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Abstract—Cloud computing is growing in popularity among
computing paradigms for its appealing property of considering
“Everything as a Service”. The goal of a Cloud infrastructure
provider is to maximize its profit by minimizing the amount of
violations of Quality-of-Service (QoS) levels agreed with service
providers, and, at the same time, by lowering infrastructure
costs. Among these costs, the energy consumption induced by
the Cloud infrastructure, for running Cloud services, plays a
primary role. Unfortunately, the minimization of QoS violations
and, at the same time, the reduction of energy consumption is a
conflicting and challenging problem. In this paper, we propose
a framework to automatically manage computing resources of
Cloud infrastructures in order to simultaneously achieve suitable
QoS levels and to reduce as much as possible the amount of
energy used for providing services. We show, through simulation,
that our approach is able to dynamically adapt to time-varying
workloads (without any prior knowledge) and to significantly
reduce QoS violations and energy consumption with respect to
traditional static approaches.

I. INTRODUCTION

Cloud computing, a “model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of config-

urable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider

interaction” [1], has recently rapidly grown in popularity [2].

A number of organizations are already benefiting of it by

hosting and/or offering Cloud computing services. Among the

various reasons behind this success, the most prominent ones

are probably:

• on-demand self-service: a consumer can autonomously

provision computing capabilities (e.g., computing power,

storage space, network bandwidth), that is without requir-

ing human interaction with the respective provider(s);

• rapid elasticity: the above capabilities may be dynami-

cally resized in order to quickly scale up (to potentially

unlimited size) or down in according to the specific needs

of the consumer.

Together, these two properties are transforming the traditional

way in which computing resources are used, shifting the

focus from the classical vision under which (software and

hardware) resources must be purchased before they can be

used to run the applications of interest, to a novel one under

which ”Everything is a Service”, and can be used in a pay-

as-you-go modality. This service-centric vision permeates all

the various components of the application stack, ranging

from software (Software as a Service (SaaS)) to computing

platforms (Platform as a Service (PaaS)), and – finally –

computing infrastructure (Infrastructure as a Service (IaaS)).

The basic ingredient of Cloud Computing is the IaaS

substrate, that enables service providers to provision the in-

frastructure they need for the delivery of their services with-

out having to buy the resources composing them. Generally

speaking, infrastructure providers rely on one or more data

centers, comprising a suitable number of physical resources,

and on the use of various resource virtualization technologies,

whereby the same physical resource may be shared among

multiple applications by deploying each of them into one or

more Virtual Machines (VMs), each of which representing an

isolated runtime environment.

It is evident that, in order for this paradigm to be successful,

it must enable both the service and infrastructure provider to

make profit out of the respective activities. Therefore, typically

they agree on a prescribed set of service levels, commonly

referred to as Service Level Agreement (SLA), that is a

formal description of temporal, performance and economical

constraints under which hosted services (e.g., enterprise appli-

cations) need to operate. It is commonly described in terms of

Service Level Objectives (SLOs), which in turn define temporal

and performance metrics for measuring the quality of service

(e.g., the 99% of served user requests must have a response

time no greater than a particular amount of seconds). 1 In other

words, the service provider agrees on paying a certain amount

of money for using the infrastructure, and the infrastructure

provider agrees on providing enough resources to meet the

service levels defined by the SLOs.

The decision of the amount of computing resources to

allocate to a specific customer may have a critical impact

on the revenues of the infrastructure provider. As a matter of

fact, if insufficient resources are provided, the SLOs may be

missed, and typically any SLO miss involves a money penalty

for the IaaS provider, whose profit is consequently reduced.

On the other hand, if the infrastructure provider opts for an

over-provisioning of resources, a larger number of physical

resources are used to host the same service, thus increasing the

1Various techniques to determine the SLOs corresponding to a given SLA
have been published in the literature (e.g., [3], [4]).



Total Cost of Ownership (TCO), which comprises capital and

administrative costs [5]. Thus, the ultimate goal for an IaaS

provider is to maximize its profit by minimizing the number

of such violations and, at the same time, by reducing the TCO.

This is a challenging problem because of the conflicting

nature of the two aspects. Indeed, on one hand the achievement

of SLOs would lead the provider to over-provision hosted

services, while, on the other hand such over-provisioning

would impact on TCO by investment, operating and energy

consumption costs.

