforms. The Manager component interacts with the re-
source allocation and virtualization services provided by a
cloud platform to provide functionality for the management
of VM instances and volumes (e.g., for starting and stopping
VM instances). The ConfManager component allows to get
and set configuration parameters of both a given cloud plat-
form (e.g., the user credentials to access Amazon EC2) and
specific to EasyCloud (e.g., whether to send metric data –
collected from VM instances – to data sinks; see Section 5.2
below).

5.2 The VM Monitoring subsystem
The VM Monitoring subsystem provides a unified interface
for collecting in (near) real-time metric data from VM in-
stances (e.g., CPU load), triggering actions in response to
user-defined policies stated in terms of gathered metric data
(e.g., create a new VM instance when the CPU load of a
VM instance exceeds a given threshold), and for sending col-
lected metric data to one or more data sinks (i.e., components
external to EasyCloud) for further analysis and processing
or simply for reporting and persistence purpose.

This subsystem consists of four main components, namely
the Monitor, the Rule Engine, the Agent and the Measures
Sink, which are run in separate threads and interact with
each other by means of synchronized queues. The Monitor
component collects metric data (e.g., CPU usage) for VM
instances hosted by a given cloud platform by querying the
telemetry services provided by that platform, and sends the
gathered data to the Measures Sink and Rule Engine compo-
nents for further storing and processing. The Rule Engine
component triggers actions according to user-defined rules
(stored in a rule base) defined in terms of metric data coming
from one or more Monitor components. The Agent compo-
nent executes actions for specific VM instances, as requested
by the Rule Engine component, through theManager compo-
nent. Finally, the Measures Sink component takes the metric
data received from the Monitor component and sends them
to a data sink for further processing or persistence (e.g., to
ingest data into a database, a message broker or a web dash-
board); multiple instances of the Measure Sink component
can be active at the same time, each of which receiving the
same collection of metric data from the Monitor component
and sending them to a different data sink.

5.3 The UI subsystem
The UI subsystem provides user interfaces to access the
functionality provided by the VM Management and VM Mon-
itoring subsystems. Specifically, at the lowest level, it exposes
a unified, object-oriented API in Python that allows devel-
opers to use EasyCloud as a framework to interact with

different cloud platforms in a programmatic and platform-
independent way, thus avoiding to worry about the hetero-
geneity of the APIs of the various cloud platforms. Further-
more, this subsystem also provides a low-level (platform-
dependent) API to fully exploit platform-specific features (i.e.,
to access platform-specific information about a given VM
instance that is not provided by the higher-level, platform-
independent API), so that flexibility is achieved. Moreover,
it allows students to be exposed to the variety of platform-
specific APIs, and to learn what those APIs convey, and how
to profitably use them to achieve their goals. Finally, this
subsystem provides a user-friendly text-based user interface
(built atop of the platform-independent API) through which
users can use EasyCloud interactively, via a textual interface.

6 EXPERIMENTAL EVALUATION
Even though, in an educational context, performance is not
the first concern, it is very important that an educational
toolkit is able to sustain realistic workloads so as educators
can design hands-on sessions based on real-world scenarios
with a large number of instances.

For this reason, EasyCloud has been designed with ef-
ficiency in mind, and encompasses several optimizations
and mechanisms aimed at reducing as much as possible the
overhead of its various operations.
To assess the efficiency of EasyCloud, we performed an

experimental evaluation to assess its ability to scale with re-
spect to the number of managed instances. In this section, we
show the results obtained from such experimental campaign.

Each experiment consists of a series of runs where, in each
one of them, we measure the CPU time (both in user space
and in kernel space) taken by EasyCloud to retrieve the list
of all𝑀 VM instances hosted on a given cloud infrastructure,
and to start just 𝑁 of them, with 𝑁 ≤ 𝑀 . It is worth noting
thatwe consider the CPU time instead of the elapsed real time
so as to assure that our results are not affected by external
and non-controllable factors, like the scheduling policy of
the operating system running on the same computer where
EasyCloud components are run, unpredictable network load
conditions, and API rate limiting policies specific to a given
cloud provider (e.g., [3]).
We use as performance index the average CPU time that

we computed by averaging the CPU time obtained in the
various runs of an experiment, until the relative error of its
95% confidence interval is of at most 4% [13]. Therefore, the
number of runs of a single experiment is computed online,
and may change from one experiment to another.
The experiments were carried out on a physical testbed

consisting of one Fujitsu Server PRIMERGYRX300 S7 (equipped
with two 2.4 GHz Intel Xeon E5-2665 processors with 8 cores
and 96 GiB of RAM, and running the Linux kernel version

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



Table 1: Fitting of linear models to the experimental
results. Each cell (𝑖, 𝑠) of the table contains the inter-
cept 𝑖 and the slope 𝑠 of the regression line fitted to the
results obtained with EasyCloud on a particular cloud
infrastructure (row).

