
AS-SIM: An Approach to Action-
State Process Model Discovery

Please, cite this paper as:

Alessio Bottrighi, Marco Guazzone, Giorgio Leonardi, Stefania Montani, Manuel Striani,
Paolo Terenziani.

“AS-SIM: An Approach to Action-State Process Model Discovery.”
In: Michelangelo Ceci, Sergio Flesca, Elio Masciari, Giuseppe Manco, Zbigniew W. Raś (eds)

Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science, vol
13515, 2022. Springer, Cham. DOI: 10.1007/978-3-031-16564-1_32.

Publisher: https://doi.org/10.1007/978-3-031-16564-1_32

https://doi.org/10.1007/978-3-031-16564-1_32

AS-SIM: an approach to Action-State Process Model
Discovery

Alessio Bottrighi1, Marco Guazzone1, Giorgio Leonardi1, Stefania Montani1, Manuel
Striani2 and Paolo Terenziani1

1 DISIT, Università del Piemonte Orientale “A. Avogadro”, Alessandria, Italy
2 Dipartimento di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy

{alessio.bottrighi, marco.guazzone, giorgio.leonardi, stefa-

nia.montani,paolo.terenziani}@uniupo.it
{manuel.striani}@unito.it

Abstract. Process	model	discovery	has	gained	a	 lot	of	attention	 in	 recent	
years,	 to	mine	a	process	model	 from	traces	of	process	executions.	 	 In	our	
recent	work,	we	have	proposed	SIM	(Semantic	Interactive	Miner),	an	inno-
vative	process	mining	tool	able	to	discover	the	process	model	in	an	incre-
mental	way:	 first,	a	mining	module	builds	an	 initial	process	model,	called	
log-tree,	from	the	available	traces;	then,	such	a	model	is	refined	interactively	
with	domain	experts,	through	merge	and	abstraction	operations.	However,	
in	several	contexts,	traces	are	richer:	they	do	not	record	only	actions,	but	
also	states	(i.e.,	values	of	parameters	possibly	affected	by	the	actions).	A	typ-
ical	example	is	the	medical	domain,	where	traces	contain	both	actions	and	
measurements	of	patients’	parameters.	 In	 this	paper,	we	propose	AS-SIM	
(Action-State	SIM),	the	first	approach	aiming	at	discovering	a	comprehen-
sive	model,	in	which	two	distinct	classes	of	nodes	are	considered,	to	capture	
both	actions	and	states.	We	focus	on	the	definition	and	on	the	discovery	of	
the	initial	action-state	process	model	(called	action-state	log-tree),	while	in	
our	future	work	we	will	extend	SIM’s	merge	and	abstraction	operations	ac-
cordingly.
	
Keywords: Process Mining, Process Model Discovery, Mining action+state evo-
lution

1 Introduction

Process Mining (PM) [1] describes a family of a-posteriori analysis techniques able to
extract non-trivial information from the event log, a repository storing the sequences
of actions (traces henceforth [1]) that have been executed at a given organization.
Within PM, process model discovery techniques take as an input the traces and build a
process model, focusing on its control flow constructs. The mined process model is an
oriented graph (whose semantics can typically be modeled as Petri Nets), where nodes
represent trace actions and arcs represent the ordering relation between them. Process
model discovery is the most relevant and widely used PM sub-field, and has given birth

2

to a large family of algorithms. Such approaches have proved to be successful in several
applications, such as, e.g., business or production processes. However, in some do-
mains, actions are strictly dependent on the state they operate on, and their effect (in
terms of the variations they produce on such a state) is not strictly predictable\deter-
ministic. In all such domains, organization logs usually contain also state information.
As a typical example, in medicine, actions depend on and modify the state of a patient,
and patient traces record (possibly timestamped) sequences, where actions are inter-
leaved with state descriptions (consisting of the recording of patient’s parameters val-
ues), or the information recorded in the hospital information system can be converted
into this format (see e.g. [2]). In these cases, mining a model in which only the flow of
actions is considered looks reductive, since:

(i) The model would be incomplete, as it would not consider the state in which ac-
tions are performed, and their effects on such a state, and

(ii) Such pieces of information are indeed available, and can be mined from the traces
and exploited to better characterize the model itself.