It has been argued [6] that energy costs are among the

most important factors impacting on TCO, and that this

influence will grow in the near future due to the increase of

electricity costs. Therefore, the reduction of operational costs

is usually pursued through the reduction of the amount of

energy absorbed by the physical resources of the data center.

Various techniques already exist that aim at reducing

the amount of electrical energy consumed by the physical

infrastructure underlying the IaaS substrate, ranging from

energy-efficient hardware and energy-aware design strategies,

to server consolidation, whereby multiple virtual machines

run on the same physical resource [7]. Unfortunately, these

techniques alone are not enough to guarantee application

performance requirements because of the complexity of Cloud

computing systems, where (1) system resources have to be

dynamically and unpredictably shared among several inde-

pendent applications, (2) the requirements of each application

must be met in order to avoid economical penalties, (3) the

workload of each application generally changes over time, (4)

applications may span multiple computing nodes (e.g., multi-

tier applications), and (5) system resources may be possibly

distributed world-wide. Moreover, the inherently conflicting

nature of energy and performance management, along with

the complexity of Cloud computing systems, makes a manual

or semi-automatic approach unsuitable, so that much of current

research work is looking for coordinated and fully automated

solutions.

In this paper, we tackle the problem of providing a fully

automated solution to the problem of dynamically managing

physical resources of a (possibly distributed) data center whose

resources are used as substrate for IaaS platforms. We present

a framework able to automatically manage physical and virtual

resources of a Cloud infrastructure in such a way to maximize

the profit of the IaaS provider by minimizing SLO violations

while, at the same time, reducing the energy consumed by

the physical infrastructure. Basically, we accomplish this goal

by providing each application with the minimum amount of

physical resource capacity needed to meet its SLOs, and by

dynamically adjusting it according to various parameters, that

include the intensity of its workload, the number of competing

VMs allocated on the same physical resource, and their

time-varying behavior induced by variations in the respective

workloads. The rationale underlying this approach is that, in

order to balance energy consumption and SLOs satisfaction,

each application needs exactly the fraction of physical resource

capacity as the one dictated by current operating conditions

of the Cloud infrastructure (e.g., workload characteristics and

physical resource utilization, just to name a few). As a matter

of fact, on one hand, a greater amount of physical resource

capacity would imply an increase of energy consumption

without any benefit to the profit (i.e., to stay away from the

performance target is essentially identical – in terms of positive

income – to stay very close to such objective). On the other

hand, a smaller fraction of physical resource capacity would

increase the probability of incurring in a SLO violation.

The contributions of this paper may be summarized as

follows:

1) we define a framework that combines short-to-medium

term allocation decisions (by which the capacity of a

given physical resource is assigned to the various VMs

running on it) with long-term ones (by which a given

VM may be migrated from one physical resource to

another), and that is able to deal with multi-tier applica-

tions under very variable and unpredictable workloads;

2) our approach, unlike previous ones, does not require

neither any prior knowledge nor the construction of off-

line application models, but is able to dynamically adapt

at run time;

3) we show, via discrete-event system (DES) simulation [8],

that our solution is able to manage physical resources

of a data center in such a way to significantly reduce

SLO violations (with respect to a traditional approach

in which resource capacity is statically allocated to in-

dividual VMs), and at the same time to strongly improve

the energy-efficiency of the infrastructure (defined as

the amount of energy used to serve a single application

request).

Although the resulting framework is general enough to deal

with any type of physical resource and performance metric, for

the sake of simplicity, in this paper we restrict our focus to the

CPU as the type of physical resource, and on the application-

level response time, as SLO performance metric.

The rest of this paper is organized as follows. In Section II,

we describe the architecture and design of our framework.

In Section III, we provide an experimental evaluation of

our framework and show its effectiveness on minimizing

SLO violations and energy consumption. In Section IV, we

compare our solution with some recent related work. Finally,

in Section V, we conclude this paper and present future works.

II. THE RESOURCE MANAGEMENT FRAMEWORK

In this section, we describe our resource provisioning

framework that jointly manages both the power consumption

of physical resources and the performance attained by the

services they host. Firstly, we provide a high-level description

of the architecture of the whole framework. Then, we focus

on the design of the Resource Manager, which is the main

component of our framework.

A. System Architecture

The goal of our framework is three-fold: (1) to provide

automated resource management mechanisms and policies,
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Fig. 1. Architecture of the proposed framework.

