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Abstract

The forensic study of mobile apps that use application-level en-
cryption requires the decryption of the data they generate. Such a
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decryption requires the knowledge of the encryption algorithm and

key. Determining them requires, however, a quite complex analysis
that is time-consuming, error prone, and often beyond the reach
of many forensic examiners. In this paper, we tackle this problem
by devising a framework able to automate the decryption of these
data when third-party encryption libraries or platforms are used.
Our framework is based on the use of dynamic instrumentation of
app’s binary code by means of hooking, which enables it to export
the plaintext of data after they have been decrypted by the app,
as well as the corresponding encryption key and parameters. This
framework has been conceived to be used only with test devices
used for forensic study purposes, and not with devices that need
to be forensically analyzed. We describe the architecture of the
framework as well as the implementation of its components and
of the hooks supporting three prominent and popular encryption
libraries, namely SQLCipher, Realm and Jetpack Security. Also,
we validate our framework by comparing its decryption results
against those published in the literature for Wickr Me, Signal,

Threema, and Element.
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1 Introduction

The forensic study of mobile applications (henceforth referred to
as apps for brevity) is currently one of the prominent research
areas in the mobile forensics field. The goal of such a study is the
characterization of the behavior of a specific app in terms of the
relationship between the actions performed by a user and the data
it generates as consequence of those actions. As a matter of fact, if
these relationships are known to an examiner, (s)he may infer the
possible occurrence of a specific user action if the data generated
by that action are found on the device.

To make these relationships explicit, the app must be studied in
order to determine (a) which data it generates in response to the
various user actions, (b) where it stores these data, and (c) how it
encodes them [5-7, 17, 20, 31]. This study is typically performed
by exercising, in a systematic manner and in a controlled environ-
ment, the functionalities provided by the app in order to elicit the
generation of data that, consequently, can be associated with the
corresponding user action [8].

The above experimental study is based on the assumption that
the data generated by an app are available to the experimenter.
However, application-level encryption, whereby apps encrypt the
data they generate before storing them on the device, is making
this difficult. As a matter of fact, these (encrypted) data need to be
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decrypted first (i.e., they must be available in the so-called plain-
text), an operation that requires the experimenter to know both the
encryption algorithm and the encryption key that have been used
by the app.

This raises the following two challenging issues for the experi-
menter:

(1) the encryption key is never exposed by an app (and this
occurs also frequently with the encryption algorithm), so
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these information need to be discovered by means of suitable
analysis techniques, which are however quite complex to
carry out;

the data modified by the app needs to be inspected continu-
ously, ideally after each action carried out on the app during
the experimentation. This induces a loop of modify—extract
from device memory—-decrypt the data, which significantly
increases the time and effort of carrying out the forensic
study.

@

~

In this paper, we propose a framework able to address both the
issues mentioned before in scenarios where encryption is achieved
by using third-party software components, as discussed below.

1.1 Problem definition

Generally speaking, there are two possible ways for an app to imple-
ment encryption. The first one involves using homemade encryp-
tion code. This approach, however, is more and more deprecated, as
it is quite difficult to write correct and robust encryption code [14].
The second approach, which is adopted by the vast majority of
modern mobile apps, is to use third-party encryption code, which
is provided either as a library of functions (e.g., Android JetPack
Security [3] or javax.crypto [2]), or as an encryption service
running locally (e.g., encrypted databases like the SQLCipher [37]
extension to SQLite or the Realm [35] DBMS). This latter approach
is more robust and secure than homemade one. In this paper, we
thus focus on apps using the latter approach, since it allows us to
maximize the applicability of the framework we have developed.

Third-party encryption code provides two distinct methods to
encrypt application data, which can be used either individually
or in combination, namely [27]: (a) encrypt data by prior to their
storage into a file or a database; (b) store plaintext data into an
encrypted database.

In both cases, to obtain the plaintext of these data, the experi-
menter needs to determine the encryption algorithm, parameters,
and key used by the app, which may entail performing a quite
complex reverse engineering of that app and of the encryption
code. More specifically, reverse engineering of these apps entails
the combined use of both static and dynamic analysis techniques,
and requires both technical skills which are typically not in the
possession of all experimenters, and a significant amount of manual
work [16, 18, 19, 24].

It is important to note that application-level encryption adds an
extra layer of encryption to the other encryption layers used by
modern mobile operating system, such as File-Based Encryption [25]
(FBE). As a consequence, even after the operating system decrypts
its file systems when the experimenter unlocks the device, data
encrypted by an app remains unencrypted.

1.2 Our framework

The framework we propose in this paper is able to automate the
extraction of plaintext data from the memory space of a running
app. As a matter of fact, encrypted data stored on persistent storage
needs to be necessarily decrypted before being load in main memory
when the app needs to process it (in other words, these data are
encrypted only when they are stored on persistent storage). The
corresponding plaintext can be therefore obtained by intercepting
at run time the calls made by the app code to all the functions that
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decrypt data, and by modifying the behavior of these functions in
order to force them to export these data to external storage for the
perusal of the experimenter.

Function call interception is achieved through a technique known
as hooking [13], which consists in dynamically instrumenting the
binary code of the app so that (a) the calls to specific functions
are intercepted at run-time, and (b) external code injected into the
application space (the hook) is executed before the actual execution
of the function code.

This process is conceptually depicted in Fig. 1, where we show
five apps: App 1 and App 2 use Data encryption library Xto
encrypt their data, while instead App 3, App 4, and App 5 use
Database encryption library Y.

Database
encryption
library Y

Data
encryption
library X

[ Mbbile Operating System ]
S : >
. i Function | : External
i interception | storage
__________________
Export

Figure 1: Conceptual approach.