Cloud infrastructure (intercept, slope)

AWS EC2 (0.067, 0.006)
Chameleon Cloud (0.192, 0.012)

5.6.13) located in Italy and used to run EasyCloud, and a pub-
lic cloud infrastructure hosting the set of instances that we
managedwith EasyCloud.We considered two public cloud in-
frastructures, that is Chameleon Cloud (site “KVM@TACC”,
located in Texas, USA) and AWS EC2 (region “us-east-1”,
located in Virginia, USA), where we hosted 𝑀 = 45 Linux
instances.

In Figure 3, we present the results of the experiments both
for AWS EC2 (see Figure 3a) and for Chameleon Cloud (see
Figure 3b). In these figures, each filled circle denotes the av-
erage CPU time required by EasyCloud to perform the above
operations for a given number of instances 𝑁 (with 𝑁 rang-
ing from 5 to 45), and the associated error bar represents its
95% confidence interval. These figures show that EasyCloud
is able to scale well with respect to the number of instances
to manage as the average CPU time just grows linearly as a
function of the number of managed instances.
To better understand this linear trend, we fitted a linear

model to the results obtained in the various experiments for
each cloud infrastructure. The parameters of the resulting
linear models are reported in Table 1, where the pair (𝑖, 𝑠) in
each cell represents the intercept 𝑖 and the slope 𝑠 of the re-
gression line fitted to the experimental results obtained with
EasyCloud on the cloud infrastructure of the corresponding
row. For instance, we expect that, on average, EasyCloud will
take approximately 0.667 seconds to manage 100 instances
hosted on the AWS EC2 infrastructure, and nearly 1.392 sec-
onds to manage the same number of instances hosted on the
Chameleon Cloud infrastructure.

7 CONCLUSIONS
In this paper, we presented EasyCloud, a modular toolkit
that provides a unified interface to various cloud platforms
for managing VMs, monitoring their performance, and stor-
ing for further analysis the collected metrics, as well as an
intuitive and interactive user interface.

With EasyCloud, students and educators can experiment
with both the basic and advanced concepts related to the
cloud computing in a multi-cloud environment and without
caring of the API and user-interface heterogeneity of the

various cloud providers. Our experimental evaluation shows
that EasyCloud can be efficiently used in real-world scenarios
as it is able to scale well with respect to the number of VM
instances.
In the future, we plan to extend EasyCloud as follows to

support more advanced teaching activities. Besides exten-
sions suggested by our students, namely a RESTful API to
access EasyCloud functionalities and to support a richer set
of rule types (e.g., with the Intellect [36] package), we plan
(a) to support new cloud/edge computing platforms (e.g.,
IBM Cloud, Microsoft Azure, EdgeX and MicroK8s) and new
measures sinks (e.g., Amazon S3), (b) to add new features like
resource reservation and intelligent fault-detection system
techniques [4, 28] and, finally, (c) to integrate cloud/edge
infrastructure management [5, 6] and experimentation [7]
systems.

ACKNOWLEDGMENTS
This research has a financial support of the Università del
Piemonte Orientale and of the INdAM – GNCS Project 2020.
Results presented in this paper were in part obtained using
the Chameleon testbed supported by the National Science
Foundation.

[1] ACM/IEEE-CS. 2013. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science.
ACM. https://doi.org/10.1145/2534860

[2] ACM/IEEE-CS. 2016. Computer Engineering Curricula 2016: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Engineering.
Technical Report CE2016. ACM.

[3] Amazon. 2021. Request throttling for the Amazon EC2 API. https://
docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html

[4] C. Anglano and M. Botta. 2002. NOW G-net: Learning classification
programs on networks of workstations. IEEE Transactions on Evolu-
tionary Computation 6, 5 (2002), 463–480.

[5] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2017.
FCMS: A fuzzy controller for CPU and memory consolidation un-
der SLA constraints. Concurrency Computat.: Pract. Exper. 29, 5 (2017),
e3968.

[6] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2018.
Profit-aware Resource Management for Edge Computing Systems.
In Proc. of the 1st International Workshop on Edge Systems, Analytics
and Networking (EdgeSys). 25–30.

[7] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2018.
Prometheus: A flexible toolkit for the experimentation with virtu-
alized infrastructures. Concurrency Computat.: Pract. Exper. 30, 11
(2018), e4400.

