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Abstract: Process model discovery covers the different methodologies used to mine a process model
from traces of process executions, and it has an important role in artificial intelligence research.
Current approaches in this area, with a few exceptions, focus on determining a model of the flow
of actions only. However, in several contexts, (i) restricting the attention to actions is quite limiting,
since the effects of such actions also have to be analyzed, and (ii) traces provide additional pieces
of information in the form of states (i.e., values of parameters possibly affected by the actions); for
instance, in several medical domains, the traces include both actions and measurements of patient
parameters. In this paper, we propose AS-SIM (Action-State SIM), the first approach able to mine a
process model that comprehends two distinct classes of nodes, to capture both actions and states.

Keywords: process mining; process model discovery; mining action-state evolution

1. Introduction

Process mining (PM) [1] consists of different methodologies of a posteriori analysis,
able to take as input a repository (termed event log) and storing the sequences of actions
(traces henceforth [1]) that have been executed at a given organization, to extract non-trivial
information. Process model discovery is one of the main sub-areas of PM and aims at mining
a process model from an event log. A process model is a directed graph, where nodes
represent actions in the traces and arcs represent the ordering relation between them. Many
different process discovery methodologies have been proposed in the literature, obtaining
successful results in many application domains, such as business or production processes.

However, while in many contexts a “traditional” process model representing the flow
of actions suffices for including all the key elements for further analysis, in other cases, the
actions cover only one part of the useful information, since their enactment depends on
the current state of affairs and their effect (in terms of the variations they produce in such
a state) is not strictly predictable/deterministic. It is therefore essential to also include a
description of the evolution of the state in the model. In all such applications, event logs
usually also contain state information. For instance, in a medical context, actions are poorly
meaningful if they are not related to the current state of the patient, and considering their
effects (in terms of modifications to the previous state of the patient) is a crucial issue. In
fact, patient traces log sequences of (timestamped) actions and states (where a state is the
recording of a patient’s parameters), or the information stored in the hospital information
system can be converted into this format (see e.g., Ref. [2]).
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In these domains, mining a model considering only the flow of actions is limiting,
since

i. the model would be incomplete, as it would neglect the state where actions are
performed, and actions’ effects on such a state, and

ii. state information are indeed available in the input traces and can therefore be ex-
ploited.

In this paper, we aim to introduce a new line of research in process model discovery,
which we term action–state process model discovery, to extend “traditional” process model
discovery techniques to also cope with state-related information.

The key contributions of our proposal are general and could be applied to extend
different process miners in the literature. However, for the sake of concreteness, in this
paper, we specifically work to extend SIM (semantic interactive miner), a mining algorithm
we have recently developed [3,4]. With respect to other miners in the literature, SIM
is characterized by the fact that it supports highly interactive (with analysts/domain
experts) step-by-step sessions of work to discover the process model, starting from a basic
automatically mined model with maximal precision [5] (i.e., fully adherent to the event log
content), and then progressively generalizing/simplifying it through the application of
merge and abstraction operations (see Section 2).

As usually happens in this area of research, the objective of our approach is the mining
a specific process model from a given event log; however, the approach is general enough
to be applied to different domains, and its usage can cover a wide variety of situations, each
one described by its own event log; and the corresponding process model will be mined.
This approach would be particularly useful in those situations where the state information
is relevant and impacts on the action flow.

In the following, we thus present AS-SIM (action-state SIM), which extends SIM to
also deal with state mining. In particular, in Section 2, we briefly overview SIM. In Section 3,
we present our representation formalism: a bipartite graph consisting of both action nodes
and state nodes. In Section 4, we outline the general behavior of AS-SIM and its basic
functionalities. In Section 5, we describe our approach to the pre-processing of the log
and mining the action-state log. In Section 6, we propose a methodology to achieve a
compact representation of state nodes (possibly interacting with analysts). In Section 7, we
present an experimental evaluation to assess system performance. In Section 8, we discuss
related work. The extensions of SIM’s merge and abstraction facilities to operate with the
new bipartite process model are left as future work, as discussed in Section 9.

2. Overview of SIM

In this section, we provide an overview of the main features of SIM. For more details,
please refer to our previous works [3,4].

In the area of process discovery, many systems are designed as “black boxes”, where
an event log is inputted and a model is outputted based on specific parameters. If the
analysts are unsatisfied with the outputted model, they can only re-run the system using
different parameters, resulting in a “blind search”, as they are unaware of the effect of
parameter values on the output model. Instead, SIM seeks to provide a solution by enabling
analysts to leverage their knowledge in model discovery and also use pre-encoded domain
knowledge (where possible).

SIM provides the possibility of refining (ISA relations) and composing (Part-Of rela-
tions) process actions through (taxonomic) a priori domain knowledge. This begins with
automatically mining an initial process model from the event log with the precision and
replay-fitness [5] set to 1. Although generalizations may be required due to incomplete
logs, SIM aims to ensure that these generalizations are driven by analysts via an interactive
and incremental process. This is achieved by applying a set of operations to generalize the
initial model in different steps.
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In synthesis, four main aspects characterize SIM’s definition and behavior:

1. Initial model: SIM starts by mining an initial model from the log with precision = 1
and replay-fitness = 1. This model exactly covers all the behavior described by the
input traces in the logs. However, since the logs are incomplete, some forms of
generalization are needed. Thus, generalizations are directly driven by the analyst
through an interactive and incremental process, to avoid losing precision and/or
replay-fitness;

2. Generalizations: In SIM, generalizations can be obtained by applying two types of
operations: merge operations and abstraction operations. Merge operations merge the
instances of some paths occurring in the model, and SIM provides facilities to specify
paths, search the occurrences in the model, and merge them. Abstraction operations
move from a process description, where actions are reported at the ground level to
more user-interpretable/compact descriptions, in which sets of actions are abstracted
into “macro-actions” subsuming them (ISA relations) or constituted by them (Part-Of
relations);

3. Incremental and selective application of generalization operators: SIM provides analysts
with the possibility of selectively applying generalization (e.g., the analyst can decide
which occurrences of the path to merge or which instances of the actions composing a
macro-action to abstract), operating step-by-step. In this way, the final model can be
built by applying subsequent merge and abstraction steps, leading to a progressively
more generalized version.

4. Model evaluation and versioning: SIM enables analysts to perform a quantitative eval-
uation of the model, considering parameters such as replay-fitness, precision, and
generalization. This also allows analysts to backtrack to previous versions of the
model (versioning).

3. Action-State Log-Tree: Representation Formalism

The starting point in the definition of the AS-SIM formalism is the definition of the
domains of actions and states.

As in SIM, the domain A of actions is simply the set of all the actions appearing in the
input traces (possibly, a preprocessing phase can be adopted to filter out actions appearing
below a given threshold frequency). On the other hand, in AS-SIM, states are described
in terms of the values assumed by a set of parameters (i.e., features) measured at a given
point of time as reported in the traces, and describing (possibly in a partial way) the context
where actions are executed.

For the sake of generality, in AS-SIM, we distinguish parameters along two different
dimensions:

• along the temporal dimension, a parameter may be constant (in cases where the value of
the parameter cannot vary in time) or changing (in this case, the parameter assumes
the form of a time series);

• along the value-type dimension, a parameter may be numeric (in such a case, the measur-
ing unit adopted for the parameter must be part of the domain description), symbolic
(i.e., assume a finite set of non-numeric values that cannot be ordered along a scale;
e.g., true/false) or categorical (i.e., assume non-numeric values that are ordered along
a scale; e.g., low < medium < high).

Independently of the value-types, every single value for a parameter represents a
measurement/observation on the parameter and is modeled using a pair 〈value, timestamp〉.