(2) to monitor and maintain application performance targets

and (3) to reduce energy consumption in Cloud computing

systems.

A high-level architecture of our framework is depicted in

Fig. 1, where a certain number of user applications (on the

left side) have to be deployed on a Cloud infrastructure (on

the right side). The applications we considered are multi-tier;

this choice does not limit the applicability of our framework

since other type of applications (like high-performance com-

puting applications) could always be modeled as single-tier

applications. As shown in the figure, every application tier is

deployed in a separate VM, which in turn is placed on one of

the available physical machines. At the center of the figure,

the Resource Manager continuously monitors the performance

of each deployed application and suitably acts on the system

in order to maintain application performance goals and, at the

same time, to minimize the energy consumption of computing

resources.

We assumed that the SLO constraints of each application

are known, and are expressed in terms of a specific phys-

ical machine that we called reference machine (e.g., in the

Amazon EC2 terminology, this could be the equivalent of the

“standard instance”). This choice appears to be natural, as

(1) application performance generally vary according to the

capacity of physical resources assigned to that application,

and (2) physical resources inside Cloud computing systems

are usually heterogeneous. It is responsibility of the Resource

Manager to appropriately scale SLO constraints according to

the capacity of physical resources belonging to the physical

machines where each application tier is actually run. To do so,

we assumed that the relative computing power of two physical

resources of the same category (i.e., the measure of how much

a physical resource is more powerful than another one) can be

expressed by a simple proportional relationship between the

capacity of the two resources. This means that if a resource

has capacity equals to 10, it will be able to serve requests at

a double service rate than a resource with capacity equals to

5.

In order to reduce energy consumption and achieve appli-

cation performance targets, the Resource Manager combines

virtualization technologies and control-theoretic techniques.

On one hand, by deploying each application tier inside a

separate VM, virtualization provides both a runtime isolated

environment and a mean for dynamically provisioning physical

resources to virtualized applications so that an effective use

of physical resources can be achieved. On the other hand,

control theory provides a way for enabling computing systems

to automatically manage performance and power consumption,

without human intervention. Thus, the Resource Manager

accomplishes its goal by dynamically adjusting the fraction of

the capacity of physical resources assigned to each VM (host-

ing a particular application tier), and, if needed, by migrating

one or more VMs into other and more appropriated physical

machines (possibly, by turning on or off some of them). As

shown in Fig. 1, the Resource Manager consists in a set of

independent components that we called Application Manager,

Physical Machine Manager, and Migration Manager.

Currently, only the Application and Physical Machine Man-

agers have been implemented. For this reason, in the rest of

this section we focus on the design of these two components.

We just want to remark that the purpose of the Migration

Manager (whose implementation is ongoing) is to monitor, at

long-time scale, performance targets and energy consumption

and to decide which VMs need to be migrated to suitable

physical machines (possibly by turning on additional physical

machines, for achieving better performance) and which phys-

ical machines can be turned off (to save energy).

B. Application Manager

The purpose of the Application Manager is to provide

the controlled application with the needed amount of re-

source capacity in order to satisfy its SLO constraints. The

Application Manager accomplishes its task by periodically

performing the following actions: (1) it monitors the interested

performance metrics, (2) it compares them with the related

counterparts defined by the SLOs (associated to the controlled

application), (3) it computes the amount of resource capacity

each tier should obtain to meet its SLO constraints, and

(4) it forwards these resource capacity demands to Physical

Machine Managers associated to physical machines where

each tier of the controlled application is running. Moreover,

in order to cope with physical machine heterogeneity, at the

beginning and the end of its periodic activity it converts actual

resource demands (related to physical machines where tiers are

currently running) to/from “reference” ones (stated in terms

of the reference machine), respectively. As shown in Fig. 2,

we designed the Application Manager as an adaptive feedback

controller by using a Self-Tuning Regulation (STR) adaptation

scheme [9]; in what follows, we provide a brief description

of each component (mathematical details are out of scope

of this paper). In the figure, the “target system” box (i.e.,

the controlled application) is modeled as an AutoRegressive

with eXogenous terms (ARX) model [10], where system inputs

(i.e., CPU shares) and outputs (i.e., tier residence times) are
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restated as normalized deviations from an operating point

