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Abstract—Federations among sets of Cloud Providers (CPs),
whereby a set of CPs agree to mutually use their own resources to
run the VMs of other CPs, are considered a promising solution
to the problem of reducing the energy cost. In this paper, we
address the problem of federation formation for a set of CPs,
whose solution is necessary to exploit the potential of cloud
federations for the reduction of the energy bill. We devise an
algorithm, based on cooperative game theory, that can be readily
implemented in a distributed fashion, and that allows a set of CPs
to cooperatively set up their federations in such a way that their
individual profit is increased with respect to the case in which
they work in isolation.We show that, by using our algorithm and
the proposed CPs’ utility function, they are able to self-organize
into Nash-stable federations and, by means of iterated executions,
to adapt themselves to environmental changes. Numerical results
are presented to demonstrate the effectiveness of the proposed
algorithm.

Keywords—Cloud Federation, Cooperative Game Theory, Coali-
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I. INTRODUCTION

Many modern Internet services are implemented as cloud
applications consisting of a set of Virtual Machines (VMs)
that are allocated and run on a physical computing infras-
tructure managed by a virtualization platform (e.g., Xen [1],
VMware [2], etc.). These infrastructure are typically owned
by a Cloud Provider (CP) (e.g., Amazon AWS, Rackspace,
Windows Azure, etc.), and are located into a (set of possibly
distributed) data center(s).

One of the key issues that must be faced by a CP is the
reduction of its energy cost, that represents a large fraction
of the total cost of ownership for physical computing infras-
tructures [3]. This cost is mainly due to the consumption of
the physical resources that must be switched on to run the
workload.

To reduce energy consumption, two techniques are there-
fore possible for a CP: (a) to minimize the number of hosts that
are switched on by maximizing the number of VMs allocated
on each physical resource (using suitable resource management
techniques [4], [5]), and (b) to use resources that consume less
energy.

Cloud federations [6], whereby a set of CPs agree to
mutually use their own resources to run the VMs of other CPs,
are considered to be a promising solution for the reduction of
energy costs [7] as they ease the application of both techniques.

As a matter of fact, while each individual CP is bound to
its specific energy provider and to the physical infrastructure
it owns, a set of federated CPs may enable the usage of

more flexible energy management strategies that, by suitably
relocating the workload towards CPs that pay less for the
energy, or that have more energy-efficient resources, may
reduce the energy bill for each one of them.

In this paper, we address the problem of federation forma-
tion for a set of CPs, and we devise an algorithm that allows
these CPs to decide whether to federate or not on the basis of
the profit they receive for doing so. In our approach, each CP
pays for the energy consumed by each VM, whether it belongs
to its own workload or to the one of another CP, but receives
a payoft (computed as discussed later) for doing so.

The algorithm we propose is based on cooperative game
theory [8], [9]. In particular, we rely on hedonic games (see
[10] for their definition) whereby each CP bases its decision
on its own preferences. Depending on the specific operational
conditions of each CP (i.e., the resource requirements of its
workload, its cost of energy, the energy consumption of its
physical machines, and the revenue it obtains when running
each VM on these machines), different federations (each one
consisting of a subset of the CPs), or even no federation at all,
may be formed by the involved CPs. We call federation set
the set of distinct federations formed by a set of CPs.

The algorithm we propose computes the federation set that
results in the highest profit that can be achieved by a set of
autonomous and selfish CPs. This derives from the fact that
this algorithm ensures that all the federations formed by groups
of CPs are stable, that is CPs have no incentive to leave the
federation once they decide to participate.

Unlike similar proposals (e.g., [11]), we adopt a distributed
approach in which each CP autonomously and selfishly makes
its own decisions, and the best solution emerges from these
decisions without the need to synchronize them or to resort to
a trusted third party, and such that no CP can benefit by moving
from her/his federation to another (possibly empty) one. In this
way, we avoid three drawbacks that affect existing proposals,
namely (1) the difficulty of finding a third party that is trusted
by all the CPs, (2) the need to suspend the operations of all
the CPs when the federation set is being computed, and (3) the
instability inside the federation due to single CP’s movements.

The rest of this paper is organized as follows. In Sec-
tion II, we describe the system under study, and provide
some simple motivating example. In Section III, we present a
cooperative game-theoretic model of the system under study,
and show stability conditions and profit allocation strategies
that provide the theoretical foundation for the distributed
coalition formation algorithm, that is also presented in this
section. In Section IV, we present results from an experimental



evaluation to show the effectiveness of the proposed approach.
In Section V, we provide a short overview of related works.
Finally, conclusions and an outlook on future extensions are
presented in Section VL.