Notation. We denote byA the domain {a1, . . . , an} of actions, byP the domain {p1, . . . , pm}
of parameters, and by PDi the domain {v1, . . . , vki

} of the values that can be assumed by the
parameter pi. In addition, we denote by T the domain of time (our approach is independent
of the chosen time granularity).

Each state is characterized by the values assumed by a nonempty subset of the param-
eters in P . For instance, in the context of medical traces, “states describe clinical situations
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in terms of a set of state variables with a clinical sense” [4]. In real contexts, some state vari-
ables may be unavailable at the time of measurement, so that only a subset of parameters
in P is considered.

Definition 1 (State). A state is a nonempty set of pairs 〈pi, 〈〈v1, t1〉, . . . , 〈vj, tj〉〉〉 in which
pi ∈ P represents a parameter and 〈〈v1, t1〉, . . . , 〈vj, tj〉〉 with j > 0 is a timestamped series of
observations of values (v1, . . . , vj) ∈ PDi for pi and with t1 < · · · < tj, where t1, . . . , tj ∈ T .
Domain of possible states is denoted by S .

For the sake of clarity, we assume the conventions that

• the (unique) value of constant parameters is collected in the initial state (which may
possibly also contain values for some of the changing parameters);

• each state (except the initial one) follows a source action (or a set of actions) and
precedes a destination action (or set of actions), and contains, for each observed
parameter, all the 〈value, timestamp〉 observations collected for the parameter in the
slice of time between the execution of the source action and the destination action.

AS-SIM adopts two types of node: action nodes and state nodes. Action nodes support
a compact representation of sets of actions, which can be executed in any order and are
defined as follows:

Definition 2 (Action node). An action node represents a pair 〈As, Ts〉 where

• As denotes a nonempty set {a1, . . . , ak} of actions (ai ∈ A, 1 ≤ i ≤ k). Actions in the same
node are in any-order relation;

• Ts is the set of support traces in the log (see Definition 6 below).

The domain of action nodes is denoted by AN.

State nodes provide a compact representation of a timestamped sequence of parameter
observations (i.e., all the observations between two action nodes) into a unique node.

Definition 3 (State node). A state node represents a pair 〈ST, Ts〉, where

• ST ∈ S denotes a state (see Definition 1);
• Ts is the set of support traces in the log (see Definition 6 below).

The domain of state nodes is denoted by SN.

In AS-SIM process models, oriented arcs connect a source node and a destination node
to model a temporal sequence relation (i.e., ordering) between them. However, since for
the sake of compactness we model a series of observations of parameter values (with no
action interleaved between them) into a unique state node, in the AS-SIM formalism we
only admit arcs connecting

• two actions nodes N1 and N2 (to represent the fact that the action(s) in N1 precede(s)
those in N2);

• an action node N1 to a state node N2 (to represent the fact that the action(s) in N1
precede(s) the state described in N2);

• a state node N1 to an action node N2 (to represent the fact that the state in N1 precedes
the action(s) in N2).

On the other hand, arcs starting from a state node and ending in a state node are not
allowed. Thus, in AS-SIM, a process model graph is a directed graph, in which two classes
of node (action nodes and state nodes) are connected by oriented arcs, as discussed above.
In the graph, an initial node can be distinguished.

Definition 4 (AS-SIM process-model graph). In AS-SIM, a process-model graph is a struc-
ture G = 〈Nodes, Arcs〉where Nodes ⊆ (AN∪SN) is the set of nodes and Arcs = {〈x, y〉|x, y ∈
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Nodes ∧ ((x ∈ AN ∧ y ∈ AN) ∨ (x ∈ AN ∧ y ∈ SN) ∨ (x ∈ SN ∧ y ∈ AN))} is the set of
arcs (restricted as discussed above).

In particular, the initial process model (which is automatically mined by AS-SIM, as
discussed in [4]) has the form of a rooted tree (i.e., a tree with a unique root), which we call
action-state log-tree. As in SIM, in AS-SIM each node in the log-tree also contains pointers
to all the input traces “corresponding” to it (called support traces), as defined below.

Definition 5 (Support patterns). Each path from the root of the action-state log-tree to a given
node N denotes a set of possible action-state patterns (called support patterns of N henceforth),
obtained by following the ordering represented by the arcs in the path to visit the action-state log-tree,
ordering in every possible way the actions in each action node, and considering the parameter values
in state nodes.

For instance, the path

N1 : {a, b} → N2 : {〈pi, 〈〈v1, t1〉, . . . , 〈vk, tk〉〉〉〈pj, 〈〈v1, t1〉, . . . , 〈vh, th〉〉〉} → N3 : {c}

where N1 and N3 are action nodes (with a, b, c ∈ A) and N2 is a state node, repre-
sents the support patterns a b {〈pi, 〈〈v1, t1〉, . . . , 〈vk, tk〉〉〉〈pj〈〈v1, t1〉, . . . , 〈vh, th〉〉〉} c and
b a {〈pi, 〈〈v1, t1〉, . . . , 〈vk, tk〉〉〉〈pj, 〈〈v1, t1〉, . . . , 〈vh, th〉〉〉} c.

Definition 6 (support traces). Given a node N in an action-state log-tree, the support traces
of N are all and only those input traces in the log whose prefixes exactly match one of the support
patterns of the node N.

Besides the process-model graph, a process model in AS-SIM should also account for
the description(s) of the properties of the parameters used to describe states. Thus, a set
of parameter tables is also introduced. Notably, as we will detail in the following, certain
properties of parameter representation can be changed (interactively with the analysts)
during the mining process. As a consequence, multiple parameter tables are defined in our
process of model representation.

Each parameter table is linked to one or more state nodes and details the properties
of parameters. For each parameter, it contains the following properties:

• Temporal Type: constant, changing;
• Value Type: numeric, symbolic, categorical;
• Parameter Operator (having as value NULL, if no discretization/time series reduction

has been performed, or the list of the applied operators—see Section 6.1—otherwise).

Additional properties depend on the value-type of the parameters:

• numeric parameters have properties: range, measure unit;
• symbolic parameters have the valueset property, specifying the set of the possible

values they may assume;
• categorical parameters have properties range, measure unit, discretization function (see

Section 5).

4. An Overview of AS-SIM

Overall, the architecture of AS-SIM is as depicted in Figure 1 and relies on the following
workflow (where each number denotes a phase of the workflow):
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Figure 1. The tool workflow (circled numbers represent the workflow phases presented in Section 4).