[8] CosimoAnglano, Massimo Canonico, andMarco Guazzone. 2020. Easy-
Cloud: a Rule based Toolkit for Multi-platform Cloud/Edge Service
Management. In Proc. of the 2020 Fifth International Conference on Fog
and Mobile Edge Computing (FMEC) (Paris, France). IEEE, 188–195.
https://doi.org/10.1109/FMEC49853.2020.9144821

[9] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2020.
Teaching Cloud Computing: Motivations, Challenges and Tools. In
Proc. of the 2020 IEEE International Parallel and Distrituted Process-
ing Symposium Workshops (IPDPSW) (New Orleans, LA, USA). IEEE,

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021

https://doi.org/10.1145/2534860
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html
https://doi.org/10.1109/FMEC49853.2020.9144821


10 20 30 40

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

Number of instances

A
ve

ra
g
e
 C

P
U

 t
im

e
 (

s
e
c
)

(a) AWS EC2.

10 20 30 40

0
.3

0
.4

0
.5

0
.6

0
.7

Number of instances

A
ve

ra
g
e
 C

P
U

 t
im

e
 (

s
e
c
)

(b) Chameleon Cloud.

Figure 3: Performance of EasyCloud for increasing numbers of managed instances and on different cloud infras-
tructures. Each filled circle represents the average CPU time (in seconds) taken by EasyCloud to manage a given
number of instances hosted on a particular cloud platforms, and the associated error bar denotes its 95% confi-
dence interval.

300–306. https://doi.org/10.1109/IPDPSW50202.2020.00062
[10] CosimoAnglano, Massimo Canonico, andMarco Guazzone. 2021. Easy-

Cloud: Multi-clouds made easy. In Proc. of the 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC). 526–531.
https://doi.org/10.1109/COMPSAC51774.2021.00078

[11] CosimoAnglano, Massimo Canonico, andMarco Guazzone. 2021. Easy-
Cloud repository. Available: https://gitlab.di.unipmn.it/DCS/easycloud.
Accessed: May 28, 2021.

[12] Apache Software Foundation. 2021. The Java Multi-Cloud Toolkit.
Available: https://jclouds.apache.org/. Accessed: May 28, 2021.

[13] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. 2010.
Discrete-Event System Simulation (5th ed.). Prentice Hall.

[14] Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow. 2019. Mon-
goDB: The Definitive Guide (3 ed.). O’Reilly.

[15] Brian Brazil. 2018. Prometheus: Up & Running. O’Reilly.
[16] Massimo Canonico and Marco Guazzone. 2021. Teaching Cloud Com-

puting website. Available: https://tcc.uniupo.it. Accessed: August 2,
2021.

[17] Josiah Carlson. 2013. Redis in Action. Manning.
[18] Jeff Carpenter and Eben Hewitt. 2020. Cassandra: The Definitive Guide

(3 ed.). O’Reilly.
[19] Jason Cole and Helen Foster. 2007. Using Moodle: Teaching with the

popular open source course management system. O’Reilly Media, Inc.
[20] Google. 2021. Codelabs. Available: https://codelabs.developers.google

.com/. Accessed: May 28, 2021.
[21] InternetNews. 2021. Why ‘Cloud Computing’ Is for the Birds. Available:

https://www.internetnews.com/blog/why-cloud-computing-is-for-
the-birds/. Accessed: August 2, 2021.

[22] Yaser Jararweh, Zakarea Alshara, Moath Jarrah, Mazen Kharbutli,
and Mohammad N. Alsaleh. 2013. TeachCloud: a cloud computing
educational toolkit. International Journal of Cloud Computing 2, 2–3
(2013), 237–257. https://doi.org/10.1504/IJCC.2013.055269 PMID:
55269.

[23] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody

Hammock, Joe Mambretti, Alexander Barnes, François Halbah, Alex
Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon
Testbed. In Proc. of the 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 219–233. https://www.usenix
.org/conference/atc20/presentation/keahey

[24] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: A Distributed
Messaging System for Log Processing. In Proc. of the 6th International
Workshop on Networking Meets Databases (NetDB).

[25] Rensis Likert. 1932. A Technique for the Measurement of Attitudes.
Archives of Psychology 22, 140 (1932), 1–55.

[26] Linux System. 2021. The stress tool. Available: https://https://linux.di
e.net/man/1/stress. Accessed: May 28, 2021.

[27] Peter M. Mell and Timothy Grance. 2011. The NIST Definition of Cloud
Computing. Technical Report SP 800-145. NIST, Gaithersburg, MD,
USA.

[28] Stefania Montani and Cosimo Anglano. 2006. Case-Based Reasoning
for Autonomous Service Failure Diagnosis and Remediation in Soft-
ware Systems. In Advances in Case-Based Reasoning, Thomas R. Roth-
Berghofer, Mehmet H. Göker, and H. Altay Güvenir (Eds.). Springer
Berlin Heidelberg, 489–503.

[29] qwiklabs. 2021. Hands-On Cloud Training. Available: https://www.
qwiklabs.com. Accessed: May 28, 2021.