II. PROBLEM FORMULATION

We consider a set of N CPs denoted by N =
{1,2,...,N}, where each CP 7 is endowed with a set H;

of physical hosts. We denote as H = Uf\il’Hi the set of
all the hosts collectively belonging to the various CPs. These
hosts are grouped into a set G of host classes according to
their processor type and to the amount of physical memory
they provide; all the hosts in the same class are homogeneous
in terms of processor and memory size. For any h € H we
denote by g(h) the function that gives the host class of & (i.e.,
a function g : H — G).

As discussed in [12], we assume that a host h consumes

;n(i;‘L) Watts when its CPU is in the idle state, C;“("Z‘) Watts when

its CPU is fully utilized, and (Cin + f-(Cpis ~Cmin ) ) when
a fraction f € [0, 1] of its CPU capacity is used. This model,
albeit simple, has been shown to provide accurate estimates of
power consumption for different host types when running sev-

eral benchmarks representative of real-world applications [12].

Physical hosts run cloud workloads, consisting in a set
J = vazl J; of VMs, where J; denotes the set of VMs that
compose the workload of the i-th CP (each VM contains the
whole execution environment of one or more applications).

As typically done by CPs, VMs are grouped into a set Q of
VM classes according to the computing capacity provided by
their virtual processors, and to the amount of physical memory
they are equipped with; all the VMs belonging to the same
class provide the same amount of computing capacity and of
physical memory. For instance, Amazon’s EC2 [13] defines
the Elastic Compute Unit (ECU) as an abstract computing
resource able to deliver a capacity equivalent to that of a 1.2
GHz 2007 Xeon processor, and provides various instance types
(that are equivalent to our VM classes) that differ among them
in the number of ECUs and in the amount of RAM they are
equipped with. More specifically, small, medium, and large,
corresponding to VM class 1, 2, and 3, respectively, provide
1 ECU and 1.7 GB of RAM, 2 ECUs and 3.7 GB of RAM,
and 4 ECUs and 7.5 GB of RAM, respectively.

For any VM j € J, we denote by ¢(j) the function that
gives its VM class (i.e., a function ¢ : J — Q). Using
this notation, for any j € J we denote by CPU ;) and by
RAM 4y the amount of computing capacity and of physical
memory of VM j, respectively. As an example, in the Amazon
EC2 case we have that CPU, = 1 ECU and RAM, = 1.7
GB, while CPU3 =4 ECU and RAM3 = 7.5 GB.

When allocated on a physical host h, a VM j uses a
certain fraction Ag(j),qn) of CPU capacity and a certain
fraction M (jy g(n) Of physical memory. Ay qn) can be
determined by measuring, with a suitable benchmark (e.g.,
GeekBench [14]), the computing capacity Cap,, delivered by
the virtual processor of VMs in ¢(j) and the capacity Cap,
delivered by the physical processor of hosts in g(h), and

then by dividing these quantities, i.e., Ag(j) gn) = gzg
P

For instance, if Cap, = 1,000 and Cap, = 8,000, then
Aqiiy,gthy = 0.125. My(4) g¢n) can instead be computed as

. _ a(j)
Mq(]),g(h) " | RAM size of hosts in g(h) |*

Each CP i charges, for each VM j, a revenue rate (that
depends on the class ¢(j) of that VM) that specifies the
amount of money that the VM owner must correspond per
unit of time. For instance, Amazon charges 0.08 $/hour, 0.16
$/hour, and 0.32 $/hour for small, medium, and large instances,
respectively. Consequently, CP ¢ earns a global revenue rate
that is given by the sum of the revenue rates of individual VMs.
To run its workload, CP ¢ incurs an energy cost quantified by
the energy cost rate (the amount of money that is paid per unit
of time), which is the energy cost resulting from the allocation
of (a subset of) the workload 7 on its host set H; that must
be paid per unit of time (see Section III-C for a discussion on
the optimization technique we use to minimize it). We define
the net profit rate of CP ¢ as the difference between its global
revenue rate (obtained for hosting a set of VMs) and its global
energy cost rate (that it incurs to run such VMs).