1. the event log is a file that stores sequences of activities (called “process traces”)
that have been executed at a given organization (e.g., a hospital), typically together
with some key parameters, such as execution times, resources, and originators (who
performed those particular actions); the event log is inputted to Trace Standardization
(see Section 5);

2. then, with the help of the domain expert(s), in the second step of log pre-processing,
the standardized process traces can be transformed (optionally) by applying pa-
rameter discretization (for constant parameters) and dimensionality reduction (for
changing parameters), see Section 5;

3. the parameter table, which contains the details of parameter properties, as described
in Section 3, is built as output of the pre-processing phase and appropriately updated
on the basis of the pre-processing operations illustrated at phases 1 and 2. In this
phase, the parameter table includes parameters and characteristics of the process
model at the global level; it will then be linked to the root of the versioning tree in
phase 4 (see below);

4. the Build-Tree Algorithm (see [4]) constructs the initial action-state process model,
starting from the pre-processed log, and the versioning tree root is created;

5. the workflow now enters a loop: at every iteration, a new process model, i.e., a new
node in the versioning tree, is generated, along the lines described in the following
steps: The versioning tree captures the evolution of the process model from the initial
action-state log-tree; backtracking can possibly be applied, and a different model
generalization strategy can be tested;

6. the expert, on the basis of domain knowledge, evaluates the goodness of the current
model. If the model does not need any further operations, then the workflow ends
(go to step 8), otherwise it proceeds to step 7, remaining in the model revision loop;

7. on the basis of domain knowledge and by using the set of facilities described in
Section 6, the expert can collapse the set of states occurring between the same two
actions A and B, thus improving the readability and simplicity of the model. In
particular, s/he can take advantage of the same parameter operations (divided into
parameter discretization and dimensionality reduction) adopted in phase 2; additionally,
s/he can rely on filtering and clustering operations. Finally, aggregation operations
perform the actual fusion of the state nodes and allow the user to aggregate the differ-
ent values of the parameters collected in different state nodes into single summary
representations. These (optional) facilities can be differently combined, acting as
the building blocks of the overall model generalization strategy; each node of the
versioning tree is associated with a process model, and with a parameter table for
every state node in the model, which is properly updated in the state fusion step;
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8. the workflow ends when the domain expert evaluates the process model as satisfactory,
without the necessity of applying additional generalization facilities.

In the following, a more detailed description will be provided of the workflow phases
presented above.

5. Pre-Processing of the Log and Mining the Action-State Log-Tree

The initial process mining step in AS-SIM takes as input an event log (i.e., a set of
traces) and provides as an output a tree containing action nodes and state nodes (action-
state log-tree). The interested reader will find details of the mining algorithm in [4]. In
general, input logs can assume quite different formats; therefore, we first pre-process the
log to “standardize” and possibly summarize its information (Section 5).

Log Pre-Processing

Given the variety of formats for parameters in organization event logs, we introduce a
compulsory pre-processing phase to “standardize” them.

Then, optionally, the traces in the log can be transformed by applying

• discretization of constant parameters;
• dimensionality reduction in changing parameters (i.e., time series).

Discretization is achieved through the definition and application of a set of discretiza-
tion functions. Specifically, for each numeric parameter pi ∈ P (with domain Dp) we define
a discrete domain of values D

′
p and a total discretization function fpi : Dp → D

′
p that maps

any value in Dp onto a corresponding value in D
′
p.

In this paper, we assume that discrete domains and discretization functions for the
parameters in the model are provided as an input to AS-SIM. Notably, however, such
functions can either be provided by analysts and domain experts or pre-computed on
the basis of the (values of the parameters in the) input traces (e.g., considering the value
probability distributions).

When working on time series, on the other hand, keeping all the sampled parameter
values may be useless: more thoroughly summarized information would save storage
space, while at the same time clarifying the series behavior. To this end, SIM incorporates
a set of dimensionality reduction techniques. Currently, we provide a set of mathematical
transforms that move from the time domain to the time domainbut reduce dimensionality,
namely the discrete wavelet transform and piecewise aggregate approximation (PAA) [6].

Wavelets are basis functions used to represent other functions, which are local both
in time and frequency. The wavelet transform can be repeatedly applied to the data; each
application brings out a higher resolution of the data, while at the same time, smoothing
the remaining data.

Through PAA, on the other hand, the original time series is divided into intervals of
equal length and is transformed in a piecewise constant function, where all the time points
within the same interval assume as a value the average of the original time series values in
the interval itself.

In addition to such transforms, we also provide a more qualitative dimensionality
reduction technique, namely temporal abstractions (TA) [7].

TA is an Artificial Intelligence technique that derives high-level concepts from time-
stamped data. It allows one to move from a point-based representation of time series data
to an interval-based one, where the input points are the sampled measurements and the
output intervals aggregate adjacent points sharing a common behavior, persistently over
time. Such a behavior is identified by an appropriate qualitative symbol. Basic temporal
abstractions can be further subdivided into state TAs and trend TAs. State TAs are exploited
to extract intervals associated with qualitative levels, such as low and high parameter
values; trend TAs are used to detect intervals of increasing or decreasing behavior. Through
TA, huge amounts of temporal information can be effectively mapped to a compact symbolic
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representation, which not only summarizes the original longitudinal data but also maps
them to a qualitative domain with clear semantics.

Such operations can also be applied on parameters in the phase of the fusion of state
nodes (see Section 6).

Example 1. To clarify the above concepts, we consider the domain of stroke treatment, focusing
in particular on patients eligible for thrombolysis treatment (TPA). Although this treatment is
particularly effective in breaking down the blood clots that cause ischemic attack, it can be dangerous
for patients, who need continuous monitoring of their vital signs before and after the administration
of the TPA drug. In particular, among the parameters to be taken into account to define patient
states, the most important are age and time since stroke onset (TSO). For these parameters, the
domain-discretization function is defined in terms of discretization levels provided by domain experts,
as reported in Table 1. Among the monitoring parameters, particular attention is paid to assessing
the patients’ cardiac and respiratory status; therefore, we focus on arterial pressure (AP), cardiac
frequency (CF), and respiratory frequency (RF), which are collected in the form of time series.

Table 1. Discretization levels of selected patients’ parameters.

Parameter Measure
Unit

Discretization
Levels

Age Years [0–18); [18–45); [45–80); [80 and beyond)
Time since onset (TSO) Hours [0–4.5); [4.5 and beyond)

6. Fusion over State Nodes

An action-state log-tree can often be quite wide. In particular, in many cases, a wide set
of state nodes {S1, . . . , Sk}may lay between an “origin” action node A and the “destination”
action node B: in the log-tree, different instances of B, one per branch, are represented.
This makes the log-tree redundant and difficult to read. Therefore, in this case, a simple
post-processing step is adopted, to merge all such instances of B into a single action node,
technically transforming the log-tree into a graph (action-state base-graph henceforth).

Example 2. Figure 2 shows an action-state base-graph, based on traces from the stroke domain,
focusing on the TPA administration procedure, as described in Section 5. This model was obtained
after applying the trace standardization procedure to the raw event log (step 1 of the workflow in
Figure 1), the parameter discretization step (step 2 of the workflow), and launching the Build-Tree
algorithm on the obtained pre-processed log, using the relative parameter table (steps 3 and 4 of
the workflow). In the obtained model, shown in Figure 2 and corresponding to node M0 of the
versioning tree in Figure 3a, the states are represented by rectangles, while the actions are ellipses.
In this process, after admission to the stroke unit (SU), the patients are evaluated by experts and
the TPA drug is administered. At the conclusion of the TPA infusion, the patients are monitored
and sent to the neurological ward or further examined through the installation of a continuous
ECG monitor before being discharged to the sub-intensive care ward. In the neurology ward, the
model in Figure 2 suggests that patients can undergo an additional treatment (thrombectomy) or be
discharged to the sub-intensive care ward. For brevity and readability, we do not specify the contents
of the state nodes in Figure 2.
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Figure 2. Action-state base-graph for thrombolysis treatment of stroke disease.

Figure 3. Evolution of the versioning tree while utilizing the flow of work on the stroke disease
process model.

Given the action-state base-graph, the user may also wish to fuse (some of) the different states
lying between action nodes A and B into one.

In this section, we provide different facilities and operations for summarizing state information
and for facilitating the fusion of state nodes {S1, . . . , Sk} into a unique state node or into a certain
number (less than k) of state nodes. We categorize such facilities/operations into four different types,
applicable to sets {S1, . . . , Sk} of states-nodes between the two action nodes A and B:

• Parameter operations, acting on the values of a specific parameter (Section 6.1);
• Filtering operations, to ignore one or more parameters (Section 6.2);
• Clustering operations, to partition the set {S1, . . . , Sk} of states-nodes into subsets of state

nodes, each to be fused into a unique state node (Section 6.3);
• Aggregation operations, aggregating the values of a given parameter taken from different state

nodes (Section 6.4).

