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Abstract

Since the mid 1990s, grid computing systems have emerged as an analogy for making computing power as pervasive
an easily accessible as an electric power grid. Since then, grid computing systems have been shown to be able to provide
very large amounts of storage and computing power to mainly support the scientific and engineering research on a wide
geographic scale. Understanding the workload characteristics incoming to such systems is a milestone for the design and
the tuning of effective resource management strategies. This is accomplished through the workload characterization, where
workload characteristics are analyzed and a possibly realistic model for those is obtained. In this paper, we study the workload
of some real grid systems by using a data mining approach to build a workload model for job interarrival time and runtime, and
a Bayesian approach to capture user correlations and usage patterns. The final model is then validated against the workload
coming from a real grid system.

Index Terms

Grid Computing, Workload Characterization, Knowledge Discovery Process, Data Mining.

F

1 INTRODUCTION

Grid computing [1] is a computing paradigm that has emerged in the mid 1990s as a metaphor to make computing power as
pervasively and easily accessible to users as an electric power grid. Initially conceived to support the research of scientists
and engineers, it is now widely adopted also by enterprises [2].

According to this paradigm, several collections of heterogeneous and large-scale distributed resources (possibly belong-
ing to different organizations) are loosely federated together to form a single grid system, and are shared in a transparent,
dynamic and coordinated way to the user community. The term virtual organization (VO) is generally used for referring
to as a collection of entities (both users and resources) that belong to multiple independent organizations but that have
common goals or shared policies in the context of a particular grid system.

One of the challenging and still open problems in grid computing is the effective management of the resources of a
grid system. In particular, job scheduling is an optimization problem which consists in finding an optimal assignment of
computational and storage resources to jobs that are waiting to be executed, in order to minimize the total completion
time (i.e., the time taken by every job to execute and to transfer input and output data, if any), without violating any
predefined constraint (like site policies). Since scheduling is an NP-complete problem [3], the common way to approach to
it is by using an approximated solution through the adoption of a heuristic (i.e., the scheduling strategy), which tries to
make good assignments in a reasonable time. In traditional systems, like cluster systems, schedulers have complete control
on local resources and thus can adopt those mechanisms that best adapt to local policies. For this reason, and for the fact
that resources are usually homogeneous, job scheduling in such systems is an affordable task, thus enabling an effective
use of local resources. On the other hand, scheduling in grid systems is a complex task which may involve different,
and sometimes conflicting, factors like site autonomy, resource heterogeneity and fault tolerance. In fact, in grid systems
resources are heterogeneous and distributed across different and independent administrative domains, with their own
local scheduler usually characterized by different time-varying usage patterns, local policies and security mechanisms. A
grid scheduler should be able to interface and interoperate with these different local schedulers. Moreover, since resources
can be dynamically added and removed, fault-tolerant mechanisms are needed for reacting upon resources unavailability.

For these reasons, a good scheduling strategy, in addition to be efficient and to respect site policies, should take into
consideration the workload characteristics of the system where it is applied, in order to be able to adapt to time-varying
workload conditions. Thus, understanding workload characteristics is an essential step for the design and the tuning of
effective scheduling strategies. This is accomplished through the workload characterization, where workload characteristics
are analyzed and a possibly realistic model for those is obtained. Once the workload model is available, it can be used in
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two possible ways: (1) to generate synthetic workload for simulating or validating scheduling strategies, and (2) to create
adaptive scheduling algorithms for predicting future workload.

In this paper, we model workload characteristics of some real grid systems by using a data mining approach. In
particular, we use cluster analysis as a primary tool for compactly representing workload characteristics. The result of
cluster analysis was then employed to build a model of the job interarrival time and runtime workload characteristics. We
focus on these two characteristics since they are among the most important from the point of view of a grid scheduler.
Besides the use of clustering analysis, we employ a Bayesian approach to model correlations between users and job
submissions in order to capture user behavioral patterns. The final model in then validated against the workload coming
from a real grid system.

The rest of this paper is structured as follows. In Section 2, we describe the methodology we use for analyzing the
workload characteristics and building a workload model. In Section 3, we present the analysis and the modeling of
workload coming from a real grid system. Finally, in Section 4, we conclude this paper and we present possible future
works.

2 METHODOLOGY

2.1 Modeling Approach
In this section, we present the approach we use for analyzing and modeling the data. Our approach follows the classical
Knowledge Discovery from Data (KDD process) [4], [5], a process which seeks new and usually hidden knowledge (about a
specific application domain) from data, and which consists of multiple sequential steps: understanding the application domain,
data collection, data selection, data cleaning and preprocessing, data transformation, data mining, model assessment and validation,
knowledge consolidation. KDD is an iterative process, with many feedback loops and repetitions, which are triggered by
revision phases.