As shown in Fig. 1, in our approach function calls interception
is carried out at the level of the individual encryption software
components, e.g. Data encryption library X and Database
encryption library Y. This is achieved by injecting, into the
app’s binary code, a hook specific to the encryption library it uses.

An important point to make here is the fact that hooks work at
the function level, so once the hooks for a given encryption library
have been developed, it can be used to get the plaintext out of any
app using that library. For instance, in Fig. 1, plaintext data for App
1 and App 2 is extracted using the hooks for Data encryption
library X, while for App 3, App 4, and App 5 the hooks for
Database encryption library Y are used.

Our framework exploits this fact to provide automation in plain-
text extraction. In particular, it automates the injection of hooks
into an application under study, provided that the hooks for the en-
cryption library it uses are available, and the extraction and storage
of plaintext data. To the best of our knowledge, there is no other
similar framework that has been published in the literature.

In its current implementation, our framework supports two
prominent and widely-used encryption libraries, namely SQLCipher
[37] for SQLite databases and Jetpack Security [3] for files (sup-
port for the latter is only partial, but work is ongoing to complete it),
and the Realm [34], a DBMS for mobile apps which is an alternative
to SQLite and provides encryption as a built-in feature.

To carry out hooking, our framework relies on the Frida toolkit
[28] for binary instrumentation, so it can be implemented on any
operating system supported by Frida, and in particular on both
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Android and iOS. In this paper, however, we focus on Android, and
we leave the i0S case to future work.

As a final consideration, it should be noted that our framework
requires that the apps under study are executed with super-user
privileges (i.e, on rooted Android devices). This, however, is not a
real limitation since, as discussed before, the focus of our work is on
the experimental forensic study of mobile apps, which entails the
use of test devices under the complete control of the experimenter,
and the interaction with the app to elicit the generation of data. In
other words, our framework is not intended to be used for the forensic
analysis of app data stored on the seized devices.

2 Related work

The problem of decrypting the data encrypted by apps, both for
Android and other operating systems, has been already tackled in
the literature.

[15] studies the decryption of databases of the Telegram X and
BBM-enteprises applications, both for Android and for Windows
platforms. They found out that both applications use the SQLCipher
encryption library, and perform manual reverse engineering to dis-
cover the encryption parameters and the key generation procedure
used by them. [18] focuses on the decryption of databases of the
NateOn, KakaoTalk, and QQ messengers on Windows platforms.
They also perform manual reverse engineering to discover the key
generation and the encryption procedure used by these apps, all of
which use home-brewed encryption code. In [24], authors analyze
56 note and journal Android apps, and find out that, while 95%
store their data locally in an insecure way, the remaining 5% use
home-brewed encryption libraries for their databases, and perform
manual reverse engineering to recover the key generation proce-
dure and the encryption algorithms and parameters. [19] focuses on
the decryption of the databases for the Signal, Wickr, and Threema
instant messengers. Authors find that all these apps rely on the
SQLCipher library, and a thorough manual reverse engineering
is carried out in order to determine the key generation process
and the encryption parameters. [27] proposes an approach, based
on static code analysis, that automates the process of discovering
whether an Android app encrypts its database, and in some cases
also the encryption method that is used. However, no means of
recovering the encryption key and parameters for the analyzed
apps is provided.

All these works show the relevance of the problem we tackle with
our framework, and that the manual recovery of the encryption key
and the other encryption parameters, required to decrypt databases,
is a complex, time-consuming, and possibly error-prone process.
In contrast, our framework, by automating the extraction of these
parameters from prominent database encryption libraries, avoids
the problems characterizing manual analysis.

Other works have instead focused on the decryption of back-
ups generated by utilities developed by smartphone vendors, such
as [21-23]. These works focus on a problem different from that
targeted by this paper, so they do not compare to our work directly.

There are other works in the literature that rely on hooking to
obtain relevant information from the memory space of running
processes. [26] proposes a hooking framework aimed at monitor-
ing sensitive methods in shared objects, while [13] proposes a
framework for the automated analysis of app code with the aim of

identifying hooks placed by malicious code. These works, however,
deal with problems different from the one we address in this paper.

3 The decryption framework

As we already mentioned, our framework works by dynamically
(i.e., at run time) instrumenting the app binary code to hook the
decryption functions it calls, so that the calls to these functions can
be intercepted and, consequently, the plaintext data they obtain
after decryption can be exported outside the app. Furthermore, if
the encryption key and parameters are passed to these functions,
our framework exports them too.

In this section, we present the above framework by first dis-
cussing its architecture (Sec. 3.1), then by illustrating some guide-
lines on (a) how it can be concretely implemented (Sec. 3.2) and on
(b) how it can be used with a specific app (Sec. 3.3).

3.1 Framework architecture

As we anticipated in Sec. 1, our framework is based on Frida,
an open source, multi-platform, binary dynamic instrumentation
toolkit. Frida is able to inject a custom script (written either in the
JavaScript or the TypeScript languages) into a running process,
and to hook that script to any function called by the process. In
this way, when a hooked function is called by the running process,
the corresponding script is executed either prior to or after the
execution of the function, depending on which sequence is required
to get plaintext data.

The architecture of our decryption framework is schematically
depicted in Fig. 2, where the components we developed are high-
lighted in light gray, while the ones shown in white are those
belonging to the Frida toolkit.

Android test device

Frida Frida
Server | Client
¥

Experimenter’s machine

Frida API |

H
H
Agent promcoli
H

Automation
console

Plaintext
extraction
agent

App under study

Encryption
library

Figure 2: Framework architecture.