As we will see, such operations can be combined in different ways, for the sake of simplifying
the action-state process-model (see Section 6.5). However, the basic idea is that filtering operations
rule out non-interesting parameters; parameters operations simplify the values of a given parameter



Data 2023, 8, 130 10 of 22

in each considered node; clustering fixes the state nodes to be fused (if no clustering is performed,
{S1, . . . , Sk} can be fused together into a unique state node), and once a set of state nodes to be fused
is fixed, aggregation operators are applied to each parameter to aggregate the parameter values taken
from such nodes.

In the following, we present such operations.

6.1. Parameter Operations

Parameter operations allow simplifying/summarizing the representation of a single
parameter.

In some situations, experts may not be interested in raw parameter values but may
prefer more abstract summarized information.

Specifically, as regards constant parameters, we support the use of discretization (see
Section 5); when dealing with changing parameters, which assume the form of time series,
different dimensionality reduction approaches are made available. All of these facilities are
optional and can be applied, not only at the time of generalization over state nodes, but
also as a pre-processing step and were therefore introduced in Section 5.

It is worth noting that parameter operations may produce, as a side effect, state
coalescing; e.g., if all parameters assume the same values after discretization, they will
be identical over two or more states. In this case, the corresponding state nodes are
automatically fused.

Parameter operations modify the parameters tables associated with the state nodes at
hand, which explicitly keep track of discretizations and dimensionality reductions.

6.2. Filtering Operations

An analyst, interacting with our system, may wish to restrict her/his analysis to a
subset of parameters.

To this end, we provide an optional filtering facility, which allows the expert to check
which parameters s/he wants to keep in the fused state node that will be generated. On
the basis of domain knowledge, in fact, the expert may be aware that certain parameters
are not particularly interesting for the problem at hand, but they might have been recorded
in all traces as a routine. A graphical interface allows the user to select the parameters to be
filtered out.

It is worth noting that filtering operations may produce, as a side effect, state coalesc-
ing; in fact, if some parameters have been filtered out, the remaining ones could be identical
over two or more states. In this case, the corresponding state nodes are automatically fused.

Filtering operations modify the parameters tables associated with the state nodes at
hand, since they eliminate some parameters.

6.3. Clustering Operations

An analyst may also want to cluster input states into more homogeneous groups,
in order to build a more focused model. If this facility is not used, a single state node
will be created through fusion, by generalizing over all the states between action nodes A
and B in the input model; otherwise, fusion will be applied to each subset of state nodes
(between A and B) obtained by clustering, to generate different state nodes, which will be
drawn as parallel branches in the resulting process model. Clustering only operates on
state information. Of course, there is a trade off between the richer information carried
by the state separation and the greater readability of a model with a single state node.
The interactivity of AS-SIM and the possibility of backtracking provide great flexibility in
dealing with this issue.

This clustering operation is currently realized using the k-means algorithm [8]. Other
algorithms may also be integrated in the future.
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6.4. Aggregation Operations

Given a set of nodes (i.e., all the states nodes between two actions A and B, or all the
nodes in one cluster), their fusion into a unique “summary” state node can be obtained by
applying aggregation operations to each parameter in the state node description. Notably,
different aggregation operations can be used for different parameters.

Non-discretized numeric constant parameters can be aggregated through resorting to
the set of statistical techniques provided by AS-SIM. Namely, the user can calculate mean,
variance, standard deviation, quartiles, median, and all the other basic statistical operators
on numeric values.

Non-dimensionality-reduced changing parameters (i.e., time series) can be treated
similarly: indeed, if all the time series samples have been kept, AS-SIM allows the user to
align in time the different series belonging to different state nodes, cutting longer series in
order to work with data of the same length. Missing data within a time series are completed
by resorting to interpolation techniques. Once two or more time series are aligned sample
by sample, AS-SIM allows the application of the statistical operators mentioned above on
every single sample, generating, e.g., the time series of the mean values.

As regards discretized constant parameters, two strategies are possible. In the first
case, the most frequent discretized value is used to substitute the set of discretized values
belonging to the different state nodes. This aggregation strategy can be applied to numeric,
symbolic, or categorical parameters.

In the case of numeric and categorical parameters, an alternative approach is also
possible: each discretization interval/qualitative level is mapped to a number on an
ordered scale; the statistical operations mentioned above are applied to such numbers for
aggregation; then, the resulting number is mapped back onto the original domain.

As regards dimensionality-reduced time series numeric parameters, if a wavelet
transform or a PAA technique has been adopted as a first step, the parameter is still
represented as a sequence of values in time; simply, the number of these values is much
lower than the number of the original samples. Therefore, all the aggregation operations
working on a raw time series can still be applied. On the other hand, if temporal abstractions
have been adopted, the time series will have been transformed into sequences of symbols,
where every symbol corresponds to an interval of a fixed duration (set at the time of
reducing dimensionality and specified in the parameter table) and qualitatively summarizes
the behavior of the series in that interval. The different sequences of symbols (one per
state) can be further collapsed into a single sequence, by selecting the most frequent symbol
interval by interval. Alternatively, complex TAs [7] can be adopted. Complex TAs are
temporal abstractions able to aggregate two series of intervals into a series of higher level
intervals, in order to identify more complex patterns (e.g., an interval of an increasing trend
followed by an interval of a decreasing trend, thus determining a peak). Such a method can
be used when the original time series parameters have already been abstracted by means
of basic TAs in the pre-processing phase. The latter two approaches can also be adopted
on changing parameters that are symbolic or categorical in nature and can be therefore
expressed as time series of qualitative values.

Aggregation operations modify the parameter table associated with the unique state
node that is generated, since they put together all the parameters of the original state nodes
they fuse.

6.5. Combining the Basic Operations

Different possibilities for combining the basic operations illustrated above are also
provided.

Specifically, parameter operations can be optionally adopted as a first step, either
during pre-processing or in the fusion of state nodes or both. Then, filtering and partitioning
operations can be optionally applied.
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The final step is the application of an appropriate aggregation operation, working
either on raw parameters or on discretized/dimensionality reduced ones, as already ex-
plained in Section 6.4.

Example 3. Reverting back to the example described in Section 5, we describe the work flow a
user performs to manage the initial complexity of the action-state base-graph in Figure 2 and
corresponding to the node M0 of the versioning tree in Figure 3a, to obtain a more manageable
version using the parameter and state node operators described above. We focus on a particular
section of this model, which is shown in Figure 4. In the latter, after admission to the SU and
evaluation by a neurologist (the first action of this process excerpt), patients are treated with TPA to
dissolve the thrombus obstructing the blood flow to the brain. Before and after this treatment, the
patient’s vital parameters are checked through continuous monitoring (see the state nodes (rectangles)
in Figure 4). Before the therapy, monitoring is performed to guarantee the administration of the TPA
under controlled conditions, while after the therapy, it is necessary to monitor the evolution of the
patient’s conditions to guide the next steps to be taken. After post-TPA monitoring, the installation
of an ECG device for continuous cardiac monitoring may suggest the need for further investigations
of patients who experience post-TPA issues. The model is obtained after executing the build-tree
algorithm, which corresponds to step 4 of the tool workflow in Figure 1, which also includes the
simple post-processing step that transforms the log-tree into a base-graph (see Section 6). Then, the
flow of work moves to Steps 5 and 6, where the user can evaluate the current model and decide if the
latter fulfills her/his requirements, terminating the procedure (Step 8 of the workflow), or it needs
more elaboration (Step 7 and re-evaluation). In this case, further processing is needed and the flow
of work continues with the steps below.