Our goal is to allocate all the VMs in J on the hosts
in ‘H (independently from the corresponding CPs) in such a
way to maximize the net profit rate of each CP ¢. This goal
can be achieved by finding the smallest set of hosts that are
sufficient to accommodate the resource shares of all the VMs
in J such that the overall energy consumption is minimized,
and by providing a suitable revenue for those CPs that host
VMs belonging to other CPs.

III. THE COOPERATIVE CP GAME

To cooperate, a set of CPs must first form a coalition, i.e.,
they all must agree to share their own resources and users
among them. Given a set of CPs, however, there are many
different coalitions that can be formed, each one differing
from the other ones in terms of the profit they bring to
their members. Therefore, a way must be provided to each
CP to decide which coalition to join. A CP must indeed
consider various factors before deciding whether to join or
not a coalition, the main ones being:

e  Stability: a coalition is stable if none of its participants
finds that it is more profitable to leave it (e.g., to
stay alone or to join another federation) rather than
cooperating with the other ones. Lack of stability
causes possible monetary losses for the following
reasons: i) a CP that has joined a coalition with
the expectation of receiving users from other CPs is
penalized if, after switching on additional resources
to accommodate these users, these other CPs leave
the coalition; ii) a CP that has accepted more users
than those that it can serve without incurring into a
penalty, expecting to use the resources of other CPs
to accommodate them, is penalized if these CPs leave
the coalition.

e  Fairness: when joining a federation, a CP expects
that the resulting profits are fairly divided among
participants. As unfair division leads to instability, it is
necessary to design an allocation method that ensures
fairness.



In this section, we model the problem of coalition formation
as a coalition formation cooperative game with transferable
utility 8], [9].

A. Characterization

Our coalition formation algorithm is based on a hedonic
game [10], [15], a class of coalition formation cooperative
games [9], [15], [16] where each player acts as a selfish agent
and where her/his preferences over coalitions depend only on
the composition of his coalition.

Given the set N' = {1,2,..., N} of CPs (henceforth also
referred to as the players), a coalition S C N represents an
agreement among the CPs in S to act as a single entity.

At any given time, the set of players is partitioned into
a coalition partition 11, that we define as the set II =
{81,8s,...,8}. That is, for k =1,...,1, each Sy C N is a
disjoint coalition such that | J},_, S = A and S; NSy = 0 for
j # k. Given a coalition partition TI, for any CP i € N, we
denote by Syi(¢) the coalition Sy € II such that i € S.

Each coalition S is associated with its coalition value v(S),
that we define as the net profit of coalition S, that is:

v(8) =r(Ts) — e(Ts, Hs) (D
where:

o 1 (Js) is the revenue rate of the coalition, and is given
by the sum of revenue rates of individual VMs j € Js;

° e(jg, 7—[5) is the energy cost rate, and can be derived
by minimizing the energy cost resulting from the
allocation of the workload Js on the host set Hgs
(we discuss this in Section III-C).

Obviously, each CP ¢ € S must receive a fraction z;(S)
of the coalition value, that we call the payoff of i in S.
Our game is conceived in such a way to form coalitions in
which CPs get payoffs as high as possible, without violating
the fairness requirement, so that stability is achieved. Thus, a
payoff allocation rule must be specified in order to compute
the payoffs of each coalition member and to ensure fairness
in the division of payoffs.

To this end, we use the Shapley value [17], a payoff
allocation rule that is based on the concept of players’ marginal
contribution (i.e., the change in the worth of a coalition when
a player joins to that coalition), such that the larger is the
contribution provided by a player to a coalition, the higher
is the payoff allocated to it. ! This means that, in a given
coalition, some “more-contributing” CPs will be rewarded by
other “less-contributing” CPs to encourage them to join the
coalition. More specifically, the Shapley value ¢;(v) of player
1 is defined as:

¢i(v): Z |‘S|'(N;V‘;S| - 1)

SCNM\{i}

! (u (SU{i}) —v(S)) @)

where the sum is over all subsets S not containing i. 2

"More specifically, we use the Aumann-Dréze value [18], which is an
extension of the Shapley value for games with coalition structures.

2The symbol “\” denotes the set difference operator, and the symbol “!”
denotes the factorial function.