As shown in the figure, the framework runs on two distinct
systems: (a) an Android device, where the app of interest is running,
and (b) an experimenter’s machine, to which the device is connected.
It encompasses four distinct components, two of which belong to
Frida, while the other three ones have been developed by us. In
particular:

o the Plaintext extraction agent: it is the code, injected

into the app binary code, which takes care of accessing the
plaintext data and of exporting them to external storage. The



agent includes also a hook, which is the code injected into the

app binary code that starts the execution of the agent when

the functions of the Encryption library that decrypt data
are called by the app;

e the Automation console: it provides the experimenter with
suitable mechanisms allowing to inject specific agents and
hooks for the app under study;

e Frida toolkit components: they are used to inject hooks
and agents into the running app, and to collect the results
generated by the agents above. More specifically, they are:
— the FRIDA Server: it spawns the process of the app un-

der study, injects the Plaintext extraction agent into
this process, hooks it to the encryption/decryption func-
tions, and captures the output generated by it. The FRIDA
Server needs super-user privileges to run properly so, as
already anticipated, our framework assumes that the An-
droid device is rooted; however, this is not a real restriction,
as devices used in the forensic study of apps are typically
under the complete control of the experimenter; !

— the FRIDA Client: it runs on the experimenter’s machine,
and interacts with both the Automation console and the
FRIDA Server. In particular, it accepts user commands,
forwards them to the server, waits for the server to com-
plete the command, receives the output from the server,
and forwards it to the user.

3.2 Implementing the framework for a specific en-
cryption library

To support a given encryption library, the only framework com-
ponent that needs to be implemented for each specific encryption
library is the Plaintext extraction agent. The other compo-
nents are instead library-independent and, therefore, they do not
need to be modified when support for a new library is developed.

In this section, we illustrate the generic procedure that can be
followed to carry out this implementation (we will illustrate how
this generic procedure can be instantiated in practice in Sec. 4).

To implement the Plaintext extraction agent for a specific
library, the first step to be carried out is the identification of the
functions of that library that need to be hooked, by following the
guidelines discussed below (where we use the generic term container
to denote both a file and a database):

e obtaining plaintext data: the plaintext of all the data that
have been saved into an encrypted container while an app is
running can be obtained by intercepting the functions that
“close” that container (i.e., those functions that are called
when the app no longer needs to use those data), and by
reading its contents before passing the control to the func-
tion that will actually close it. Sometimes, it is necessary to
intercept also the functions that “open” the container if the
encryption library does not provide “close” functions (e.g.,
see Sec. 4.3 as an example).

'We made this decision in order to make the framework app independent, i.e. able
to run with any app without having to customize it for that specific application. The
alternative was indeed to run the FRIDA Server without super-user privileges, but
this required to modify the executable code of each app in order to include into it a
special-purpose FRIDA library, that gets loaded when the app is started.

© o N e e w o

Anglano, et al.

o obtaining the encryption key and parameters: these informa-
tion are typically (though not always) exposed by the app if
the functions used to “open” the container prior to its use
requires them. In case they are exposed, the encryption key
and parameters can be obtained by intercepting the calls to
these functions, and having the hook code access and print
the values of the function parameters corresponding to the
above key and parameters.

These functions are typically identified by examining the docu-
mentation of the encryption library and/or its source code. In case
neither the source code of the library, nor its documentation are
available, then a reverse engineering phase of the library needs to
be performed.

After the functions to be hooked have been identified, the corre-
sponding Plaintext extraction agent is developed by writing
a set of hooks for them, as well as the code that is executed by the
hook when the corresponding function is called. The implementa-
tions of both parts depend on whether the library has been written
in Java or as native code (i.e., using the Android NDK toolset [29]).
In the remainder of this section we discuss how to associate a hook
with the corresponding function, while the implementation of the
code executed by the hook — which depends on the specific en-
cryption library it targets — is discussed in Sec. 4 for three distinct
widely-used libraries.

Encryption library written in Java. To attach a hook to a generic
Java method class_to_hook, which corresponds to the generic <x
>.<y>.<class_to_hook> fully qualified class name (e.g., io.realm
.RealmConfiguration), the code skeleton shown in Fig. 3 can be
used. As shown in Fig. 3, the FRIDA Java.perform(fn) function is

Java.perform(function x() {
const <class_to_hook> = Java.use("<x>.<y>.<class_to_hook>")
<class_to_hook>.$init.overload(argl,arg2,..., argN)
.implementation = function (vall,val2,..., valN) {
<hook_code>
const toRet = this.$init(vall,val2,..., valN);
return toRet
3

s

Figure 3: Attaching a hook to a Java method.

used (line 1) to attach the hook to the chosen Java method. Within
this function, we first specify the name of the class to be hooked,
and its fully qualified method name (line 2). Then, we specify which
method of that class we want to hook to (line 3), which in Fig. 3 is
the constructor ($init) of class class_to_hook, by also specifying
its signature (i.e., the list of its arguments).

Next, we specify the code of the hook using the . implementation
keyword (line 4). As indicated in Fig. 3, we can insert any code
(generically denoted as <hook_code>) either before (as indicated
in the figure) or after the call to the original function (line 6).
Encryption library written in native code. To attach a hook to a
native library function named, e.g., LIB, the code of the Plaintext
extraction agent (expressed in TypeScript) — which is shown
in Fig. 4 - is more complex than the one used with a Java library.
To hook a specific native library LIB, we must be sure that LIB has
been already loaded into main memory by the app. However, in
an Android app, native libraries might not be loaded in memory
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let librarylLoaded = false
Java.performNow(function x() {
const System = Java.use('java.lang.System');
const Runtime = Java.use('java.lang.Runtime');
const VMStack = Java.use('dalvik.system.VMStack');
function loadedHookedLibrary(library: string) {
if ((library === 'LIB' || library.endsWith('LIB.so')) && !librarylLoaded) {
// Make sure to hook the LIB library just once
loadNativeHooks() // Load hooks for the LIB library
librarylLoaded = true
}
}