KDD starts with the understanding the application domain step, which consists in understanding the problem domain and
the relevant prior knowledge in order to identify the KDD goals from the point of view of the domain user.

Then, KDD continues with the data collection step, which involves collecting the data that will successively be analyzed;
this phase consists, firstly, in defining what attributes provide enough information for the subsequent steps, and, secondly,
in setting up the proper instrumentation tools for collecting the data.

After data have been collected, KDD proceeds with the data selection step where a portion of the whole data is sampled;
data should be extracted in a way that the size of the resulting set would be large enough to contain meaningful information
but small enough to manipulate it quickly.

Subsequently, the selected data might need to be processed in order to remove or fix possible anomalies. This is the
objective of the data cleaning and preprocessing step, which consists in looking at the data in order to find out anomalous data
like missing values, errors, unexpected values and, generally, any kind of suspicious values. This step has to be carried out
with care because even the removal of few values can alter the result of future analysis; usually, when there is little or no
knowledge about the collected data it is advisable to avoid to remove or change data, unless the anomaly is evident.

Once the selected data have been preprocessed and before moving to the pattern analysis, it might be useful to transform
them for finding useful attributes and invariant representation. This is done in the data transformation step, by applying, for
instance, dimensionality reduction, normalization and other transformation methods. This step is especially useful when
there are several attributes (i.e., high-order data) or when two or more attributes, with different order of magnitude, are
involved in the same operation (e.g., distance or similarity calculation).

After the selected data have been filtered and transformed, it is possible to try to match the goals defined in the first
step. This is done in the data mining step, where data are explored, in order to understand their underlying structure
and potential relationships between the different attributes, and a model for them is built. It consists of some iterative
subordinate phases in which the analyst has to choose a particular data mining method (e.g., summarization, classification,
regression, clustering, and so on) for matching the predetermined goals, to select a suitable algorithm through which carry
on the chosen data mining method, and finally to search for interesting patterns and evaluate their significance. The data
mining phase outputs a model which provides a global or local description of the analyzed data by generating patterns in
a particular representational form, such as classification rules, decision trees or regression models, according to the selected
data mining algorithm.

Once a model for the data has been built, it is important to evaluate its performance and accuracy for determining
how much good it fits to the data, how much good it generalizes on unseen observations and, in general, how much it
is representative of the knowledge with respect to a specific measure of interestingness. This is accomplished in the model
assessment and validation step. This step can also include comparison with other preexisting models, for comparing their
performance and choosing the one that is the more statistically accurate. Depending on how good is the built model, this
phase may require to return to any of the previous steps for further iterations and refinements.

Finally, the last step, the knowledge consolidation step, consists in using the discovered knowledge and possibly incorpo-
rating it into an existing system.
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2.2 Workload Analysis
In this work, we follow the aforementioned KDD process in a way as strictly as possible, but with some exceptions. Firstly,
we skip the data collection and selection phases (the second and third step of KDD, respectively) since the data we use
have been collected by third party entities. Moreover, because of the lack of information about the data collection phase, we
have to proceed with extremely care in subsequent phases, especially during the data cleaning and preprocessing step (the
fourth step of KDD), in order to avoid the removal of important and meaningful information. Specifically, in data cleaning
and preprocessing step, we opt to remove or to fix only those data that show evident anomalies or those that don’t change
the underlying marginal probability distribution, leaving the other possible candidates intact; the reasons about this choice
are to be mainly ascribed to the possible bursty behavior of the system (where few large values strongly influence the
other ones and the average case), which causes the average case to be not always a good representative of the real system
behavior. Finally, in the data mining phase (the fifth step of KDD), before creating the workload model, we investigate for
several statistical properties of both the marginal and the joint probability distributions of the interested attributes which
may strong influence the selection of the modeling tool and the quantitative analysis of the system behavior. Such statistical
properties include:

• normality [6] (whereby a probability distribution can be accurately approximated by a normal distribution),
• long-tailness and power-law [7] (where regions far from the mean or the median of the probability distribution, like

the extreme values in the tails of the probability distribution, are assigned relatively high probabilities following a
sub-exponential or polynomial law, contrary to what happens to the family of Normal distributions, where the tails
fall exponentially),

• autocorrelation, including short-range dependence [8] (also known as serial correlation or short-term memory, where the
autocorrelation at short time scales is significant) and long-range dependence [9] (also known as long-term memory,
where the autocorrelation at long time scales is significant),

• self-similarity [10] (where, in addition to the long-range dependence property, the scale invariance property holds at
any different time scale, like in a fractal shape),

• heavy-tailness [11] (where the long tails of the distribution fall polynomially and the self-similarity property holds),
• cyclic behavior and seasonal variations [8] (which are an indication of a non-stationary workload and must be treated

separately).