To set up the coalition formation process, we need to
define a preference relation so that each CP can order and
compare all the possible coalitions it belongs to, and hence it
can build preferences over them. Formally, for any CP i € A/,
a preference relation >; is defined as a complete, reflexive,
and transitive binary relation over the set of all coalitions that
CP i can form (see [10]). Specifically, for any CP ¢ € N and
given 81,8, C N, the notation S§; =; S, means that CP ¢
prefers being a member of S; over Sy or at least ¢ prefers
both coalitions equally. The strict counterpart of >; is denoted
by »; and implies that ¢ strictly prefers being a member of
S1 over S;. Note that the definition of a preference relation
is one of the peculiarities of the coalition formation process,
and, in general, it can be a function of several parameters.

In our coalition formation CP game, for any CP i € N,
we use the following preference relation:

S1 =i So = fi(S1) > fi(S2) 3)

where 81,82 C N are two coalitions containing CP i, and
fi(+) is a preference function, defined for any CP 7 € N and
any coalition S containing 4, such that:

z;(S), if S ¢ h(i),
fiS) = {—oo, otherwise. @
where x;(S) is the payoff received by CP 7 in S, and h(7) is a
history set where CP i stores the identity of the coalition that it
visited and left in the past. The rationale behind the use of h(-)
is to avoid that a CP visit the same set of coalitions twice (a
similar idea has also been used in previously published work,
such as in [19], [20]). Thus, according to Eq. (4), each CP
prefers to join to the coalition that provides the larger payoff,
unless it has already been visited and left in the past. The
strictly counterpart >; of >, is defined by replacing > with
> in Eq. (3).

B. The Coalition Formation Algorithm

The algorithm we propose is based on the following
hedonic shift rule (see [21]): given a coalition partition IT =
{S1,...,S8;} on the set N and a preference relation =;, any
CP i € N decides to leave its current coalition Sr(z) to join
another one Sy, € ITU if and only if S U{i} =; Sn(¢), that
is if its payoff in the new coalition exceeds the one it is getting
in its current coalition. This shift rule can be seen as a selfish
decision made by a CP to move from its current coalition to
a new one, regardless of the effects of this move on the other
CPs.

More precisely, starting from the initial setting where there
are no coalitions and the history set of each CP is empty (i.e.,
Iy = {{1},{2},...,{N}} and h(i) = 0, for all i € N,
whenever it deems it is appropriate, each CP executes the
actions listed in Figure 1 asynchronously with respect to the
other CPs.

In Step 1, CP i evaluates all the possible coalitions it can
form, starting by leaving its current one Spy, (¢) to join another
already existing coalition Sy by applying the corresponding
hedonic shift rule. If such a coalition is found, in Step 2
CP i adds to its history set h(i) the coalition Sy, (7) it is
leaving, and updates the partition set by updating both Sj. (that



Step 1:  Coalition Formation Stage I. Given the current coalition
partition II. = {Si,...,S8}, each CP ¢ evaluates
possible hedonic shift operations, in order to find a
coalition Sy, € TI. U () (if any) such that:
Sk U {i} >=i Sm, (3).
Specifically, for each Sy, € I1. U 0:
1)  Build § =S8, U{i}
2)  Retrieve the coalition values v(S) and
v(Sn, (7)) (see Eq. (1))
3) Retrieve the payoff values x;(S) and
i (S, (1)) (see Eq. (2))
4)  Compute the preference function values f;(S)
and f;(Sm.(2)) (see Eq. (4))
5)  Evaluate the preference of S with respect to
S, (4) as in Eq. (3)
Step 2:  Coalition Formation Stage II. If such coalition Sy is
found, CP ¢ decides to perform the hedonic shift rule to
move to S:
1)  CP i updates its history h(¢) by adding S, (7).
2)  CP i leaves its current coalition Sy (i) and
joins the new coalition Sy.
3)  II. is updated:
Mesr = (TA{Sn, (3), Se})u{ S )\ (i}, Seufi} ).
Otherwise, CP ¢ remains in the same coalition so that:
Hc+1 == Hc
Fig. 1. The Coalition Formation Algorithm

now contains also 4) and Sp, (¢) (that now does not contain 4
anymore).

The algorithm outlined can be readily implemented in a
distributed fashion, given that each CP can act independently
and asynchronously from any other CP in the system. It is
however necessary to provide suitable mechanisms for:

e  state retrieval: the algorithm assumes that each CP is
able to obtain the current coalition partition II.. Any of
the mechanisms of this type available in the literature
(e.g., [22], [23]) can be used for this purpose;

e atomic state update: for the sake of correctness, II.
must not change while CP 7 is performing Steps 1 and
2. Any of the distributed mutual exclusion algorithms
available in the literature (e.g., [24], chap. 9) can be
used for this purpose.