// Hook for the System.loadLibrary() method
System.loadLibrary.implementation = function (libName: string) {
try {
// Load the given library as expected by the app and then perform
function hooking
const loaded =
Runtime.getRuntime().loadLibrary@(VMStack.getCallingClassLoader(),
libName);
loadedHookedLibrary(1ibName)
return loaded
} catch (ex) {
// Code for exception handling (not shown for brevity)
}
¥

// Hook for the System.load() method
System.load.implementation = function (libFile: string) {
try {
// Load the given library as expected by the app and then perform
function hooking
const loaded = Runtime.getRuntime().load@d(VMStack.getStackClass1(),
libFile);
loadedHookedLibrary(libFile)
return loaded
} catch (ex) {
// Code for exception handling (not shown for brevity)
}
¥
»

Figure 4: Attaching a hook to the System.loadLibrary() and
System.load() methods.

when the app is started, but later on demand by explicitly invoking
suitable Java methods, that is System. loadLibrary and System.
load. Hence, we must hook the above two methods so that, when
they are called by the app, they associate the hook with the tar-
get library LIB. Such a hooking is actually performed by function
loadedHookLibrary, which is defined in lines 6— 12, and is called
by both System. loadLibrary (line 19) and System. load (line 31).

These actions need to be performed as soon as possible to prevent
that System. load or System. loadLibrary are invoked by the app
before hooks have been installed, thus missing the calls to them.
This is achieved by using the Java. performNow(fn) FRIDA method
(see line 2 of Fig. 4), which is executed by FRIDA just after the Java
Virtual Machine has started but before any app-specific class is
loaded.

In particular, we hook the loadLibrary and load methods of
both the System and the Runtime classes.? The hooking of the
System. loadLibrary method is achieved in lines 15 — 24, while
that of the System.load() method is achieved in lines 27 — 36.
As can be seen, in both cases when the method is loaded, the
loadedHookedLibrary (lines 6 — 12) is called (lines 19 and 31, re-
spectively). Specifically, the hooking of the System.loadLibray
method consists in (1) loading the library 1ibName (as expected by

%In Fig. 4, because of space constraints and to avoid cluttering, we omit the hooking
of the Runtime methods, which however is similar to that of the System methods.
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the invoking application) through the JavaRuntime. loadLibrary@
method (line 18) and then (2) installing the hooks for the inter-
ested functions (line 9). Similarly, the hooking of the System.load
method performs the same steps but it uses the JavaRuntime. load@
method to load the library stored in the file 1ibFile.

3.3 Using the framework with an app

After a Plaintext extraction agent for a specific encryption
library has been developed, to use it with a specific app using that
encryption library requires to determine whether the app uses that
library or not. The ways in which this can be determined differ
according to the availability or not of the app source code.

If source code is available, then it can be inspected to determine
which library it uses. In some cases, the source code may also
include a build file that explicitly lists the libraries from whom the
app depends, and that of course includes also the reference to the
encryption library. As an example, the excerpt in Fig. 5, extracted
from the source code of the Element [11] secure messaging app
(which it is known to use encrypted databases), shows the contents
of its build.gradle file [12].

apply plugin: 'com.android.library'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-kapt'

apply plugin: 'kotlin-parcelize'
apply plugin: "org.jetbrains.dokka"
apply plugin: 'realm-android'
//0...]

Figure 5: Excerpt from the Element app source code
build.gradle.

As can be seen from line 6, the Element app uses the Realm
library to encrypt its databases.

If the application is, instead, closed-source, a different approach
needs to be used. In particular, its APK file (i.e., the package file
which is installed on the device) needs to be obtained first, and
then unpacked and de-compiled using a tool like Apktool [30].
Once these steps have been carried out, it is possible to inspect the
resulting code to look for the names of the included library files,
among which there will be also the encryption library. Typically,
the code of the app includes a folder, named after the so-called
reverse domain name notation of the library. For instance, in the
case of the SQLCipher library, this folder is named net.zetetic.
database.sqlcipher.

Once the encryption library used by the app has been determined,
and the availability of the corresponding Plaintext extraction
agent has been ascertained, then such agent is hooked to the app
while it is running.

As mentioned before, this step is carried out by the FRIDA Client,
which requires that the user specifies the names of the app (more
precisely, its package name, e.g. com.whatsapp) and of the file stor-
ing the code of the Plaintext extraction agent to attach, and
sends to the FRIDA Server the commands that make it hook the
agent with the chosen app.

To illustrate how this is done in practice, let us discuss the excerpt
of the FRIDA Client (written in Python) shown in Fig. 6. The first
action which is carried out is the spawn of the app on the device
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import frida

#[...]

pid = frida.get_usb_device().spawn(package)
session = frida.get_usb_device().attach(pid)
script = session.create_script(agent.read())
script.load()
frida.get_usb_device().resume(pid)

Figure 6: An excerpt of the FRIDA Client.

(line 3), which is followed by the creation of a FRIDA session whereby
the FRIDA Server attaches itself (i.e., controls the execution) to the
spawned app process (line 4). Then, the Plaintext extraction
agent code is read and associated with that session (line 5), and
subsequently injected into the code of the app (line 6). Finally, the
execution of the app is resumed (line 7).

Now, when the app calls the functions hooked by the Plaintext
extraction agent, its code is executed and the corresponding
action is carried out.

4 Use cases

In this section, we discuss the design and implementation of the
Plaintext extraction agent for three prominent and widely-
used encryption libraries, namely SQLCipher and Realm for data-
base encryption, and JetPack Security for file encryption.

The purpose of this section is two-fold. On the one hand, we
demonstrate the wide applicability of our framework to a large set
of apps, since these three libraries are used by a very large set of
apps, and their usage will likely grow in the future. On the other
hand, we describe techniques that can be used to implement agents
for other encryption libraries, thus widening the base of potential
users of our framework.