[11]. The “estimation” box estimates on-line (i.e., at each

control interval) ARX parameters, to adapt them to dynamic

workload changes, by means of the Recursive Least-Square

(RLS) algorithm with exponential-forgetting, which uses a

forgetting factor for regulating the exponential decay of the

influence of past observations over new ones. The “transducer”

box represents an Exponentially Weighted Moving Average

(EWMA) filter [12] used to smooth the observed system

output (to prevent the controller to be too reactive in case of

short peaks in the output), and for coping with low-intensity

control periods (i.e., when no request leaving the application

is observed). EWMA uses a smoothing factor for regulating

the exponential decay of the influence of past observations

over new ones. The “controller design” and “controller” boxes

converts the ARX system model to an equivalent state-

space representation and uses the infinite-horizon discrete-

time Linear Quadratic Regulator (LQR) with output weighting

control design [13] in order to compute (by minimizing a

quadratic cost function) optimal system inputs given current

system outputs; it is characterized by two weighting matrices

representing the output weight and the control effort to apply

during the optimization.

Once optimal CPU shares are computed, the Application

Manager rescales them with respect to the CPU capacity of

the physical machines where the associated tiers are currently

running, and then forwards the computed shares to the Physical

Machine Managers (described in the next section) controlling

those physical machines.

C. Physical Machine Manager

The purpose of the Physical Machine Manager is to satisfy

CPU share demands coming from those Application Managers

which have tiers running on the controlled physical machine.

There is one Physical Machine Manager for each physical

machine of the Cloud infrastructure. It is important to note

that since (1) the same physical machine may hosts VMs

running tiers belonging to different applications, and (2)

Application Managers work independently from each others,

CPU share demands arriving at the Physical Machine Manager

are generally uncorrelated, so that the aggregated CPU share

demand may exceed the maximum CPU capacity of the con-

trolled physical machine. Thus, the Physical Machine Manager

has to arbiter among all incoming CPU share demands by

adjusting them according to a given policy. In our current

implementation, we designed the Physical Machine Manager

according to a proportional policy, whereby adjusted CPU

share demands are computed proportionally to the original

demands. Specifically, assuming that a particular physical

machine hosts n VMs, CPU shares are bounded in the (0,D]
real interval (with 0 < D ≤ 1), and denoting with d1, . . . , dn

the incoming CPU share demands for the n VMs, the adjusted

CPU share demands d̂1, . . . , d̂n will be computed according

to the following formula:

d̂i =
di∑n

j=1 dj

D (1)

In the following section we show and discuss the results

obtained by running various simulations for evaluating the

efficacy of the just described framework.

III. EXPERIMENTAL EVALUATION

In this section, we present the results of the experiments

we conducted for evaluating the effectiveness of our proposed

solution. Firstly, in Section III-A, we describe the experiments

setup, then in Section III-B, we present and discuss the related

results.

A. Experimental Setup

In order to assess the capability of the resource management

techniques described in this paper, we performed an extensive

experimental evaluation using discrete-event simulation. To

this end, we developed a C++ ad-hoc discrete-event simulator,

that was used to run our experiments.

1) Physical Infrastructure Configuration: We considered

a set of homogeneous physical machines whose computing

power is twice that of the reference machine. For all machines,

the consumption of electrical energy was modeled by means

of the power model described in [14], whereby the power P

is related to the CPU utilization u by means of the formula

P = C0 +C1u+C2u
r. We estimated the values of the param-

eters C0, C1, C2 and r through a statistical regression analysis

over data collected by the SPECpower ssj2008 benchmark

[15], and we set them to C0 = 143, C1 = 258.2, C2 = 117.2,
and r = 0.355.
The placement of each VM is performed at the beginning

of the simulation with a static approach; each VM is randomly

assigned to 1 of 5 physical machines, thus resulting in at most

2 VMs per physical machine.

2) Application Configuration: We considered a set of 3
distinct multi-tier applications, that we named A1, A2, and A3,

respectively. All these applications have 3 tiers: each incoming

service request arrives at the first tier that, after processing it,

forwards it to the second tier where this process is repeated.

Finally, after the processing in the third tier has taken place,

the result of the service request is sent back to the respective

client. The applications considered in our experiments differ

from each other in the amount of processing time requested

by each tier. In particular:

• A1 is an application where all tiers have the same

processing capacity, that has been set to 0.06 req/sec;



• A2 is an application with a bottleneck in the second tier;

more specifically, the first and third tiers have the same

service rate set to 0.03 req/sec, while the second tier has

a service rate set to 0.06 req/sec;

• A3 is an application where tiers have decreasing process-

ing capacity, and has been obtained by setting the service

rates of the first, second, and third tiers to 0.015, 0.03,
and 0.06 req/sec, respectively.