It is worth noting that the asynchronicity of our algorithm
makes it suitable to be executed, for instance, when new users
arrive to CPs, thus making it able to adapt to environmental
changes. Our algorithm enjoys two important properties, that
are proved below, namely:

1) it always converges to a stable partition, so the
algorithm always terminate in a finite number of
steps;

2)  any final partition IIy it finds is Nash-stable, that is
no CP has incentive to move from its current coalition
S, (7) to join a different coalition of IIy, or to act
alone. More formally (e.g., see [10]), a partition II =

{81,...,8} is Nash-stable if ¥Yi € N, Sn(i) =;
Sk U {i} for all S € TTU 0.

Proposition 1 (Convergence). Starting from any initial coali-
tion structure 11y, the proposed algorithm always converges to
a final partition 11;.

Proof: The coalition formation phase can be mapped to a
sequence of shift operations. That is, according to the hedonic
shift rule, every shift operation transforms the current partition
II. into another partition II.y;. Thus, starting from the initial
step, the algorithms yields the following transformations:

Iy = II; = -+ = I, = 1. 5)

where the symbol — denotes the application of a shift opera-
tion. Every application of the shift rule generates two possible
cases: (a) Sy # 0, so it leads to a new coalition partition,
or (b) S = 0, so it yields a previously visited coalition
partition with a non-cooperatively CP (i.e., with a coalition
of size 1). In the first case, the number of transformations
performed by the shift rule is finite (at most, it is equal to
the number of partitions, that is the Bell number; see [25]),
and hence the sequence in Eq. (5) will always terminate and
converge to a final partition II;. In the second case, starting
from the previously visited partition, at certain point in time,
the non-cooperative CP must either join a new coalition and
yield a new partition, or decide to remain non-cooperative.
From this, it follows that the number of re-visited partitions
will be limited, and thus, in all the cases the coalition formation
stage of the algorithm will converge to a final partition II;. W

Proposition 2 (Nash-stability). Any final partition 11y result-
ing from the algorithm presented in Figure 1 is Nash-stable.

Proof: We prove it by contradiction. Assume that the final
partition II; is not Nash-stable. Consequently, there exists a
CP i € NV and a coalition S € IIy U such that S, U {i} >,
S, (7). Then, CP i will perform a hedonic shift operation and
hence II; — II%. This contradicts the assumption that Il is
the final outcome of our algorithm. |

It is worth to point out that Nash-stability also implies
the so called individual-stability [10]. A partition II =
{81,...,8} is individually-stable if do not exist a player
i € N and a coalition Sy, € ITUQ such that S, U{i} >=; Sn(¢)
and S U {i} =; S for all j € S, ie., if no player can
benefit by moving from her/his coalition to another existing
(possibly empty) coalition while not making the members
of that coalition worse of. Thus, we can conclude that our
algorithm always converges to a partition II; which is both
Nash-stable and individually stable.

C. Computation of the Optimal Coalition Cost

To use the game-theoretic model discussed in the previous
section, we need a way to find (for a given coalition) the
optimal workload allocation (i.e., the allocation that minimizes
the energy cost), that allows us to compute the coalition value.

To this end, we define a Mixed Integer Linear Program
(MILP) modeling the problem of allocating a set Js of VMs
onto a set Hs of hosts so that the energy cost rate is minimized.

‘We base our MILP on the model described in [26], that has
been first revised to improve its computational performance



minimize e = Z [pinJ"(i?) + o (ChEN — Coih)

i€EH
+pill = 0() Ly + (1 = pi)o(i) Syt Bect
+ 3 55iGeh)) i) a0) (62)
JjeT
subject to
D obi=1, j€J, (6b)
1€EH
> b < |Tpi, i€, (6¢)
JjeET
a; < Di, 1€ 7‘[, (6d)
Z bjiMyygeiy < pis 1 €EH, (6e)
JjeET
> biiAayay = i, i€ H, (6f)
jeTJ
bji S {0,1}, jejyiEHy (6g)
ai € [0,1], i€ H, (6h)
pi € {0,1}, i€H. (6i)

Fig. 2. The VM allocation optimization model

and then extended in order to incorporate the heterogeneity of
physical resources and the energy cost.