4.1 Decrypting SQLCipher databases

SQLCipher currently is the de-facto standard for database encryp-
tion in Android apps, and it works in conjunction with SQLite [9]
(which is in turn the de-facto standard for database support for
mobile apps). Therefore, it was a natural choice to include support
for its decryption in our framework.

SQLCipher is a native library (written in C), although can be
accessed by an Android app either directly using the SQLCipher for
Android classes [38] or through the Android’s Room framework [1].
Therefore, to deal with all possible SQLCipher integration scenarios,
it is sufficient to dynamically instrument the native library.

In practice, this corresponds to placing the hooks discussed below
in the loadNativeHooks function shown in Fig. 4, where the LIB
placeholder has been replaced with the sqlcipher word (see Fig. 4,
lines 7-9).

Let us now describe the design and the implementation of the
SQLCipher Plaintext extraction agent (in the following
SQLCipher Agent for brevity), by discussing its handling of multi-
ple open databases by the app under study (Sec. 4.1.1), the extraction
of plaintext database contents (Sec. 4.1.2) and of the encryption key
and parameters (Sec. 4.1.3).

4.1.1 Handling multiple open databases A peculiar feature
of SQLite is that it allows the same app to open and use multi-
ple distinct databases during its operations. This means that the
SQLCipher Agent, to work correctly, needs to be able to associate
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both the plaintext data and the encryption key and parameters with
the right database, in case several of them are simultaneously used
by the app,

We achieve this goal by having the agent hook the sqlite3_open
function (and its variants) to store the database handle returned by
such function, and using it later when extracting the plaintext or
the encryption key and parameters associated with that database.
The TypeScript hook code is reported in Fig. 7, where we see that

class NativeDb { // Store information about an open database
handle: string // The database handle
key_hex: string | null // The encryption key as hex-string

let dbDict = new Map<string, NativeDb>();
const sqlcipher = Process.getModuleByName("libsqlcipher.so");
Interceptor.attach(sqlcipher.getExportByName("sqlite3_open"), {
onEnter: function (args) {
this.filename = args[0].readUtf8String(); // Database filename
this.ppDb = args[1]; // On exit, database handle
3,
onLeave: function (retval) {
const dbHandle = this.ppDb.readPointer()
// Store the database handle for later use
dbHandleStr = String(dbHandle)
db = NativeDb(dbHandleStr)
db.path = this.filename
dbDict.set(dbHandleStr, db)

DA

Figure 7: SQLCipher: hooking of the sqlite3_open function
to extract the database handle.

the database handle, as returned by the original sqlite3_open, is
first extracted (line 14) and then stored in an in-memory dictionary
dbDict for later use (lines 16-19). 3

4.1.2 Extracting plaintext contents As mentioned in Sec. 3.1,
to obtain plaintext data we need to hook the function that closes
the database, which in the SQLCipher case is the sqlite3_close
function (and its variants).

This hooking is performed by using the Frida’s Interceptor
API, which allows to attach up to two callbacks to a hooked function,
namely onEnter (invoked just before executing the original code of
the hooked function) and onLeave (invoked just before returning
from the hooked function), and takes care of executing the original
code of the hooked function (among the invocation of the above
callbacks) so as to preserve its intended behavior.

For the extraction of plaintext data from the database, it suffices
to use the onEnter callback, as shown in Fig. 8, where the function
dumpDbToPlainText is executed each time the sqlite3_close
function is called by the app (line 5). In particular, the above function
invokes the sqlite3_exec function (line 13) to query the database
(represented by the NativeDb object passed as input argument) and
save the results (i.e., the plaintext contents of the database) to a text
file in the same folder where the encrypted database file is stored.

4.1.3 Extracting encryption key and parameters SQLCipher
provides several security specific parameters (which are listed in
Table 1) to control the encryption of a database. Among them, the
only mandatory parameter required to encrypt a database is the

3The hooks for the other variants of sqlite3_open() function are very similar, and
consequently are not shown here to avoid repetitions.
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Interceptor.attach(sqlcipher.getExportByName("sqlite3_close"), {
onEnter: function (args) {
this.dbHandle = args[@]; // Database handle
const db = dbDict.get(this.dbHandle.toString())
dumpDbToPlainText (db)
}

const callable_sqlite3_exec = new
NativeFunction(sqlcipher.getExportByName("sqlite3_exec"),
['pointer', 'pointer', 'pointer', 'pointer', 'pointer'l]);
function dumpDbToPlainText(nativeDb: NativeDb) {
let pathPlaintext = nativeDb.path + ".native_plaintext"
const errorMsgPtr = Memory.alloc(Process.pointerSize)
const sqlQueryPtr = Memory.allocUtf8String("ATTACH DATABASE '" +
pathPlaintext + "' AS plaintext KEY '';SELECT
sqlcipher_export('plaintext');DETACH DATABASE plaintext;")
const retExec = callable_sqlite3_exec(ptr(nativeDb.handle), sqlQueryPtr,
NULL, NULL, errorMsgPtr)

int',

Figure 8: SQLCipher: hooking of the sqlite3_close function
to extract plaintext data from the database.

Name Meaning

key the encryption key

cipher_kdf_algorithm key derivation function to be used

kdf_iter number of iterations used with the key derivation function

page size for the encrypted database

size of the header of the encrypted

database that must not be encrypted

either enables or disables the use of a per-page HMAC
the HMAC algorithm to be used

cipher_page_size
cipher_plaintext_header_size

cipher_use_hmac
cipher_hmac_algorithm

Table 1: Parameters used by SQLCipher to control encryption.

encryption key key; the other parameters are optional and, if not
explicitly set, suitable default values will be used for them. However,
to successfully decrypt a database, all the above parameters must be
set to the same values used at encryption time. Hence, all of them
need to be extracted by the SQLCipher Agent in order to enable
the offline decryption of a database.