In this paper, we propose a new line of process mining, that we call action-state process
model discovery, in which we extend “traditional” process model discovery to consider
also states. Though our proposal is general, and could be carried on as an extension of
other miners in the literature, for the sake of concreteness in this paper we describe it
as an extension of SIM (Semantic Interactive Miner), a mining algorithm we developed
in the past [3].

SIM supports experts in an interactive step-by-step procedure for discovering a process
model. Interactive process discovery in SIM starts with an algorithm which mines a
process model, called log-tree, from the log. The log-tree is already a process model,
but possibly an overfitting one, since it perfectly corresponds to the input traces. Ex-
perts can move progressively to more generalised graph-based process models, through
the application of merge and abstraction operations. Given a set of occurrences of an
activity pattern, merge operations modify the current model by “putting them together”.
On the other hand, abstraction operations are based on a-priori knowledge about action
decompositions, and support the possibility of abstracting component actions into the
macro-actions constituted by them. Each process model can then be evaluated by ex-
perts both quantitatively and qualitatively. Through a versioning mechanism, experts
can also navigate the history of the versions of the model, generate new versions, or
backtrack to a previous one, until they “approve” one of the models.

In this paper we present AS-SIM (Action-State SIM), which extends SIM to deal with
state mining as well. In particular, in Section 2 we present our representation formal-
ism. In Section 3, we describe our approach to mine the initial	action-state	process	
model.	Section	4	is	devoted	to	comparisons	and	conclusions.

Note that we	focus	on	the	definition	and	on	the	discovery	of	the	initial	action-state	
process	model	(called	action-state	log-tree),	while	in	our	future	work	we	will	ex-
tend	merge	and	abstraction	operations	accordingly.

3

2 Action-state log-tree: representation formalism

In a SIM process model, only actions were considered, and each node in the initial log-
tree (or in the graph obtained using merge and abstraction operations) could represent
either a single action, or a set of actions to be executed in any order. In AS-SIM we
consider input traces containing both actions and state information (about a set of pa-
rameters). Therefore, the representation formalism needs to be extended, to collect in
the action-state log-tree (and, later, in the action-state graph), also state details.
Notation. We denote by 𝔸 the domain {a1, …, an} of actions, by P the domain {p1, …,
pm} of parameters, and by DPI the domain {v1, …, vk} of the values that can be assumed
by the parameter pi (where DPI is a discrete and finite domain, as discussed in Section
3.1). Also, given a set T of traces, we denote by 𝔸T the set of all the actions appearing
in the traces in T.
Definition 1 (state). We define state as a nonempty set of pairs <pi,vj> (where piÎ P
and vjÎ DPJ and pi appears at most once) appearing together in the trace (i.e., belonging
to the same “observation”). Let S be the domain of possible states.

Notably, by “state” we refer to a set of variables, measured at a given timepoint, that
describe the situation of the entity on which the process at hand operates, e.g., a patient
if we work in the medical domain. Indeed, in this case,. according to [5], "states describe
clinical situations in terms of a set of state variables with a clinical sense". In real con-
texts, some state variables may be unavailable at the time of measurement – so the data
collection can be incomplete.
In AS-SIM, we distinguish between two types of nodes for action-state log-trees: ac-
tion-nodes and state-nodes.