All the above service rates are expressed in terms of the

computing power of the reference machine.

Each application is characterized by its workload, that

consists in a stream of service requests, continuously generated

by a population of users of unknown size, arriving according to

a specific arrival process. In order to reproduce various opera-

tional conditions that may occur for real-world hosted services,

we considered three different arrival processes, namely:

• Deterministic Modulated Poisson Process (DMPP), to

generate workloads exhibiting user behavioral patterns

like daily-cycles of activity. In particular, we con-

sidered a three-state DMPP, henceforth denoted as

DMPP(λ1, λ2, λ3, τ), where λi, for i = 1, . . . , 3, is the

arrival rate of the Poisson process in state i, and τ is the

deterministic state-residence time;

• Pareto Modulated Poisson Process (PMPP) [16] to

generate self-similar workloads. In particular, we con-

sidered a two-states PMPP, henceforth denoted as

PMPP(λ1, λ2, xm, α), where λi, for i = 1, 2, is the arrival
rate of the Poisson process in state i, and xm and α are

the minimum value and shape parameters of the Pareto

distribution, respectively;

• Markov Modulated Poisson Process (MMPP) [17] to

generate arrival processes exhibiting temporal burstiness

[18]. In particular, we considered a two-states MMPP,

henceforth denoted as MMPP(λ1, λ2, µ1, µ2), where λi,

for i = 1, 2, is the arrival rate of the Poisson process in

state i, and µi, for i = 1, 2, is the state-transition rate

when the process is in state i.

3) Application Manager Configuration: As discussed be-

fore, the parameters characterizing the Application Manager

are the forgetting factor of the RLS algorithm, the structure

of the ARX model, the smoothing factor of the EWMA filter,

the weighting matrices of the LQR controller, and the control

sampling interval, that were set as follows:

• RLS forgetting factor: we chose the commonly used value

of 0.98 which means that the weight of past observations

decays very rapidly with time;

• ARX model structure: we found via experiments that an

ARX model with 2 poles, 1 zero and a single delay (per

input) was good enough to approximate the behavior of

our simulated applications.

• EWMA smoothing factor: we used a value of 0.7, so
that the influence of past observations does not vanish

too fast;

• LQR weighting matrices: we used the Bryson’s rule [19];

• value of control sampling time: was derived by means

of off-line trial-and-error experiments, from which we

found that a reasonable value (with respect to control

responsiveness and control overhead) was to set it to

8 times the value of the request arrival rate. We used

such trial-and-error approach since, to the best of our

knowledge, there is no systematic method that can be

directly applied to computing systems. The rationale

under the choice of using the request arrival rate as a

“reference” value for control sampling time is that the

arrival rate can be seen as an indicator of how much effort

is needed by the controller (i.e., the higher is the arrival

rate, the higher is the number of requests the application

has to serve, and then the faster the controller needs to

operate, and vice versa).

4) Performance Metrics: We assessed the performance

of our resource management framework by measuring the

number of violation with respect to the SLOs constraints

of the various applications, and the amount of electrical

energy (expressed in Joule) consumed to serve each submitted

service request. For each of these quantities, we computed

the 95% confidence level at a relative precision of 4%.

This was achieved by using the simulation output analysis

method commonly known as independent replications, where

the terminating condition of each replication was set to be the

achievement of at least 1000000 served requests per applica-

tion. The number of independent replicas needed to achieve,

for each simulation experiment, the required confidence level

was computed on-line by means of the relative precision of

the confidence interval method [8].

In our experiments, we used as SLO specification of each

application the 0.99th quantile of its response time. This

means that the IaaS provider will pay penalties only when

the percentage of SLO violations (i.e., the percentage of the

number of times the observed response time is greater than the

SLO value) is greater than 1% during a pre-determined time

interval. To compute the SLO value for each application, we

used a benchmark-like approach similar to the one described

in [3] for application profiling, that consists in running a series

of simulations for each application and for each type of arrival

process (assigning to each tier exactly the amount of CPU ca-

pacity as defined by the reference machine specifications) and

measuring the 0.99th quantile of the response time empirical

distribution. 2

B. Results and Discussion

To show the effectiveness of our solution, hereinafter re-

ferred to as OUR-SOLUTION, we compared it with two other

static approaches, traditionally applied in data center resource

management, named in the following as STATIC-SLO and

STATIC-ENERGY.