The procedure to extract the above parameters is different for
the encryption key and the encryption parameters.

To extract the encryption key of an open database, it is suf-
ficient to hook the sqlite3_key and sqlite3_rekey functions
(and their variants), as shown in Fig. 9. As shown in the figure,

Interceptor.attach(sqlcipher.getExportByName("sqlite3_key"), {
onEnter: function (args) {
this.dbHandle = args[@]; // Database to be keyed
this.key_ptr = args[1]; // The key
this.key_size = args[2].toInt32(); // The length of the key (in bytes)
3,
onLeave: function (retval) {
if (retval.toInt32() == 0) {
// The key has been successfully set in the database
let key_bytes = this.key_ptr.readByteArray(this.key_size);
const db = dbDict.get(String(this.dbHandle.toString()))
db.key_hex = arrayBufferToHexString(key_bytes)
Report_key_to_FRIDA_Client(db.key_hex)

»;

Figure 9: SQLCipher: hooking of the sqlite3_key function to
extract the encryption key.

the SQLCipher Agent extracts the values of the input arguments
when entering the hooked function (including the encryption key;

W o

@

27
28

lines 3-5) and stores the extracted information in the in-memory
dictionary dbDict before leaving that function, once it is sure that
the key has been correctly set (lines 10-12). 4 Finally, the key is re-
ported to the FRIDA Client (action denoted by the generic function
Report_key_to_FRIDA_Client (line 7)).

Conversely, to extract the encryption parameters, we extend the
hook to the sqlite3_close function (already shown in Fig. 8) to
include also the queries for these values to the database engine.
By doing so, we avoid the need of instrumenting all the possible
SQLCipher functions that could change these values at run time.
The extended code for the hook to the sqlite3_close function is
shown in Fig. 10, where the unchanged parts of the code from Fig. 8
are replaced by comments in square brackets (lines 3 and 12).

Interceptor.attach(sqlcipher.getExportByName("sqlite3_close"), {
onEnter: function (args) {
[CODE FROM LINE 3 TO LINE 5 OF Fig. 8 GOES HERE]
// Note: pragmaKeys is a list of the PRAGMA names associated with the
encryption parameters
for (const pragmaKey of pragmaKeys) {
db.params[pragmakey] = getPragmaValue(db, pragmaKey) // Extract parameter
pragmaKey
Report_params_to_FRIDA_Client(db.params[pragmaKey])
}
}
»;

[CODE FROM LINE 8 TO LINE 14 OF Fig. 8 GOES HERE]
function getPragmaValue(nativeDb: NativeDb, name: string) {
// Runs a PRAGMA statement to get the value associated with 'name'
const errorMsgPtr = Memory.alloc(Process.pointerSize)
let val: string[] = [];
const callback = new NativeCallback((_argl, count, data, columns) => {
for (let i = 0; i < count; i++) {
const arrayElementPointer = data.add(Process.pointerSize *
i).readPointer()
const value: string | null = arrayElementPointer.readUtf8String()
if (value !== null)
val.push(value);
}
return 0;
}, 'int', ['pointer', 'int', 'pointer', 'pointer'l);
const retExec = callable_sqlite3_exec(ptr(nativeDb.handle),
Memory.allocUtf8String("PRAGMA " + name + ";"), callback, NULL,
errorMsgPtr)
return val;

Figure 10: SQLCipher: extension to the hook for
sqlite3_close to extract the encryption parameters.

As shown in Fig. 10, the encryption parameters are obtained
by executing a series of SQL PRAGMA statements (embedded into
the getPragmaValue function (lines 13 — 28)) to retrieve the value
of the encryption parameters just before the database is closed.
This function is repeatedly called by the onEnter callback (see line
5); the result of each call is stored in the in-memory dictionary
db (line 6). At the end of this sequence of calls, the results are re-
ported to the FRIDA Client (action denoted by the generic function
Report_params_to_FRIDA_Client (line 7)).

4.2 Decrypting Realm databases

Realm is a database library (available for both Android and iOS)
which provides support to create and manage object-oriented data-
base for mobile applications, and whose adoption by apps is rapidly
“The hooks for the other variants of sqlite3_key() function as well as those for the

sqlite3_rekey() function and its variants are very similar and they are not shown
here to avoid repetitions.



gaining momentum. As such, a Plaintext extraction agent for
this library has been developed and included in our framework.
Realm provides both Java and Kot1lin libraries but, because of
space constraints, in this section we describe the Java library only.
The analysis of the documentation and of the source code of
Realm [32] indicates that:

e Realm uses only an encryption key (and not additional pa-
rameters, as instead done by SQLCipher) to encrypt and
decrypt data;

e to obtain the encryption key, it is sufficient to hook the
constructor of the RealmConfiguration class, which is used
to open an existing database;

e to obtain the plaintext data of an encrypted database, it is
sufficient to hook the close method of the Realm class.

The resulting code for these hooks is reported in Fig. 11.