Figure 4. Excerpt of the action-state base-graph focusing on TPA administration.

As a first consideration, made in Step 6 of the tool workflow, the states between neurological
evaluation and TPA are all related to patients eligible for TPA administration. Therefore, there
is no need to differentiate patients with different conditions, since all of them are equally fit for
receiving the thrombolysis treatment. In order to simplify the state contents, it is possible to filter
out features which in clinical practice can be considered marginally important with respect to the
others in the current context. For example, the stability of the patients’ conditions is mainly checked
by monitoring AP and CF trends; therefore, the RF can be filtered out. This is done in Step 7 of
the workflow, using the filtering operator on each of the states between neurological evaluation and
TPA. The resulting model, not shown for brevity, corresponds to node M1 of the versioning tree in
Figure 3b, made available to the user looping back to Step 5, for further evaluation in Step 6. Here,
s/he can decide to fuse all the considered states into one, applying aggregation operations in Step
7. In particular, the mean operator is applied for age and weight, while a point-to-point average
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operator is applied for the time series present in the fused states. The result of the fusion can be seen
in the part of model in Figure 5, corresponding to node M2 of the versioning tree in Figure 3b. The
workflow starts again in Step 6 of the workflow in Figure 1, with evaluation of the latter model.

Figure 5. Excerpt of the action-state base-graph after the fusion of the states between neurological
evaluation and TPA.

Here, we suppose that the user decides to further reduce the complexity by fusing the states
between TPA and ECG monitor installation. As in the previous strategy, the user decides to filter
out the RF feature and to simply fuse all the states into one. Step 7 of the workflow can be used to
filter out RF, obtaining a model corresponding to the node M3 of the versioning tree (Figure 3c)
and starting again from Step 6. Before fusing the considered states, it is worth noting that the vital
sign monitoring after TPA lasts much longer than in the previous situation. Therefore, the user
decides to apply a dimensionality reduction technique to the remaining time series (AP and CF)
before performing the fusion. The flow of work moves to Step 7, in order to apply the TA operator to
the AP and CF series of each state, with the aim of highlighting the trends of their evolution. The
obtained model is related to node M4 in the versioning tree (Figure 3c) and the flow of work restarts
from Step 6. The models related to nodes M3 and M4 are not shown for brevity. Finally, the user
fuses all the considered states, moving to Step 7 to use the median operator on age and weight, and
to resort to complex TAs for trends on AP and CF. Based on the medical knowledge, an increasing
trend and a decreasing trend are aggregated into a stationary trend. The final result of this cycle of
operations is the model shown in Figure 6, related to the node M5 in the versioning tree (Figure 3c).

Evaluating the model in Figure 6 during step 6 of the workflow, it appears that AP is aggregated
as a stationary trend for the whole duration of monitoring. However, this does not match any of the
situations described in the original states, where the AP of each patient has an unstable and never
stationary trend. This fact should suggest problematic situations related to patients facing issues that
could be investigated. The described fusion, instead, completely hides these problems and prevents the
physicians from further monitoring these patients for cardiac problems after undergoing TPA.

Figure 6. Excerpt of the action-state base-graph after fusion of all states between the TPA and ECG
monitor.
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Considering the issues above, the user decides to try a different strategy, in order to maintain
the patients’ peculiarities in this context. S/he uses the versioning tree in order to backtrack to the
previous situation, selecting node M2, related to the process model in Figure 5, to start again. As in
the previous cases, the user first uses Step 7 of the workflow to filter out RF from each considered
state. This operation leads to a model related to the node M6 of the versioning tree (Figure 3d),
spanning from M2 in a new branch, evolving in parallel to the nodes M3–M5, which ended with a
refused model. The flow of operations restarts from Step 6, where the user decides to continue the
procedure applying further operators. S/he then moves again to Step 7 to abstract PA using the
trend TA operator and leaving CF unchanged, in order to be free to decide how to treat it after the
state aggregation. Node M7 is thus created in the versioning tree, allowing the user to evaluate
the related model in Step 6. Here, in order to identify sub-groups of homogeneous states sharing
particular trend distributions, the user resorts to the clustering operator provided in Step 7. The
clustering algorithm divides the considered states into two distinct groups: A and B. These groups
are highlighted in the model related to node M8 of the versioning tree (see Figure 3d). The models
related to nodes M7 and M8 of the versioning tree are not shown, for brevity. The user, positioned
at Step 6 of the workflow, applies the aggregation operators offered by Step 7 to fuse all the states
belonging to cluster A into a single state and performs the same operation to fuse all the states of
cluster B into one. In both cases, the chosen aggregation operators are the mean for age and weight,
the complex abstractions of the abstracted trends for AP and the point-to-point average for CF. The
resulting model, containing the two obtained fused states, is shown in Figure 7 and relates to node
M9 of the versioning tree (see Figure 3d).

Figure 7. Excerpt of the action-state base-graph after fusion of the states between the TPA and ECG
monitor after clustering.

Comparing the two fused states between the TPA and ECG monitor in Step 6, an unstable
behavior of AP for the entire post-TPA monitoring can be observed for both, but with two very
different evolutions of the relative trends. These differences could be useful for physicians, for a more
in-depth analysis. As a last step, considering the prolonged monitoring time of the CF parameter, the
user considers a dimensionality reduction strategy for it, using Step 7 for the last time to perform a
PAA. This model, related to node M10 of the versioning tree (Figure 3d) and whose general shape is
shown in Figure 8, after a final evaluation in Step 6, is considered satisfactory by the user; therefore,
s/he can select this model as the final result and exit the procedure following Step 8 of the workflow.

Thanks to the techniques used above, the user can simplify the complete model shown in
Figure 2 by appropriately addressing each context of the model. At the end of this work, it is possible
to obtain a more general and easily interpretable model, such as the one shown in Figure 8.
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Figure 8. Action-state base-graph for thrombolysis treatment in stroke disease after state processing
and fusion.

7. Quantitative Evaluation

In order to assess the system’s performance, we conducted experiments to measure
the time needed to mine the initial action-state process model from the input traces. This
operation, corresponding to step 4 of the tool workflow in Figure 1 (build-tree algorithm)
is the main computational task conducted by AS-SIM. The subsequent steps have less
computational impact and their enactment and order depend on the user’s choices. The
evaluation was conducted by running the mining algorithm on a set of logs artificially
obtained by randomly replicating parts of the traces in the stroke-related log presented in
Sections 5 and 6. In particular, we prepared 6 sets, containing 100, 200, 500, 1000, 2500, and
5000 traces, respectively. For each dimension, we generated 6 logs containing sequences
of 25, 50, 100, 200, 300, and 400 actions and states, for a total of 36 logs to be fed to the
build-tree algorithm for testing.

We performed these tests on a laptop equipped with an Intel Core I7 7700HQ CPU
running at 2.80 GHz, 16 GB of DDR4 RAM, and Windows 10 operating system. The results
are shown in Figures 9–11.

Figure 9 shows charts for performance of the build-tree algorithm (time in milliseconds)
when fed logs containing the same amount of traces but with an increasing number of
events and states for each trace. In particular, we show for brevity the performance obtained
using logs containing 1000 (Figure 9a) and 5000 traces (Figure 9b), since the other charts
show the same general shape. Analyzing these charts, it can be noted that the algorithm
has a good scalability level, since the computation time seemed to increase with a nearly
constant slope.