2A similar approach has been adopted to compute the operating point used
by the on-line system identification algorithm (see Section II-B), such that
the operating value for the response time was set to the mean response time
observed in each simulation, and the one for the CPU share was set to the
ratio between the CPU capacity of the reference machine and the one of the
machine used in the simulated system.



In the STATIC-SLO approach, the IaaS provider statically

assigns to each VM (running a particular application tier) the

amount of CPU capacity defined by the reference machine.

This is a SLO-conserving approach since, by assigning exactly

the amount of capacity needed to satisfy SLOs, the provider

favors SLOs satisfaction in place of energy consumption

reduction.

Conversely, in the STATIC-ENERGY approach, the IaaS

provider statically assigns to each VM a fixed amount of

capacity that is 25% lower than the one defined by the refer-

ence machine. This is an energy-conserving approach since,

by assigning less capacity than required, the provider favors

energy consumption reduction instead of SLOs satisfaction (in

the hope to still get a low number of SLO violations).

For the sake of readability, we have grouped the results

in four different scenarios, namely S-DMPP, S-PMPP, S-

MMPP and S-MIX, which differ from each other in the type

of arrival process, whose settings are summarized in Table I

(where we used the same notation described in Section III-A).

It is important to point out that in each scenario, except for

S-MIX, we fixed the type of arrival process and varied the

type of application to A1, A2, and A3. Instead, in the S-MIX

scenario, we fixed the type of application to A3 and varied,

for each application instance, the type of arrival process. The

purpose of this scenario is to show that under different type

of time-varying workloads our solution is still effective.

The results of the various scenarios are presented in four

separate tables: Table II for S-DMPP, Table III for S-PMPP,

Table IV for S-MMPP, and finally Table V for S-MIX. Each

row of a given table reports the results obtained, by the

various applications, under a specific resource management

approach (i.e., STATIC-SLO, STATIC-ENERGY, and OUR-

SOLUTION); numbers inside parenthesis (when present) rep-

resent the standard deviations of the related measures. The

columns of each table have instead the following meaning.

The second to fourth columns (each labeled “% SLO vio-

lations”) show the mean percentage of SLO violations for

each application (lower values correspond to better results).

The fifth column (labeled “Power Consumption”) reports the

mean instantaneous power (expressed in Watt) absorbed by

the Cloud infrastructure (lower values correspond to better

results). The last column (called “Efficiency”) is a power-to-

performance ratio (in Joule per request) computed as the ratio

between the energy consumed by the Cloud infrastructure and

the number of satisfied SLOs (averaged over all replications);

it represents the mean amount of Joule spent by the Cloud

infrastructure in order to satisfy the SLO of a single request

(over the whole simulation). We called it “Efficiency” since

it provides an indication of how efficiently a given approach

used physical resources of the Cloud infrastructure in order to

lower the number of SLO violations and, at the same time, to

reduce energy consumption; thus, the lower is its value, the

better is the result.

By looking at the results reported in the results tables,

we can observe that our approach (row OUR-SOLUTION)

always achieves a lower number of SLO violations (with

respect to the 1% threshold defined by SLO specifications),

and always outperforms the STATIC-ENERGY approach. As a

matter of fact, in both S-DMPP (see Table II) and S-PMPP

(see Table III), the OUR-SOLUTION approach, with respect

to the STATIC-ENERGY one, is able to satisfy SLOs for a

greater number of requests with a lower energy consumption

and, more importantly, without resulting in any penalty to be

paid by the provider (as instead is for the STATIC-ENERGY

approach).

The advantage of the OUR-SOLUTION approach is more

evident for both S-MMPP (see Table IV) and S-MIX (see

Table V), where the STATIC-ENERGY approach has not been

able to converge to the prescribed accuracy (the “n/a” label

stands for “result not available”) because of the aggregation

of too many queueing phenomena (caused by the inability to

dynamically adjust CPU shares during high-intensity arrival

periods), which resulted in an unstable (simulated) system.