The resulting optimization model is shown in Figure 2,
where we use the same notation introduced in Section II,> and
we denote with o(7) the function that is 1 if host 4 is powered
on and 0 otherwise (i.e., a function o : H — {0,1}), with Ly,
and Sj the power absorbed during the switch-on and switch-
off operations of a host of class k, respectively, with G, i, »
the cost rate to migrate a VM of class v from CP ¢; to CP
19, with F; the cost rate of the energy consumed by a host
belonging to CP 4, with ¢(i) the function that gives the CP
that owns host 4 (i.e, a function ¢ : H — N), and with h(j)
the function that gives the host where VM j is allocated (i.e.,
a function h : 7 — H).

In the optimization model we define, for any VM j € J
and host i € H, the following decision variables: b;; is a
binary variable that is equal to 1 if VM j is allocated to
host #; «; is a real variable representing the overall fraction
of CPU assigned to all VMs allocated on host ¢; p; is a
binary variable that is equal to 1 if host ¢ is powered on. The
objective function e(j , ’H) (hereafter, e for short) represents,
for a specific assignment of decision variables, the energy cost
rate due to the power consumption induced by the federation
of CPs to host the given VMs.

The resulting VM allocation is bound to the following
constraints:

e Eg. (6b) imposes that each VM is hosted by exactly
one host;

e Eq. (6¢c) states that only hosts that are switched on

3To ease readability, we simplify it by denoting with 7 and H the cloud
workload and the host set, respectively (i.e., we omit the dependence by S).

TABLE 1. EXPERIMENTAL EVALUATION — CONFIGURATION OF CPs
CP # Hosts
Class-1 Class-2 Class-3
CP1 40 0 0
CP2 0 40 0
CP3 0 0 40
CPy4 15 15 10
TABLE II. EXPERIMENTAL EVALUATION — HOST CLASSES, VM
CLASSES AND VM SHARES
(a) Characteristics of host classes )
Host Class CPU RAM cmnjema
(GB) W)
1 2x Xeon 5130 16 86.7/274.9
2 Xeon X3220 32 143.0/518.4
3 2x Xeon 5160 64  490.1/1,117.8
(b) Characteristics of VM classes
VM Class Processor #CPUs RAM
(GB)
1 AMD Opteron 144 1 1
2 AMD Opteron 144 2 2
3 AMD Opteron 144 4 4
(c¢) Per-VM physical resource shares
Host Class Class-1 VM Class-2 VM Class-3 VM
1 (0.20, 0.062500) (0.4, 0.12500) (0.8, 0.2500)
2 (0.15,0.031250) (0.3, 0.06250) (0.6,0.1250)
3 (0.10,0.015625) (0.2,0.03125) (0.3,0.0625)

can have VMs allocated to them; the purpose of this
constraint is to avoid that a VM is allocated to a host
that will be powered off;

e Eq. (6d) ensures that (1) the CPU resource of a
powered-on host is not exceeded, and (2) that no CPU
resource is consumed on a host that will be powered
off;

e Eq. (6e) assures that (1) the RAM resource of a
powered-on host is not exceeded, (2) that VMs hosted
on that host receive their required amount of RAM,
and (3) that no RAM resource is consumed on a host
that will be powered off;

e Eq. (6f) states that all VMs must exactly obtain the
amount of CPU resource they require;

e Eq. (6g), Eq. (6h), and Eq. (6i) define the domain of
decision variables b;;, o;, and p;, respectively.

As in [26], in order to keep into considerations QoS require-
ments related to each class of VMs, we assumed that each
VM j exactly obtains the amount of CPU CPU ;) and RAM
RAM 4y as defined by its class q(j) (see Section II).

IV. EXPERIMENTAL EVALUATION

To illustrate the effectiveness of our algorithm for coalition
formation, we perform a set of experiments in which we
compute the federation set for various scenarios including a
population of distinct CPs.

In all scenarios, we consider N = 4 CPs, whose infrastruc-
tures are characterized as reported in Table I, and we use the
host classes, VM classes and VM shares as the ones defined
in Table II. We also assume that all CPs use the same revenue
rate policy, that is they earn 0.08 $/hour for class-1 VMs, 0.16



$/hour for class-2 VMs, and 0.32 $/hour for class-3 VMs.
Furthermore, without loss of generality, we also assume that
the electricity price is the same for all CPs and it is equal to
0.4 $/kWh.