The same level of scalability is confirmed by the charts in Figure 10, which show the
computation time in milliseconds needed to build the initial model from logs containing
traces with the same dimensions but with an increasing number of traces. For brevity, we
show the computational time where traces contained sequences of 100 (Figure 10a) and
400 actions and states (Figure 10b). The other charts show the same general shape.
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(a) Performance of the mining algorithm using logs with 1000 traces

(b) Performance of the mining algorithm using logs with 5000 traces

Figure 9. Performance of the mining algorithm with respect to the increasing total number of actions
and states in the traces.

(a) Performance of the mining algorithm using 100 actions and states in traces

(b) Performance of the mining algorithm using 400 actions and states in traces

Figure 10. Performance of the mining algorithm with respect to the increasing number of traces in
the log.
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Figure 11. Overall performance of the mining algorithm as the number of traces in the log and the
number of the total states and actions in the traces were varied.

The complete set of results is summarized in Figure 11, which shows the overall
algorithm performance for each of the logs prepared for this evaluation. In particular,
the reader can evaluate the variations of the computational time for logs containing the
same amount of traces, but with increasing trace dimensions, by reading the chart in
the horizontal direction. Following the vertical direction, it is possible to evaluate the
performance when the traces had the same dimensions but their quantity increased.

Reading the chart in Figure 11, it can be noted that the scalability levels of our build-
tree algorithm can be considered good in both directions, confirming that our approach can
be seen, from a computational point of view, as a feasible choice for any real-life scenarios
that can be taken into account.

8. Related Work

Process mining is nowadays a mature area of research, where many approaches have
been proposed. As regards process model discovery in particular, back in 2016, professor
van der Aalst was able to describe a rich family of methods and tools, which he categorized
in his book [1] according to different dimensions. The dimensions can be summarized as
follows:

• representational bias: this refers to the complexity of the process models that can be
discovered using an approach. In particular, some algorithms are unable to mine
and represent rather complex constructs, such as concurrency or arbitrary loops
(see, e.g., the alpha miner [9]), while others are more expressive (for instance, a fuzzy
miner [10] is able to learn hierarchical models); interestingly, the work in [11] describes
a framework for selecting the most suitable miner for a given problem according to
this dimension;

• ability to deal with noise: according to this dimension, the more mature algorithms are
able to abstract from exceptional or infrequent behavior that may be recorded in the
log; a heuristic miner [12], for instance, which extends the already mentioned alpha
miner [9], has a good ability to deal with noise and has therefore also been adopted in
medical domains [13];

• completeness: algorithms with a strong completeness assume that the log contains
(almost) all the possible behaviors/traces (as the alpha miner [9] does, at least to some
extent) and may encounter overfitting problems; a weak completeness may lead to
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underfitting instead. A proper balance between overfitting and underfitting should be
looked for, as in the approach in [14];

• technique being used: according to this dimension, we can distinguish between

1. a direct approach, where the algorithm extracts a footprint from the log and
directly exploits it to build a process model, as is the case of the alpha miner [9]
and of the heuristic miner [12];

2. a two-phase approach, where a first low-level model is initially built, and a
high-level model is later derived from it: this is the case of the work in [14],
which first builds a transition system, and then derives a more expressive model
from it; to some extent, this is also the case of the original version of SIM [3];

3. the divide-and-conquer approach, in which the log is split into smaller sub-logs,
where mining can be easier, as in the case of the inductive miner [15];

4. the computational intelligence approach, which adopts computational intelli-
gence techniques, such as fuzzy sets (as in the fuzzy miner [10]) or genetic
programming (as in the genetic miner [16]);

5. the partial approach, which does not aim to learn a complete model, but focuses
on rules or frequent patterns (as in [17]).

However, none of the classical algorithms mentioned by van der Aalst in his book
deal with states. Moreover, classical approaches typically do not make use of domain
knowledge and do not allow for interactivity with the user.

Indeed, only a few prior works have addressed the explicit representation of the flow
of both actions and states in process model discovery.

In particular, in the area of medical data mining, the authors of [18,19] tackled the
problem of medical knowledge formalization and proposed an approach to derive (manu-
ally or automatically) a model from medical data representing sequences of patient visits.
Each visit determines the state of a patient and is followed by a prescription of therapies to
be implemented until the next visit. From these input medical data, the authors extract a
graph where nodes represent patient’ states, and arcs (describing the evolution between
pairs of states) are labeled using the therapies leading from the input to the output state.

Data-flow discovery was considered in [20,21], to identify decision points or to learn
the rules that govern the decisions themselves. The authors in [20,21] adopted methods
from the area of conformance checking to align the event log (that incorporates data
measurements) with the process model and to generate a decision tree for every decision
point, in order to select the correct alternative on the basis of the data. The output is an
extended Petri Net, where guards are introduced to describe the effect of data on transitions
(i.e., what actions have to be executed based on the data values).

Unlike our approach, however, none of the above works tackled the general problem
of discovering a process model that explicitly learns action and state nodes from input
traces that contain both action and state information.

On the other hand, approaches that leverage domain knowledge in process model
discovery have recently appeared in the process mining literature [22], to improve the
quality of the discovered process itself.

For instance, the work in [23] presented an automated process discovery algorithm that
exploits prior knowledge in the form of augmented information control nets, using ideas
from Bayesian statistics. In [24], the authors focused on declarative process model discovery
and proposed various automated techniques to remove redundant or non-interesting
constraints from the discovered process models, as well as to guide the discovery approach
by leveraging domain knowledge to identify the most relevant constraints from the domain
point of view. The work in [25] presented an automated hybrid approach to process model
discovery, where domain knowledge is encoded in the form of precedence constraints (over
the topology of the resulting process models) and mining algorithms are formulated in
terms of reasoning problems over such precedence constraints. It is, however, worth noting
that, in all these contributions, the domain knowledge must be expressed in the form of
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rules or constraints and the user cannot control the discovery of the process, which, in the
end, can be very complex.

Recently, new process model discovery approaches have also begun emerging, which
enable users to interactively integrate domain knowledge into the process model under
construction. In particular, an interesting example is the interactive process discovery (IPD)
presented in [26], which incrementally combines domain knowledge with the information in
the event log, so as to improve the accuracy and understandability of the discovered process,
while preserving its soundness. Specifically, starting from an initial process model, the user
incrementally extends it by adding new elements and obtains feedback from IPD about the
positioning of new actions and relations between actions. IDP uses “synthesized nets” (a
type of Petri nets) as the underlying formalism for process models, and “synthesized rules”
as a way to extend a process model into a new one by adding a transition and/or a place
selected by the user at a certain time. The suitability and effectiveness of IPD for modeling
real-world processes were assessed in [27], where the authors presented an experimental
evaluation based on a case study in healthcare. The authors of [28] proposed an interactive
process mining approach to discover dynamic risk models for patients suffering from
chronic diseases based on patients’ dynamic behavior provided by health sensor data. This
approach is based on the interactive pattern recognition framework and allows a domain
expert to adjust the model under construction interactively and iteratively. The obtained
model can be leveraged to customize treatments based on a patient’s unique behavior.
Finally, in [29,30], the authors proposed an interactive process model discovery approach
(and a tool) that allows users to learn a process model by incrementally adding observed
process behavior (through new traces) to the process model under construction. A possible
drawback of such an approach is the complexity of selecting the right traces when the noise
in the data is high.

It is important to note that none of the mentioned works explicitly represent the flow
of both actions and states discovered from the traces, while at the same time leveraging
domain knowledge and/or interacting with the user to build more understandable models.
In our opinion, such a comprehensive approach would be very useful in all domains where
the state preconditions and/or the effects of actions on states have to be analyzed, general
knowledge is available, and where experts can fruitfully interact with the tool, in order
to obtain a more correct result. Therefore, we think that our proposal could become the
starting point of a new line of research in the area of process model discovery.