Definition 2 (action-node, state-node). Action-nodes represent a pair <As,Ts>, and
state-nodes represent a pair <Ss,Ts>, where
● As denotes a (possibly unary) set {a1, …, ak} of actions (aiÎ	𝔸, 1≤i≤k). Actions
in the same node are in any-order relation.
● Ss denotes a (possibly unary) sequence (s1, …, sk) of states (siÎS, 1≤i≤k).
Notice that, in such a way, each path from the root of the action-state log-tree to a given
node N denotes a set of possible action-state patterns (called support patterns of N
henceforth), obtained by following the order represented by the arcs in the path to visit
the action-state log-tree, ordering in every possible way the actions in each action-node,
and considering the sequence of states in state-nodes. For instance, the path {a,b} →
(s1,s2) → {c}, where a,b,cÎ	𝔸 and s1,s2ÎS represents the support patterns “a b s1 s2 c”
and “b a s1 s2 c”.
● Ts represents a set of pointers to all and only those traces (called support traces
henceforth) in the log whose prefixes exactly match the one of the support patterns of
As or Ss.

Indeed, action-nodes support a compact representation of sets of actions which can be
executed in any order, and state-nodes compact the representation of a sequence of
states into a unique node. Two or more actions are in any order only when their order

4

of execution is not relevant to the process goals. Additionally, we introduce a further
type of nodes, macro-state-nodes, as a way to incapsulate alternative state-nodes into a
unique node.

Definition 3 (macro-state-node). Macro-state-nodes represent a set of state-nodes.

3 Mining the action-state log-tree

The mining process takes as an input the event log (i.e., a set of traces), and provides
as an output a tree, containing action-nodes and macro-state-nodes (notably, we intend
that a macro-state-node may also include a single state-node). In general, input logs can
assume different forms. To facilitate the definition of the mining algorithm (section
3.2), we first perform pre-processing operations on the log (section 3.1). Then, we ob-
tain the final action-state log-tree through a post-processing transformation (section
3.3).

3.1 Log pre-processing

In this pre-processing phase, the values of the parameters in the input traces are discre-
tized, according to a set of discretization functions.

Definition 4 (domain-discretization functions). Given the domain P = {p1, …, pm} of
parameters, defined (in the input traces) over the domains {DP1, …, DPM}, we define do-
main-discretization functions as a set of functions fddf ={f1, …, fm}, where, for each
fiÎfddf, fi is a function that maps values of the domain DPI into values of a new, finite
domain D’PI (i.e., fi: DPI→ D’PI).

In the approach described in this paper, we assume that domain-discretization functions
are provided as an input to AS-SIM. Notably, however, such functions can be either
provided by domain experts, or pre-computed on the basis of the (values of the param-
eters in the) input traces (e.g., considering the values probability distributions).

To clarify the concepts exposed, we refer to the domain of stroke treatment. In partic-
ular, the patients admitted to the stroke unit should be stabilized before starting any
treatment. The main parameters to monitor to check the patient’s state: temperature,
glycemia, diastolic and systolic pressure. Further patient’s features are considered to
define the treatment strategy, such as age and time since the stroke onset. We assume
that the domain-discretization function is defined in terms of discretization levels pro-
vided by domain experts. An example is reported in Table 1.

PARAMETER MEASURE
UNIT

DISCRETIZATION LEVELS

Temperature (T) ° C [0 – 35); [35 – 37.5); [37.5 and beyond)

5

Glycaemia (G) mg/dL [0 – 50); [50 – 180); [180 and beyond)

Diastolic pressure (DP) mmHg [0 – 60); [60 – 120); [120 and beyond)

Systolic pressure (SP) mmHg [0 – 100); [100 – 185); [185 and be-
yond)

Age Years [0 – 18); [18 – 45); [45 – 80); [80 and
beyond)

Time since onset (TSO) Hours [0 – 4.5); [4.5 and beyond)
Table 1: discretization levels of patients' parameters

Moreover, in general, each trace in the log consists of a sequence of elements, where
each element may be either an action or a state, with no constraint. In particular, also
sequences of states may appear in the traces. To facilitate the construction of state-
nodes (see Section 2), in the pre-processing phase, we merge sequences of states into a
unique element, modeling the sequences of values assumed by the parameters, at each
state.
For example, during the patient stabilization phase the monitoring data are collected
periodically to check the patient’s state, in order to take actions accordingly. This can
generate sequences of states in the traces; Figure 1 shows an excerpt of a trace contain-
ing a state sequence.