The comparison between OUR-SOLUTION and STATIC-

SLO approaches needs more attention. First, the power con-

sumption implied by the OUR-SOLUTION approach is always

lower than the one obtained with the STATIC-SLO one, but in

S-MIX. Second, both approaches keep the percentage of SLO

violations under the 1% threshold (as defined by SLO specifi-

cations). However, only for S-DMPP, the percentage of such

violations yield by the OUR-SOLUTION approach is always

lower than the STATIC-SLO one; in all the other cases, there

are mixed situations (e.g., in S-MMPP, the OUR-SOLUTION

approach, with respect to the STATIC-SLO one, resulted in

a lower percentage of SLO violations for “Application #3”

but higher for “Application #1”). This can be ascribed to

the following reason. The OUR-SOLUTION approach, unlike

the STATIC-SLO approach, is able to dynamically react to

high-intensity workload periods by increasing the fraction

of resource capacity for the interested application; thus it

generally should exhibit a lower percentage of SLO violations

than the STATIC-SLO approach. However, there might be

cases where such periods overlap in a way that some tier

get less resource capacity than needed, thus increasing the

probability to violate SLO constraints; indeed, this is the

main reason motivating the cases where the percentage of

SLO violations obtained with the OUR-SOLUTION approach is

greater than the one resulted with the STATIC-SLO one. In any

case, it is important to note that the STATIC-SLO approach

requires an overcommitment of resources, whereby a larger

fraction of CPU capacity is assigned to each VM regardless

of the fact that this fraction will be actually used by the VM.

As a consequence, this approach implies that the number of

VMs that can be consolidated on the same physical machine

is lower than those attained by the OUR-SOLUTION (that,

instead, allocates to each VM the fraction of CPU capacity

it needs). Therefore, the STATIC-SLO approach potentially

requires – for a given number of VMs – a larger number of

physical resources than the OUR-SOLUTION one, thus yielding

a larger energy consumption.

Finally, for the “Efficiency” measure we finds a similar

situation: the OUR-SOLUTION approach is always able to



TABLE I
EXPERIMENTAL EVALUATION: SCENARIOS.

Scenario Application #1 Application #2 Application #3
Type Arrival Process SLO Type Arrival Process SLO Type Arrival Process SLO

S-DMPP A1 DMPP(1, 5, 10, 3600) 1.176 A2 DMPP(10, 5, 1, 3600) 0.612 A3 DMPP(5, 10, 1, 3600) 0.608
S-PMPP A1 PMPP(5, 10, 1, 1.5) 1.245 A2 Same as Application #1 0.655 A3 Same as Application #1 0.624
S-MMPP A1 MMPP(5, 15, 0.0002, 0.002) 4.001 A2 Same as Application #1 1.962 A3 Same as Application #1 1.935
S-MIX A3 DMPP(5, 10, 1, 3600) 0.608 A3 MMPP(5, 15, 0.0002, 0.0020) 1.935 A3 PMPP(5, 10, 1, 1.5) 0.624

TABLE II
EXPERIMENTAL EVALUATION: RESULTS FOR THE S-DMPP SCENARIO.

Approach Application #1 Application #2 Application #3 Power Consumption Efficiency
% SLO violations % SLO violations % SLO violations Watt Joule/req

STATIC-SLO 0.67% (±0.04%) 0.75% (±0.05%) 0.78% (±0.03%) 1043.59 (±5.27) 61.84
STATIC-ENERGY 19.19% (±0.83%) 14.05% (±0.59%) 19.40% (±0.31%) 1013.04 (±5.29) 72.39
OUR-SOLUTION 0.36% (±0.08%) 0.49% (±0.04%) 0.49% (±0.04%) 1037.69 (±5.78) 61.31

TABLE III
EXPERIMENTAL EVALUATION: RESULTS FOR THE S-PMPP SCENARIO.

Approach Application #1 Application #2 Application #3 Power Consumption Efficiency
% SLO violations % SLO violations % SLO violations Watt Joule/req

STATIC-SLO 0.86% (±0.21%) 0.78% (±0.11%) 0.69% (±0.22%) 1158.37 (±56.18) 46.16
STATIC-ENERGY 21.91% (±11.32%) 17.41% (±7.31%) 15.58% (±8.72%) 1083.23 (±169.34) 58.44
OUR-SOLUTION 0.88% (±0.41%) 0.75% (±0.31%) 0.59% (±0.32%) 1150.11 (±170.63) 47.34

TABLE IV
EXPERIMENTAL EVALUATION: RESULTS FOR THE S-MMPP SCENARIO.