As a final consideration, it is worth mentioning that process model discovery is
not the only task of process mining. Conformance checking or anomaly detection (see,
e.g., Ref. [31]), for instance, are attracting growing interest. At the moment, AS-SIM focuses
on process model discovery, but in the future, conformance checking will be considered,
trying to leverage state information as well. In particular, when considering medical
applications, conformance checking allows experts to compare the actual process model
implemented at a given organization to the golden standard one, i.e., the clinical guideline.
Such a comparison would help to identify bottlenecks and limitations of the local process
and constitutes a fundamental step towards an improvement in patient care. We believe
that the exploitation of state information could provide a more accurate comparison and
thus greater help towards an increase in patient management quality.

Last but not least, it is important to note that, in process discovery, the action workflow
perspective is not the only existing point of view: some works (e.g., Ref. [32]) focus on the
resource perspective; these works are, however, loosely related to our contribution.

9. Future Work and Conclusions

In this paper, we have proposed AS-SIM, the first process model discovery approach
that mines and provides an explicit representation of the flow of both actions and states
from input traces.

As a future work, we plan to conduct an extensive experimental evaluation, thus
enriching the initial experimental results we described in this paper. First, we plan to
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work on a large collection of real medical traces, suitably derived from the freely-available
MIMIC clinical database [33]. Moreover, and more importantly, we plan to conduct a
real-world validation study in a hospital setting. Indeed, we are collaborating with the
Integrated Laboratory of Artificial Intelligence and Medical Informatics, a shared entity
between the Computer Science Institute of our University and the Hospital of Alessandria,
Italy. Within this collaboration, it will be possible to set up a wide-ranging validation study,
involving different hospital departments, different medical experts, and multiple patients.
We believe that such a study will provide significant feedback about our innovative and
interactive process mining approach.

From a more methodological viewpoint, we aim to extend AS-SIM with a broad class
of merge and abstraction operations, which will allow experts to move progressively from
an action-state log-tree (which is a potentially overfitting process model) to a increasingly
generalized graph-based process model. In particular, we will work on the definition of
merge and abstraction operations, which generalize and complement the current operations
in SIM, so as to also consider state nodes.

After the implementation of all these operations is realized, making the process
discovery task complete, we will consider an additional process mining task, namely
conformance checking. Indeed, while process discovery is the basic fundamental step
of our approach, its realization can be seen as the starting point for reaching additional
objectives. Conformance checking aims to compare the actual process model mined from
process traces to an ideal (already available) process model; we will also study novel
approaches to conformance checking able to leverage the state information, making this
comparison more accurate. This research direction seems to be particularly promising, e.g.,
in medicine; in this case, the actual process mined at a given hospital can be compared to a
gold standard process, i.e., a clinical guideline. A more complete and reliable comparison
will allow experts to better identify bottlenecks and limitations of the local process, and
will provide fundamental support towards an improvement in patient care.

Author Contributions: Conceptualization, All authors; methodology, P.T., S.M., G.L. and A.B.; soft-
ware, M.G., M.S. and A.B.; validation, G.L.; formal analysis, P.T. and A.B.; data curation, M.S.;
writing—original draft preparation, S.M., P.T. and G.L.; writing—review and editing, All authors; su-
pervision, P.T. and S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is unavailable due to privacy or ethical restrictions.

Acknowledgments: This research has been partially supported by the INDAM—GNCS Project 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. van der Aalst, W.M.P. Process Mining—Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [CrossRef]
2. Wang, S.; McDermott, M.B.A.; Chauhan, G.; Hughes, M.C.; Naumann, T.; Ghassemi, M. MIMIC-Extract: A Data Extraction,

Preprocessing, and Representation Pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and
Learning, Toronto, ON, Canada, 2–4 April 2020.

3. Bottrighi, A.; Canensi, L.; Leonardi, G.; Montani, S.; Terenziani, P. Interactive mining and retrieval from process traces. Expert
Syst. Appl. 2018, 110, 62–79. [CrossRef]

4. Bottrighi, A.; Guazzone, M.; Leonardi, G.; Montani, S.; Striani, M.; Terenziani, P. AS-SIM: An Approach to Action-State Process
Model Discovery. In Proceedings of the Foundations of Intelligent Systems—26th International Symposium, ISMIS 2022, Cosenza,
Italy, 3–5 October 2022; Ceci, M., Flesca, S., Masciari, E., Manco, G., Ras, Z.W., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 13515, pp. 336–345. [CrossRef]

5. Buijs, J.C.A.M.; van Dongen, B.F.; van der Aalst, W.M.P. On the Role of Fitness, Precision, Generalization and Simplicity in
Process Discovery. In Proceedings of the On the Move to Meaningful Internet Systems: OTM 2012, Confederated International
Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, 10–14 September 2012; Proceedings, Part I; Meersman, R.,
Panetto, H., Dillon, T.S., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7565, pp. 305–322. [CrossRef]

http://doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1016/j.eswa.2018.05.041
http://dx.doi.org/10.1007/978-3-031-16564-1_32
http://dx.doi.org/10.1007/978-3-642-33606-5_19


Data 2023, 8, 130 21 of 22

6. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity search in large time series
databases. Knowl. Inf. Syst. 2000, 3, 263–286. [CrossRef]

7. Bellazzi, R.; Larizza, C.; Riva, A. Temporal Abstractions for Interpreting Diabetic Patients Monitoring Data. Intell. Data Anal.
1998, 2, 97–122. [CrossRef]

8. Hartigan, J.A. Clustering Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1975.
9. van der Aalst, W.M.P.; van Dongen, B.F. Discovering Workflow Performance Models from Timed Logs. In Proceedings of the

Engineering and Deployment of Cooperative Information Systems, First International Conference, EDCIS 2002, Beijing, China,
17–20 September 2002; Han, Y., Tai, S., Wikarski, D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2002; Volume 2480, pp. 45–63. [CrossRef]

10. Günther, C.W.; van der Aalst, W.M.P. Fuzzy Mining—Adaptive Process Simplification Based on Multi-perspective Metrics. In
Proceedings of the Business Process Management, 5th International Conference, BPM 2007, Brisbane, Australia, 24–28 September
2007; Alonso, G., Dadam, P., Rosemann, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2007; Volume 4714, pp. 328–343. [CrossRef]

11. Al-Absi, M.A.; R’bigui, H. Process Discovery Techniques Recommendation Framework. Electronics 2023, 12, 3108. [CrossRef]
12. Weijters, A.; Aalst, W.; Medeiros, A. Process Mining with the Heuristics Miner-Algorithm; Cirp Annals-Manufacturing Technology;

Elsevier: New York, NY, USA, 2006; Volume 166.
13. Montani, S.; Leonardi, G.; Striani, M.; Quaglini, S.; Cavallini, A. Multi-level abstraction for trace comparison and process

discovery. Expert Syst. Appl. 2017, 81, 398–409. [CrossRef]
14. van der Aalst, W.M.P.; Rubin, V.; Verbeek, H.M.W.; van Dongen, B.F.; Kindler, E.; Günther, C.W. Process mining: A two-step

approach to balance between underfitting and overfitting. Softw. Syst. Model. 2010, 9, 87–111. [CrossRef]
15. Leemans, S.J.J.; Fahland, D.; van der Aalst, W.M.P. Discovering Block-Structured Process Models from Event Logs Containing

Infrequent Behaviour. In Proceedings of the Business Process Management Workshops—BPM 2013 International Workshops,
Beijing, China, 26 August 2013; Revised Papers; Lohmann, N., Song, M., Wohed, P., Eds.; Lecture Notes in Business Information
Processing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 171, pp. 66–78. [CrossRef]

16. Bratosin, C.; Sidorova, N.; van der Aalst, W.M.P. Discovering Process Models with Genetic Algorithms Using Sampling. In
Proceedings of the Knowledge-Based and Intelligent Information and Engineering Systems—14th International Conference, KES
2010, Cardiff, UK, 8–10 September 2010; Proceedings, Part I; Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6276, pp. 41–50. [CrossRef]

17. Maggi, F.M.; Dumas, M.; García-Bañuelos, L.; Montali, M. Discovering Data-Aware Declarative Process Models from Event
Logs. In Proceedings of the Business Process Management—11th International Conference, BPM 2013, Beijing, China, 26–30
August 2013; Daniel, F., Wang, J., Weber, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2013; Volume 8094, pp. 81–96.