Figure 2: excerpt of trace containing sequence of states

In Figure 1, each vertical line represents an action (identified by the character “A”
above the line) or a state (character “S”). After the pre-processing phase, the same trace
will be arranged as shown in Figure 2.

6

Figure 2: trace in Figure 1 after pre-processing

In Figure 2, the two consecutive states in Figure 1 are merged into a unique element. In
this merged state, each parameter is represented as a sequence, where not measured
data are indicated with the value “•”.

3.2 Mining algorithm

In this section, we present the algorithm to build the action-state log-tree as an extension
of the one used in SIM [3]. The pseudocode is shown in Algorithm 1. The func-
tion Build-Tree in Algorithm 1 takes as input a variable index, representing a given po-
sition in the traces, a node ⟨P,T⟩ (either an action-node or a state-node), and two user-
defined thresholds α and β (for details, see below). Initially, it is called on the first
position in the traces (we assume that all the traces start with a dummy action #) and on
the root of the action-state log-tree (which is a dummy node, corresponding to the #
action; therefore, initially, index=0, P={#} and T is the set of all the traces).

Algorithm 1: Build-Tree pseudocode.

1. Build-Tree(index, ⟨P,T⟩, α, β)
2. ⟨nextPS, nextPA	⟩ ¬ getNext(index+1, T, α)
3. if (nextPS È nextPA) not empty then
4. nextNodes ¬ XORvsANY(⟨nextPS, nextPA	⟩, T, β)
5. foreach node <P’,T’> ϵ nextNodes do
6. AppendSon(⟨P’,T’⟩, ⟨P,T⟩)
7. Build-Tree(index+|P’|, ⟨P’,T’⟩, α, β)
8. end
9. end

The function getNext (see line 2) inspects the traces in T to find all possible next ele-
ments (either actions or states). At this stage, “rare” patterns can be ruled out. Specifi-
cally, if P={X}, and Y is a possible next element, Y will be provided in output by get-
Next only if the edge frequency EF of the sequence X > Y is above a user-defined thresh-
old α, where:

𝐸!(𝑋 > 𝑌) =
|𝑋 > 𝑌|
|𝑇|

being |X > Y| the number of traces in T in which X is immediately followed by Y (i.e.,
the cardinality of the support traces of Y), and being |T| the cardinality of the support

7

traces of X. Setting α > 0 allows to rule out noisy patterns. Note that, if rare/noisy pat-
terns are ruled out, the resulting action-state log-tree is not guaranteed to still have pre-
cision=1 and replay-fitness=1 (see [4]); however, in this paper, we will set α=0, and
thus consider all the traces in the initial model construction.
On the remaining next states nextPS and next actions nextPA, the func-
tion XORvsANY identifies possible sets of actions in any-order (see line 4). Notably, (i)
we assume that states cannot be in any-order (so they are directly managed as XOR sons
of the current node), and (ii) the same action may appear more than once as a son of the
current node (e.g., as a “unitary” action-node and\or in one or more “any-order” action-
nodes).
To identify any-order sets of actions appearing in nextPA, support traces in T are in-
spected at positions index+2 (binary any-order), index+3 (ternary any-order) and so on,
until no “wider” any-order can be determined. For the sake of simplicity, let us consider
the case of binary any-orders: XORvsANY calculates the dependency frequency
A → B between every action pair ⟨A,B⟩ in nextPA ×  nextPA by considering sequences of
two actions A (at position index+1) and B (at position index+2) following P in the traces
T as follows:

𝐴 → 𝐵 =
1
23

|𝐴 > 𝐵|
∑ |𝐴 > 𝐶|"∈$!