Java.perform(function x() {
const RealmConfiguration = Java.use("io.realm.RealmConfiguration")
const Realm = Java.use("io.realm.Realm")
const File = Java.use("java.io.File");
function dumpDbToPlainText(realmConfigInstance) {
const filePlaintext = File.$new(plaintextPath)
const instanceRealm =
Realm.getInstance.overload('io.realm.RealmConfiguration').call(Realm,
realmConfigInstance)
instanceRealm.sharedRealm.value.writeCopy(filePlaintext, null);
b
RealmConfiguration.$init.overload(
'java.io.File',
'java.lang.String',
‘8",
'long',
'io.realm.RealmMigration’,
'boolean’,
'io.realm.internal.OsRealmConfig$Durability’,
'io.realm.internal.RealmProxyMediator',
'io.realm.rx.RxObservableFactory',
'io.realm.coroutines.FlowFactory',
'io.realm.Realm$Transaction’,
'boolean’,
'io.realm.CompactOnLaunchCallback"',
'boolean’,
'long',
'boolean’,
'boolean')
.implementation = function (realmPath
al, key, a3, a4, a5, a6, a7, a8, a9,
ale, all, al2, al3, al4, al5, al6) {
const toRet = this.$init(realmPath, a1, key,
a3, a4, a5, a6, a7, a8, a9,
ale, all, al2, al3, al4, al5, al6);
Report_key_to_FRIDA_Client(key)
return toRet
};
Realm.close.overload().implementation = function () {
dumpDbToPlainText (this.sharedRealm.value.getConfiguration())
b
»

Figure 11: Realm: hooking of the RealmConfiguration con-
structor and the class method.

4.2.1 Extracting plaintext contents To extract the plaintext
contents of the database, we hook the close method of the Realm
class (lines 37-39 of Fig. 11) by overwriting it with the
dumpDbToPlainText function (which is defined in lines 5-9). In this
function, the object named filePlainText (line 6) stores the plain-
text copy of the database, the input parameter realmConfigInstance
is used to open the database (line 7) and, finally, the writeCopy
function is invoked on the sharedRealm field contained in the
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Realm instance (line 8) to actually perform the plaintext copy of
the database.

4.2.2 Extracting the encryption key The JavaScript code
to hook the RealmConfiguration constructor is reported in lines
10-36 of Fig. 11. In particular, we first instantiate the name of the
method to hook (lines 10 — 27), and the code executed by the hook
(lines 28 — 36). The code of the hook first opens (and decrypts)
the database (line 31), and then sends to the FRIDA Client the
encryption key (by means of the generic function
Report_key_to_FRIDA_Client (line 34)).

4.3 Decrypting the Android Jetpack Security library

The Jetpack Security library is part of the Android Jetpack suite
of libraries and its main goal is to help developers follow security
best practices related to securely reading and writing files, as well
as key management through the Android Keystore system. Con-
sidering the wide adoption of Jetpack libraries in Android apps,
we developed a Plaintext extraction agent for the Jetpack
Security library and included it in our framework.

The Jetpack Security library provides an API both in Java
and Kotlin programming languages but, since both APIs are quite
similar in the functionality provided and in the interface, and due
to space limits, in this paper we describe the Java API only.

Jetpack Security provides two classes to securely reading and
writing data at rest, namely the EncryptedFile class (used to read
and write encrypted files) and the EncryptedSharedPreferences
class (used to encrypt keys and values in a preference file). Cur-
rently, our framework fully supports plaintext extraction from
EncryptedSharedPreferences instances only, but we are work-
ing to support also the plaintext extraction from EncryptedFile
instances (which we plan to present in a future work).

From the analysis of the documentation and of the source code
of Jetpack Security [4], we found that to obtain the plaintext
data of an encrypted preference file, it is sufficient to hook both
the create method of the EncryptedSharedPreferences class
(invoked to create an instance of this class) as well as the commit
and apply methods of the Editor nested class (invoked to commit
preferences changes from memory back to the preference file).
The reason to hook all the above methods is to cover all possible
experimental scenarios, including those where the preference file is
not changed (in this case, neither the commit and apply methods
will be invoked; therefore the plaintext extraction is performed in
the create method), and also where the preference file is modified
(in this case, hooking the commit and apply methods assures that
the most updated plaintext is extracted).

The resulting code for these hooks is reported in Fig. 12. As we
can note, each hook invokes the original (hooked) method and saves
the returned value in an auxiliary variabile ret, then dumps the
contents of the preference file in plaintext to the console through
the dumpSharedPref's function (defined at lines 1-10), and finally
returns the value returned by the hooked function that we pre-
viously stored in the variable ret. For instance, in the hook for
the create method, we first invoke the original create method
and save the returned value (representing an instance of an en-
crypted SharedPreferences) in the variable ret (line 23), then we
dump the preferences data in plaintext to the console by calling the
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dumpSharedPref's function (line 24), and finally we return the in-
stance of the encrypted SharedPreferences stored in the variable
ret (line 25).

function dumpSharedPrefs(sp) {
var m = sp.getAll();
var HashMapNode = Java.use('java.util.HashMap$Node');
var iterator = m.entrySet().iterator();
console.log("Shared Preferences:");
while (iterator.hasNext()) {
var entry = Java.cast(iterator.next(), HashMapNode);
Report_params_to_FRIDA_Client(entry.getKey(),entry.getValue())
)
)

Java.perform(function() {

const EncryptedSharedPrefs =
Java.use('androidx.security.crypto.EncryptedSharedPreferences');

const EncryptedSharedPrefsEditor =
Java.use('androidx.security.crypto.EncryptedSharedPreferences$Editor');

EncryptedSharedPrefs.create.overload(
'android.content.Context',
'java.lang.String'
'androidx.security.crypto.MasterKey',
'androidx.security.crypto.EncryptedSharedPreferences$PrefKeyEncryptionScheme',
‘androidx.security.crypto.EncryptedSharedPreferences$PrefValueEncryptionScheme')
.implementation = function(context, fileName, masterKey,
prefKeyEncryptionScheme, prefValueEncryptionScheme) {
var ret = this.create(context, fileName, masterKey,
prefKeyEncryptionScheme, prefValueEncryptionScheme);
dumpSharedPrefs(ret);
return ret;

}

EncryptedSharedPrefsEditor.apply.implementation = function() {
var ret = this.apply();
dumpSharedPrefs(this.mEncryptedSharedPreferences.value);
return ret;

3

EncryptedSharedPrefsEditor.commit.implementation = function() {
var ret = this.commit();
dumpSharedPrefs(this.mEncryptedSharedPreferences.value);
return ret;

Figure 12: Jetpack Security: hooking of the
EncryptedSharedPreferences class and of its Editor nested
class.