Approach Application #1 Application #2 Application #3 Power Consumption Efficiency
% SLO violations % SLO violations % SLO violations Watt Joule/req

STATIC-SLO 0.68% (±0.26%) 0.76% (±0.24%) 0.77% (±0.20%) 1064.90 (±26.07) 60.48
STATIC-ENERGY n/a n/a n/a n/a n/a
OUR-SOLUTION 0.81% (±0.28%) 0.77% (±0.24%) 0.66% (±0.18%) 1064.12 (±26.99) 60.38

TABLE V
EXPERIMENTAL EVALUATION: RESULTS FOR THE S-MIX SCENARIO.

Approach Application #1 Application #2 Application #3 Power Consumption Efficiency
% SLO violations % SLO violations % SLO violations Watt Joule/req

STATIC-SLO 0.77% (±0.05%) 0.77% (±0.13%) 0.53% (±0.10%) 1029.71 (±29.38) 52.25
STATIC-ENERGY n/a n/a n/a n/a n/a
OUR-SOLUTION 0.77% (±0.05%) 0.76% (±0.22%) 0.64% (±0.19%) 1036.31 (±45.92) 50.87

use physical resources more efficiently than the STATIC-SLO

approach, with the exception of the S-PMPP scenario where,

however, the power consumption of the OUR-SOLUTION

approach is lower than the value attained by the STATIC-SLO

one.

In conclusion, the OUR-SOLUTION approach is able to

achieve better results compared to other approaches both in

terms of efficiency and energy consumption.

IV. RELATED WORK

In this section, we provide a brief state-of-the-art about

dynamic performance- and power-aware resource management

in Cloud infrastructures. Over last years, many research works

have arisen for dynamically managing physical resources

of a Cloud infrastructure in order to take into considera-

tion performance targets of hosted applications and power

consumption of the infrastructure. However, the majority of

them dealt with the two aspects separately (e.g., see [20]–

[22] and [23]–[25] for disjoint performance-aware and power-

aware resource management approaches, respectively). Only

very recently, several works, combining dynamic power- and

performance-aware resource management, have published in

the literature. For instance, in [26], a combined predictive

and reactive provisioning technique is proposed, where the

predictive component estimates the needed fraction of capacity

according to historical workload traces analysis, while the

reactive component is used to handle workload excess with

respect to the analyzed one. Unlike this work, our solution, by

means of on-line system identification, is potentially able to

work with any type of workload without any prior knowledge.



In [27] a two-levels control architecture for coordinating

power and performance management in virtualized clusters is

proposed, where, unlike our framework, the achievement of

performance targets is always subjected to the reduction of

power consumption; conversely, in our framework, the reduc-

tion of power consumption is constrained to the achievement

of performance targets.

In [28], a two-layers hierarchical control approach is used

for tackling the resource provisioning problem for multi-

tier Web applications. Even though this work share some

architectural similarity with our framework, there are two

important differences; the first difference regards the way ARX

parameters are computed (i.e., through off-line identification),

while the second one is about the way CPU shares are assigned

to application tiers (which is not well suited for situations

where tiers of different applications are hosted on the same

physical machine).

In [29], a two-level resource management is proposed which

combines a utility-based approach to constraint programming;

it differs from our work in that the architecture of the frame-

work is not decentralized since both the utility maximization

and the constraints satisfaction problems need a global view

of the computing system state.

Finally, in [30] a time-hierarchical and decentralized frame-

work, able to dynamically place VMs and to turn on or

off physical machines when needed, is presented. Besides of

the conceptual similarity with our framework (including the

Migration Manager component), this work differs from our

one for the approach taken to minimize power consumption

and SLO violations, which consists in a utility-based approach

combined to mixed integer non-linear programming. 3

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework for automatically

managing computing resources of Cloud computing infras-

tructures in order to simultaneously satisfy SLO constraints

and reduce system-level energy consumption. By means of

simulation, we showed that, compared to traditional static

approaches, our work is able to dynamically adapt to time-

varying workloads and, at the same time, to significantly

reduce both SLO violations and energy consumption.

Regarding possible future works, there are some interesting

activity that can be carried on. Future work includes the exten-

sions of the proposed framework with two new components,

namely the Migration Manager discussed in Section II and the

Resource Negotiator (to negotiate physical resources among

different Cloud infrastructures), and its integration into a real

testbed.
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