+
|𝐴 > 𝐵|

∑ |𝐷 > 𝐵|%∈$!
8

where, always considering the traces in T, |A > B| is the number of traces in which A is
immediately followed by B, |A > C| is the number of traces in which A is immediately
followed by some action C	∈	𝔸T, and |D > B| is the number of traces in which B is im-
mediately preceded by some action D ∈	𝔸T. If both the dependency frequencies of
A → B and B → A are above the given (user-defined) threshold β, this means that A and
B occur frequently in any-order in the same traces. Thus, XORvsANY identifies an any-
order relation between A and B, and creates a new node A&B with the associated sup-
port traces.
The output nextNodes of the function XORvsANY is a set of nodes ⟨P′, T′⟩. Each node
is appended to the action-state log-tree (function AppendSon; see line 6), and Build-
Tree is recursively applied to each node (with the first parameter index properly set ac-
cording to the cardinality of P’; see line 7).
Finally, a-posteriori, we create a dummy node $, and connect all the leaves to it.

Figure 3: action-state log-tree for patients’ stabilization in stroke disease

8

Figure 3 shows the action-state log tree, based on traces from the stroke domain focus-
ing on the patients’ stabilization phase described in Section 3.1. Here, the states are
represented by rectangles, while the actions by ellipses. In the process in Figure 3, after
the neurological evaluation, different stabilization strategies are performed (including
Hyperglycemia, Fever or Hypertension treatments) on the basis of the patients’ states,
before adopting the most appropriate treatment (Thrombolysis or Anti-aggregants).

3.3 Model post-processing: generating macro-state-nodes

The action-state log-tree, as modeled so far, represents in a compact way the input
traces. However, an additional simplification can be provided. Given the fact that, in
many real situations, the number of state parameters may be high, as well as the number
of values they may assume (even after discretization), states deriving from different
traces are rarely identical, so that the action-state log-tree “spans” in many different
branches whenever states appear. We propose, as a first “compacting” step, to automat-
ically merge all the state-nodes in the action-state log-tree which are preceded by the
same action-node and are followed by the same action-nodes, into a unique macro-
state-node, representing their union.

Figure 4: action-state log-tree in Figure 3 after post-processing

Figure 4 shows the action-state log tree in Figure 3, after the post-processing step. In
particular, the two upper branches are composed by the same sequence of actions, there-
fore the post-processing algorithm merges the two state-nodes between “Neurological
evaluation” and “Hyperglycemia treatment”; the state-nodes between “Hyperglycemia
treatment” and “Hypertension treatment” and the state-nodes between “Hypertension
treatment” and “Thrombolysis”.
A possible interpretation of this generalization is that the same treatment strategy can
be applied for patients having slightly different conditions.
Notably, besides making models more compact and “readable”, the introduction of
macro-state-nodes facilitates further processing stages (operating on states), as dis-
cussed in future work (see section 4).

9

3.4 Properties of the action-state log-tree model

The action-state log-tree is a tree, and has precision = 1 (i.e., each path in the action-
state log-tree corresponds to at least one trace in the log), and replay-fitness = 1 (i.e.,
each trace in the log can be replayed in the action-state log-tree with no errors) (see
[4]).

4 Comparisons, future work and conclusions

In this paper, we have proposed the first process model discovery approach mining and
providing an explicit representation of the flow of both actions and states from input
traces. Indeed, some approaches have started to face such an important issue. In the
area of medical data mining, Kamisalic et al. [5] have considered the case of traces
representing sequences of patient visits. Each visit assesses the state of a patient, and is
followed by a prescription (indicating the therapies to be followed until the next visit).
From this input, they mine a graph, where nodes represent patient’ states, and arcs are
labeled by the therapies leading from the input to the output states. With respect to our
approach, therefore, they focus on states and on their transitions, not on the overall
action-state process model.
In the PM literature, it is worth mentioning the work by De Leoni et al (see, e.g., [6,
7]), that takes into account not only the (actions) control flow perspective, but also the
data flow one. Specifically, they analyze the data flow to find rules explaining why
individual cases take a particular path, i.e., they explain the behavior of process in-
stances with respect to decision points in the model on the basis of observed data. To
this end, they resort to conformance checking (another PM sub-field) techniques to
align an event log containing data information and a process model with decision
points. These alignments are then used to generate a classification problem, afforded
by decision trees. The output is an extended Petri Net, where guards are introduced to
describe the effect of data on transitions, i.e., what actions have to be executed on the
basis of data values.
Notably, however, none of the above approaches has explicitly addressed the general
problem of considering input traces in which action and state information are provided,
to discover a process model explicitly distinguishing between action and state nodes.
Such a generalized model is, in our opinion, extremely important in all domains where
the effects of actions on states have to be analysed. We therefore believe that our ap-
proach may become the starting point of a new stream of research in the area of process
model discovery.
In the future, we plan to extend the work along several lines.
First of all, we will conduct an extensive experimental evaluation. Though the proposed
methodology is general, we will consider the medical context, where we have been
operating since a long time. In particular, we will resort to the public available patient
data in the Mimic database [8].
Other major evolutions regard the discovery process. The action-state log-tree is al-
ready a process model, but possibly an overfitting one, since it perfectly corresponds to
the input traces (see Section 3.4). Experts may want to move progressively to more
generalised graph-based process models. In SIM, considering only actions, such