5 Experimental results

In order to validate the decryption framework we developed, we
performed experiments in which the decryption parameters are
extracted from real-world applications. > In these experiments, we
consider a set of applications that use either SQLCipher or Realm
to encrypt their databases, we install and initialize these apps on an
Android device (to ease the experimentation we use virtual Android
devices with the Android Emulator [10], but a rooted real Android
device could have been used instead without changing anything in
our experiments). For the experiments, we considered apps whose
decryption procedure has been already published in the literature,
so as to validate our framework against published results, and
in particular Wickr Me (version 5.84.6), Signal (version 5.19.4),
and Threema (version 4.8), whose decryption procedure has been
published in [19]. Note that while for Signal and Wickr Me we

5Note that we do not report here the plaintext of the data encrypted by these apps, since
we had no way to compare them to existing published works. We stress however that,
in this kind of validation experiments, our framework reported the correct plaintexts
of the above data.

use the same versions considered in [19], as these versions can still
be downloaded from the APKMirror site [36], for Threema we use
the version currently available on the Google Playstore as, to
the best of our knowledge, no previous versions of this app are
available on third-party sites like APKMirror.

Since all these apps use SQLCipher, we consider also Element
that, instead, uses Realm, although there are no published results
for it against which our results can be compared.

Concerning the apps using SQLCipher, namely Wickr Me, Signal

and Threema, with our framework we are able to extract the same
encryption parameters presented in [19] (except for the encryption
key, which is obviously different and thus not considered in the
validation). This can be verified by comparing the values of the
parameters extracted with our framework and reported in Table 2
(where, for each encryption parameter, we report its values ex-
tracted from the encrypted database generated by the above apps)
with those presented in [19]. For completeness, we also report the
encryption keys (truncated to avoid cluttering) extracted by our
framework, which however have been placed outside the main
table, as these values are, of course, different from those reported
in [19], as they have been created on a device different from those
used in the above paper.

We also performed some experiments to validate the results ob-
tained with the Realm Plaintext extraction agent. Given that,
to the best of our knowledge, there are no published results concern-
ing the decryption of Realm databases, we performed experiments
using Element [11], a secure messaging app which uses the Realm
library to manage encrypted databases. In particular, we tested our
agent with Element version 1.4.3. In our experiments we installed
Element on a virtual device and we populated its databases with
data by using the app to exchange messages. Then we instrumented
it with the Realm Plaintext extraction agent and, by using our
framework, we found out that it uses several encrypted databases,
which in all cases but two use different encryption keys. The list
of the encryption keys extracted are reported in Table 3. In order
to validate our agent, we use the Realm Studio [33], a developer
tool to easily manage Realm databases. In particular, we pass to
Realm Studio the encrypted databases and the encryption keys
extracted by our agent and we successfully obtain the plaintext
database contents.

6 Conclusions

In this paper, we have presented a framework for the decryption
of data encrypted by apps, which is based on the use of dynamic
instrumentation of app’s binary code by means of hooking. Our
framework has been conceived to be used only with test devices
used for forensic study purposes, and not with devices that need to
be forensically analyzed.

By executing suitable hooks when the app under study is exe-
cuted on a test device, our framework can export the plaintext of
data after they have been decrypted by the app, as well as the cor-
responding encryption key and parameters (when possible), thus
enabling the experimenter to access and analyze them.

Hooking works at the function level, meaning that once the
hook for a given decryption function has been developed for the
first time, it can be used with any app using the same function.
Therefore, by writing hooks for popular encryption libraries, it is
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Parameter Wickr Me Signal Threema
(database: wickr_db) (database: signal.db) (database: threema4 . db)

kdf_iter 256000 1 1
cipher_page_size 4096 4096 4096
cipher_use_hmac 1 1 1
cipher_plaintext_header_size 0 0 0
cipher_hmac_algorithm HMAC_SHAS512 HMAC_SHA1 HMAC_SHA512
cipher_kdf_algorithm PBKDF2_HMAC_SHA512 PBKDF2_HMAC_SHA1 PBKDF2_HMAC_SHA512
encryption key 0x3030316432353861653.. .. 0x6361376461316539303. .. 0x7822393131656362337. ..

Table 2: Main encryption parameters extracted with our framework from the encrypted database generated by Wickr Me, Signal
and Threema. Their values (except for the encryption keys) are the same one reported in [19].

matrix-sdk-auth.realm 0x7878C1FE4364FB8867BE645751917826CDE26C7A1CBDD...
disk_store.realm 0xF4C024F59FA71E203B8EC24DE83CF80A05CAA15840162...
crypto_store.realm 0xA35E9873554F56286527FD9926E957829DBCSF05BE1EA...
matrix-sdk-identity.realm 0xF4C024F59FA71E203B8EC24DE83CF80A05CAA15840162...
matrix-sdk-content-scanning.realm 0xF4C024F59FA71E203B8EC24DE83CF80A05CAA15840162...
matrix-sdk-global.realm 0xDDC9411EEBC27CDA10AA8398134D899A5C29D1CC538B8...

Table 3: List of encryption keys extracted by the Realm Plaintext extraction agent. Keys are truncated due to space constraints.

possible to support the decryption of data for all apps that use these
libraries. Our framework currently supports two prominent and
popular encryption libraries, namely SQLCipher [37] and Jetpack
Security [3], and the Realm [34] DBMS. We have validated it by
comparing our results with those reported in literature for several
real-word apps that use encryption.

As future work, we plan to expand the set of encryption libraries
supported by the framework, as well as to support also iOS.
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