[30] Naomi B. Robbins and Richard M. Heiberger. 2011. Plotting Likert and
other rating scales. In Proc. of the 2011 Joint Statistical Meeting, Vol. 1.

[31] Bruce Snyder, Dejan Bosanac, and Rob Davies. 2011. ActiveMQ in
Action. Manning.

[32] Ian Stoica and Scott Shenker. 2021. From Cloud Computing to Sky
Computing. In Proc. of the 18th Workshop on Hot Topics in Operating
Systems (HotOS).

[33] C. Tranoris. 2011. Adopting the DSM paradigm: Defining federation
scenarios through resource brokers for experimentally driven research.
In Proc. of 12th IFIP/IEEE International Symposium on Integrated Network
Management (IM) and Workshops. 1140–1147. https://doi.org/10.1109/
INM.2011.5990574

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021

https://doi.org/10.1109/IPDPSW50202.2020.00062
https://doi.org/10.1109/COMPSAC51774.2021.00078
https://gitlab.di.unipmn.it/DCS/easycloud
https://jclouds.apache.org/
https://tcc.uniupo.it
https://codelabs.developers.google.com/
https://codelabs.developers.google.com/
https://www.internetnews.com/blog/why-cloud-computing-is-for-the-birds/
https://www.internetnews.com/blog/why-cloud-computing-is-for-the-birds/
https://doi.org/10.1504/IJCC.2013.055269
https://www.usenix.org/conference/atc20/presentation/keahey
https://www.usenix.org/conference/atc20/presentation/keahey
https://https://linux.die.net/man/1/stress
https://https://linux.die.net/man/1/stress
https://www.qwiklabs.com
https://www.qwiklabs.com
https://doi.org/10.1109/INM.2011.5990574
https://doi.org/10.1109/INM.2011.5990574


[34] Alvaro Videla and Jason J.W. Williams. 2012. RabbitMQ in Action:
Distributed Messaging for Everyone. Manning.

[35] Gregor Von Laszewski, Fugang Wang, Hyungro Lee, Heng Chen, and
Geoffrey C Fox. 2014. Accessing multiple clouds with cloudmesh.
In Proc. of the 2014 ACM international workshop on Software-defined
ecosystems (BigSystem). 21–28.

[36] Michael Joseph Walsh. 2021. Intellect: A Domain-specific language
and Rules Engine for Python. Available: https://github.com/nemonik
/Intellect. Accessed: May 28, 2021.

A APPENDIX
In this section, we report the steps required to repeat the
experiments presented in Section 6. Actually, this section
provides just an overview of the above steps. More detailed
instructions are available in the following public repository
that we specifically created to store the artifacts needed to
reproduce our experiments: https://gitlab.di.unipmn.it/sgua
zt/easycloud_artifacts-ccr2021. Please, visit that URL and
start following the instructions contained in the README.md
file.

A.1 EasyCloud installation
The first step to reproduce the experiments consists in in-
stalling the EasyCloud toolkit on your computer. To do
so, follow the guide available at the following URL: https:
//gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-
/blob/main/docs/install.md.

After EasyCloud has been installed, you can move to
next sections so as run the experiments either on AWS (Sec-
tion A.2) or on the Chameleon testbed (Section A.3).

A.2 AWS experiments
To reproduce the experiments we run on AWS and to plot
the obtained results, follow the guide available at the URL:
https://gitlab.di.unipmn.it/sguazt/easycloud_artif acts-
ccr2021/-/blob/main/docs/aws.md.

A.3 Chameleon experiments
To reproduce the experiments we run on Chameleon and to
plot the obtained results, follow the guide available at the
URL: https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-
ccr2021/-/blob/main/docs/chameleon.md.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021

https://github.com/nemonik/Intellect
https://github.com/nemonik/Intellect
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/install.md
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/install.md
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/install.md
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/aws.md
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/aws.md
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/chameleon.md
https://gitlab.di.unipmn.it/sguazt/easycloud_artifacts-ccr2021/-/blob/main/docs/chameleon.md

	Abstract
	1 Introduction
	2 Main Characteristics
	2.1 Multi-cloud support
	2.2 Virtual machine management
	2.3 IP address management
	2.4 Storage management
	2.5 Resource monitoring
	2.6 Resource management policies

	3 EasyCloud in the classroom
	3.1 Exercises proposed
	3.2 Lessons learnt

	4 Student Experience Evaluation
	5 Architecture
	5.1 The VM Management subsystem
	5.2 The VM Monitoring subsystem
	5.3 The UI subsystem

	6 Experimental Evaluation
	7 Conclusions
	
	A Appendix
	A.1 EasyCloud installation
	A.2 AWS experiments
	A.3 Chameleon experiments