18. Kamisalic, A.; Riaño, D.; Welzer, T. Formalization and acquisition of temporal knowledge for decision support in medical
processes. Comput. Methods Programs Biomed. 2018, 158, 207–228. [CrossRef] [PubMed]

19. Kamisalic, A.; Riaño, D.; Kert, S.; Welzer, T.; Zlatolas, L.N. Multi-level medical knowledge formalization to support medical
practice for chronic diseases. Data Knowl. Eng. 2019, 119, 36–57. [CrossRef]

20. de Leoni, M.; Felli, P.; Montali, M. A Holistic Approach for Soundness Verification of Decision-Aware Process Models. In
Proceedings of the Conceptual Modeling—37th International Conference, ER 2018, Xi’an, China, 22–25 October 2018; Trujillo, J.,
Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2018; Volume 11157, pp. 219–235. [CrossRef]

21. de Leoni, M.; van der Aalst, W.M.P. Data-aware process mining: Discovering decisions in processes using alignments. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra, Portugal, 18–22 March 2013; Shin,
S.Y., Maldonado, J.C., Eds.; ACM: New York, NY, USA, 2013; pp. 1454–1461. [CrossRef]

22. Schuster, D.; van Zelst, S.J.; van der Aalst, W.M.P. Utilizing domain knowledge in data-driven process discovery: A literature
review. Comput. Ind. 2022, 137, 103612. [CrossRef]

23. Rembert, A.J.; Omokpo, A.; Mazzoleni, P.; Goodwin, R.T. Process Discovery Using Prior Knowledge. In Proceedings of the 11th
International Conference on Service-Oriented Computing (ICSOC 2013), Berlin, Germany, 2–5 December 2013; Basu, S., Pautasso,
C., Zhang, L., Fu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 328–342. [CrossRef]

24. Maggi, F.M.; Bose, R.P.J.C.; van der Aalst, W.M.P. A Knowledge-Based Integrated Approach for Discovering and Repairing
Declare Maps. In Proceedings of the Proceedings 25th International Conference on Advanced Information Systems Engineering
(CAiSE 2013), Valencia, Spain, 17–21 June 2013; Salinesi, C., Norrie, M.C., Pastor, Ó., Eds.; Springer: Berlin/Heidelberg, Germany,
2013; pp. 433–448. [CrossRef]

25. Greco, G.; Guzzo, A.; Lupia, F.; Pontieri, L. Process Discovery under Precedence Constraints. ACM Trans. Knowl. Discov. Data
2015, 9, 1–39. [CrossRef]

26. Dixit, P.M.; Verbeek, H.M.W.; Buijs, J.C.A.M.; van der Aalst, W.M.P. Interactive Data-Driven Process Model Construction. In
Proceedings of the Conceptual Modeling—37th International Conference, ER 2018, Xi’an, China, 22–25 October 2018; Trujillo, J.,
Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2018; Volume 11157, pp. 251–265. [CrossRef]

http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.3233/IDA-1998-2204
http://dx.doi.org/10.1007/3-540-45785-2_4
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.3390/electronics12143108
http://dx.doi.org/10.1016/j.eswa.2017.03.063
http://dx.doi.org/10.1007/s10270-008-0106-z
http://dx.doi.org/10.1007/978-3-319-06257-0_6
http://dx.doi.org/10.1007/978-3-642-15387-7_8
http://dx.doi.org/10.1016/j.cmpb.2018.02.012
http://www.ncbi.nlm.nih.gov/pubmed/29544786
http://dx.doi.org/10.1016/j.datak.2018.12.001
http://dx.doi.org/10.1007/978-3-030-00847-5_17
http://dx.doi.org/10.1145/2480362.2480633
http://dx.doi.org/10.1016/j.compind.2022.103612
http://dx.doi.org/10.1007/978-3-642-45005-1_23
http://dx.doi.org/10.1007/978-3-642-38709-8_28
http://dx.doi.org/10.1145/2710020
http://dx.doi.org/10.1007/978-3-030-00847-5_19


Data 2023, 8, 130 22 of 22

27. Benevento, E.; Aloini, D.; van der Aalst, W.M.P. How Can Interactive Process Discovery Address Data Quality Issues in Real
Business Settings? Evidence from a Case Study in Healthcare. J. Biomed. Inform. 2022, 130, 104083. [CrossRef] [PubMed]

28. Valero-Ramon, Z.; Fernandez-Llatas, C.; Valdivieso, B.; Traver, V. Dynamic Models Supporting Personalised Chronic Disease
Management through Healthcare Sensors with Interactive Process Mining. Sensors 2020, 20, 5330. [CrossRef] [PubMed]

29. Schuster, D.; van Zelst, S.J.; van der Aalst, W.M.P. Incremental Discovery of Hierarchical Process Models. In Proceedings of the
Research Challenges in Information Science, Limassol, Cyprus, 23–25 September 2020; Dalpiaz, F., Zdravkovic, J., Loucopoulos,
P., Eds.; Springer: Cham, Switzerland, 2020; pp. 417–433. [CrossRef]

30. Schuster, D.; van Zelst, S.J.; van der Aalst, W.M. Cortado: A dedicated process mining tool for interactive process discovery.
SoftwareX 2023, 22, 101373. [CrossRef]

31. Bin Ahmadon, M.A.; Yamaguchi, S. Verification Method for Accumulative Event Relation of Message Passing Behavior with
Process Tree for IoT Systems. Information 2020, 11, 232. [CrossRef]

32. Utama, N.I.; Sutrisnowati, R.A.; Kamal, I.M.; Bae, H.; Park, Y.J. Mining Shift Work Operation from Event Logs. Appl. Sci. 2020, 10,
7202. [CrossRef]

33. Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.w.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark,
R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jbi.2022.104083
http://www.ncbi.nlm.nih.gov/pubmed/35504544
http://dx.doi.org/10.3390/s20185330
http://www.ncbi.nlm.nih.gov/pubmed/32957673
http://dx.doi.org/10.1007/978-3-030-50316-1_25
http://dx.doi.org/10.1016/j.softx.2023.101373
http://dx.doi.org/10.3390/info11040232
http://dx.doi.org/10.3390/app10207202
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127

	Introduction
	Overview of SIM
	Action-State Log-Tree: Representation Formalism
	An Overview of AS-SIM
	Pre-Processing of the Log and Mining the Action-State Log-Tree
	Fusion over State Nodes
	Parameter Operations
	Filtering Operations
	Clustering Operations
	Aggregation Operations
	Combining the Basic Operations

	Quantitative Evaluation
	Related Work
	Future Work and Conclusions
	References