10

generalizations could be obtained through the application of a wide class of merge and
abstraction operations. In the future, we aim at extending AS-SIM along these direc-
tions, and more specifically we will work on the:
● Definition of intra-state generalization operations. Such operations will apply
to macro-state-nodes, to discover hidden pieces of information (e.g., to abstract param-
eter trends from sequences of states) and to use them in order to simplify the state rep-
resentation, making it more “compact”;
● Definition of merge and abstraction operations, generalizing and comple-
menting the current operations in SIM in order to consider also state-nodes.

References

1. Aalst, W.M.P. van der: Process Mining - Data Science in Action, Second Edi-
tion. Springer (2016). https://doi.org/10.1007/978-3-662-49851-4.
2. Wang, S., McDermott, M.B.A., Chauhan, G., Ghassemi, M., Hughes, M.C.,
Naumann, T.: MIMIC-Extract: a data extraction, preprocessing, and representation
pipeline for MIMIC-III. In: Ghassemi, M. (ed.) ACM CHIL ’20: ACM Conference on
Health, Inference, and Learning, Toronto, Ontario, Canada, April 2-4, 2020 [delayed].
pp. 222–235. ACM (2020). https://doi.org/10.1145/3368555.3384469.
3. Bottrighi, A., Canensi, L., Leonardi, G., Montani, S., Terenziani, P.: Interac-
tive mining and retrieval from process traces. Expert Systems with Applications. 110,
62–79 (2018). https://doi.org/10.1016/j.eswa.2018.05.041.
4. Buijs, J., Dongen, B. van, Aalst, W. van der: On the role of fitness, precision,
generalization and simplicity in process discovery. In: On the Move to Meaningful In-
ternet Systems: OTM 2012. pp. 305–322. Springer (2012).
5. Kamisalic, A., Riano, D., Welzer, T.: Formalization and acquisition of tem-
poral knowledge for decision support in medical processes. Comput Methods Programs
Biomed. 158, 207–228 (2018). https://doi.org/10.1016/j.cmpb.2018.02.012.
6. Leoni, M. de, Aalst, W.M.P. van der: Data-aware process mining: discovering
decisions in processes using alignments. In: Shin, S.Y. and Maldonado, J.C. (eds.) Pro-
ceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13,
Coimbra, Portugal, March 18-22, 2013. pp. 1454–1461. ACM (2013).
https://doi.org/10.1145/2480362.2480633.
7. Leoni, M. de, Felli, P., Montali, M.: A Holistic Approach for Soundness Ver-
ification of Decision-Aware Process Models. In: Trujillo, J., Davis, K.C., Du, X., Li,
Z., Ling, T.W., Li, G., and Lee, M.-L. (eds.) Conceptual Modeling - 37th International
Conference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings. pp. 219–235.
Springer (2018). https://doi.org/10.1007/978-3-030-00847-5_17.
8. Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi,
M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: MIMIC-III, a freely ac-
cessible critical care database. Scientific Data. 3, 160035 (2016).
https://doi.org/10.1038/sdata.2016.35.