Starting from this configuration, we set up 400 scenarios
that differ from each other in the workload of the various
CPs, in the power state of each host and in the VM migration
costs. Specifically, in each scenario the workload of each CP
is set by randomly generating the number of VMs of each
class as an integer number uniformly distributed in the [0, 20]
interval. In addition, to provide values to function o(-), we
randomly generate the power state (i.e., ON or OFF) of each
host according to a Bernoulli distribution with parameter 0.5.
Furthermore, the values for L, and S}, for each host class
k, are computed as the product of the electricity price, the
maximum power consumption and the time taken to complete
the switch-on or switch-off operation. This switch-on/-off time
is randomly generated for each host class according to a
Normal distribution with mean of 300 psec and standard
deviation (S.D.) of 50 usec (e.g., see [27]). Finally, the VM
migration costs G¢, ¢, x from CP ¢; to CP ¢y for each VM
class k are computed as the product between the data transfer
cost rate, the data size to transfer and the time to migrate
a VM of class k£ from CP ¢; to CP c¢o, and assuming that
our algorithm activates every 12 hours. The data transfer cost
rate is taken from the Amazon EC2 data transfer pricing [13]
and set to 0.001 $/GB. Furthermore, we suppose that data are
persistently transferred during the migration time at a fixed
data rate of 100 Mbit/sec for all CPs. For what concerns
the migration time, we assume that it is randomly generated
according to a Normal distribution with mean of 277 sec and
S.D. of 182 sec for VMs of class 1, with mean of 554 sec and
S.D of 364 sec for VMs of class 2, and with mean of 1108
sec and S.D. of 728 sec for VMs of class 3 (e.g., see [28]).
The migration cost between hosts of the same CP is assumed
to be negligible.

For each one the above scenario, we compute the federation
set of the involved CPs by using an ad-hoc simulator written
in C++ and interfaced with CPLEX [29] to solve the various
instances of the optimization model of Section III-C.

In the rest of this section, we first present a summary of
the performance obtained by our algorithm over all scenarios,
and then, we illustrate its behavior by showing its run trace
for one of these scenarios.

In Figure 3, we compare the performance of each scenario
in terms of energy saving and net profit obtained with our
algorithm with respect to the no-federation case (i.e., when
CPs work in isolation). Specifically, the figures show, for each
scenario, the percentage of the reduction of energy consump-
tion (see Figure 3a) and of the increment of net profit (see
Figure 3b) that all CPs obtain when they federate according to
our algorithm with respect to the case of working individually.
As can be seen from these figures, our algorithm results in an
reduction of the overall consumed energy from 11.3% to 33.6%
(with an average of 21.6%), and in an increment of the overall
net profit from 5.1% to 20.1% (with an average of 10.5%) with
respect to the case where CPs work non-cooperatively.

We can also analyze the benefits provided by our algorithm
from the point of view of each CP. Results from our exper-
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Fig. 3. Performance of our algorithm with respect to the no-federation case

TABLE III. EXPERIMENTAL RESULTS — WORKLOAD OF CPS IN THE
CASE STUDY
CP # VMs
Class-1 Class-2  Class-3
CP, 0 12 13
CP, 18 5 11
CPs 17 18 11
CPy 3 2 0

iments show that, from the CP perspective, the formation of
federations yielded by our algorithm is always non-detrimental.
Specifically, it results that, on average, the net profit earned
by CP;, CP;, CP; and CP, increases by nearly 18.0%,
8.5%, 22.8% and 4.3% with respect to the no-federation case,
respectively.

Finally, to illustrate how our algorithm works, we present
the run trace for a single scenario, whose characteristics are
reported in Table III. * We select this scenario to illustrate the
behavior of the algorithm when there are multiple Nash-stable
partitions. 3

For this investigation, we show in Table IV all possible par-
titions together with the value function v(-) of every coalition
inside each partition, and the corresponding Shapley values. ¢
From the table, we can see that there are two Nash-stable
coalitions, namely {1, 2,3, 4} and {{1, 3}, {2, 4}} To get one
of these partitions, our algorithm works as follows. Starting
from partition {{1},{2},{3},{4}} (.e., every CP works
individually), there are two different sequences of hedonic shift
rules:

{{1}, {2}, {3}, {4}} =

“4Due to lack of space, we only report the number of VMs.
5Note, our algorithm’s output is always a single partition.
6Note, our algorithm does not necessarily enumerate all of such partitions.

e  Sequence #1:




2

{{1,3), {2}, {4}} >
{{1,2,3,4}}
e Sequence  #2  {{1},{2},{3},{4}} N
{{1,3}, {2}, {4}} = {{1,3},{2,4}}

where the index on top of each arrow denotes the CP that
performs the corresponding hedonic shift rule.

{{1,2,3},{4}} -

Regardless what partition is finally selected, from the
third column of Table IV we can also observe that, for this
scenario, the partition value improvement for both Nash-stable
partitions with respect to the non-cooperative behavior (i.e.,
partition {{1},{2},{3},{4}}) is about 16.5% for partition
{{1,3},{2,4}} and nearly 17.2% for the grand-coalition.

V. RELATED WORKS

Recently, the concept of cloud federations [6], [30] has
been proposed as a way to provide individual CPs with more
flexibility when allocating on-demand workloads. Existing
work on cloud federations has been mainly focused on the
development of architectural models for federations [31], and
of mechanisms providing specific functionalities (e.g., work-
load management [32], [33], accounting and billing [34], and
pricing [35]-[38]).

To the best of our knowledge, very little work has been
carried out to jointly tackle the problem of dynamically
forming stable cloud federations for energy-aware resource
provisioning. Indeed, much of the existing work only focuses
on a single aspect of the problem. In [39], the design and
implementation of a VM scheduler for a federation of CPs is
presented. The scheduler, in addition to manage resources that
are local to each CP, is able to decide when to rent resources
from other CPs, when to lease own idle resources to other
CPs, and when to turn on or off local physical resources.
Unlike our work, this work does not consider the problem
of forming stable CP federations. In [40], a cooperative game-
theoretic model for federation formation and VM management
is proposed. In this work, the federation formation among CPs
is analyzed using the concept of network games, but the energy
minimization problem is not considered.

In [11], a profit-maximizing game-based mechanism to
enable dynamic cloud federation formation is proposed. The
dynamic federation formation problem is modeled as a hedonic
game (like our approach), and the federations are computed by
means of a merge-split algorithm. There are several important
differences between this and our works: (1) we focus on the
stability of individuals rather than of groups, (2) we propose a
decentralized algorithm, (3) we demonstrate the stability of the
obtained federations, and (4) we use the Shapley value instead
of the normalized Banzhaf value (as in [11]), since the latter
does not satisfy some important properties [41].

In [42], the problem of sharing unused capacity in a
federation of CPs for VM spot market is formulated as
a non-cooperative repeated game. Specifically, by using a
Markov model to predict future non-spot workload, the authors
introduce a set of capacity sharing strategies that maximize
the federation’s long-term revenue and propose a dynamic
programming algorithm to find the allocation rules needed
to achieve it. Our work can complement this approach by

providing a solution to the formation of CP federations for
non-spot VM instances.

VI. CONCLUSIONS AND FUTURE WORKS

This paper investigates a novel dynamic federation scheme
among a set of CPs. To this end, we propose a cooperative
game-theoretic framework to study the federation formation
problem, and a mathematical optimization model to allocate
CP workload in an energy-aware fashion, in order to reduce
CP energy costs.

Unlike similar proposals, we adopt a distributed approach
in which each CP autonomously and selfishly makes its own
decisions, and the best solution emerges from these decisions
without the need to synchronize them or to resort to a trusted
third party, and such that no CP can benefit by moving from
her/his federation to another (possibly empty) one.

In the proposed scheme, we model the cooperation among
the CPs as a coalition game with transferable utility and
we devise a distributed hedonic shift algorithm for coalition
formation. With the proposed algorithm, each CP individually
decides whether to leave the current coalition to join a different
one according to his preference, meanwhile improving the
perceived net profit. Furthermore, we prove that the proposed
algorithm converges to a Nash-stable partition which deter-
mines the resulting coalition structure. Numerical results show
the effectiveness of our approach.

The future developments of this research is following
several directions. First of all, we would like to enhance the
coalition value function in order to account for possible request
losses due to lack of physical resources. Furthermore, we want
to improve the game-theoretic and optimization models in
order to include costs in terms of loss of revenues as well
as other aspects like the ones related to trustworthiness among
CPs.

As a second direction, we plan to integrate the long-
term resource provisioning solution proposed in this paper
with other short-term and medium-term resource management
strategies (e.g., [5], [43]) to improve resource utilization and
meet application-level performance requirements, and with
techniques for incremental VM migration (e.g., [44]).

Finally, we want to implement and validate the proposed
algorithm in a real testbed.
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