In order to carry on this investigation, we use both graphical and quantitative tools coming from statistical data analysis.
For the graphical evaluation, we follow the exploratory data analysis (EDA) approach [12], by using:

• The log-log EDF and log-log CEDF plots, for comparing the body and the tails of the sample probability distribution,
respectively. This is achieved by plotting the empirical cumulative distribution function (EDF) and the complementary
EDF (CEDF), respectively, of two probability distributions of interest; if the plots are nearly overlapping, it means
that the two probability distributions are statistically equivalent.

• The Q-Q plot [13], for evaluating possible differences, especially in the tails, between the empirical probability
distribution and another reference probability distribution, either theoretical or empirical. This is achieved by
plotting the quantiles of the two probability distributions of interest against each other; if the points of the plot
approximatively lie on the reference line (i.e., on the line y = x) it means that the two probability distributions are
statistically similar.

• The mass-count disparity plot [14], [15] and the Lorenz curve [16], for looking for an evidence of the power-law property.
The mass-count disparity plot consists in plotting the “mass” probability distribution (given by the probability that
a unit of mass belong to an item smaller than a specified x) against the “count” probability distribution (given by the
cumulative distribution function) in order to show possible disparities between these two probability distributions.
The rational here is that, in the presence of a power-law distribution, the disparity between the two distribution
should be very large since a small number of samples account for the majority of mass, whereas all small samples
together only account for negligible mass (e.g., if the job runtime distribution was a power-law distribution, the
majority of jobs would have short runtimes and only few jobs would have very long runtimes; however, these few
jobs would contribute to the majority of the mass of the runtime distribution). The analysis of this plot consists in
evaluating the area between the two curves; the larger is this area, the higher is the likelihood that the distribution
of interest is a power-law distribution. The Lorenz curve is another way to display the relationship between the
“count” distribution and the “mass” distribution; it is constructed by pairing percentiles that correspond to the same
value (i.e., a point (pc, pm) in the curve is such that pm = Fm(x) = Fm(F−1

c (pc)) where Fm(·) and Fc(·) are the
cumulative distribution functions of the “mass” and “count” distribution, respectively, and F−1

c (·) is the inverse of
Fc(·)). The analysis of this plot consists in looking at the distance of the curve from the line of perfect equality (i.e.,
the y = x line); the larger is the distance the higher is the chance that the distribution of interest is a power-law
distribution; such distance can also be evaluated by computing the Gini coefficient.

• The run-sequence plot [17] and the autocorrelation plot [18] for investigating for the presence of both short-range and
long-range dependence as long as for periodic patterns and trends. The run-sequence plot displays observed data in
a time sequence; it is constructed by plotting values of the interested (univariate) attribute according to the temporal
order as they appear; this plot is particularly useful for finding both shifts in location and scale, for locating outliers



4

and, in general, for getting insights about the trend of observed data. The autocorrelation plot (also known as
correlogram) is a plot of the sample autocorrelation function (ACF), that is of the sample autocorrelation at increasing
time lags; it is used for checking for randomness in a sequence of observations of the same attribute. If random,
such autocorrelations should be near to 0 for any and all time-lag separations; conversely, if non-random, then one
or more of the autocorrelations will be significantly different from 0.

• The scatter-matrix plot [17] for looking for cross-correlation between different attributes of the same data set; this plot
consists in drawing a scatter plot for each possible pair of attributes;, on each scatter-plot, the value of an attribute
is plotted against the corresponding value (i.e., the one found in the same observation of the data set) of another
attribute.

For what concerns the quantitative evaluation, we use classical tools of the descriptive statistics like the following:

• The two-sample pooled (Welch) t-test, for comparing, in a parametric way, the mean of two distributions (with possibly
different variances); it assumes that the two samples under study come from a (possible asymptotically) Normal
distribution.

• The F -test, for comparing, in a parametric way, the variance of two distributions; it assumes that the two samples
under study come from a (possible asymptotically) Normal distribution.

• The Mann-Whitney U -test (also known as the Wilcoxon rank-sum test), for assessing, in a non-parametric way,
whether two independent samples come from the same distribution against the alternative hypothesis that the
two distributions differ only with respect to the median; it assumes that within each sample under study the
observations are independent and identically distributed, and that the shapes and spreads of the distributions are
the same.

• The Ansari-Bradley test, for assessing, in a non-parametric way, whether two independent samples come from the
same distribution against the alternative hypothesis that the two distributions differ only in scale; it assumes that
within each sample under study the observations are independent and identically distributed, and that the two
samples must be independent of each other, with equal medians.

• The two-sample Kolmogorov-Smirnov K-S test, for comparing two empirical distribution functions.
• The Pearson’s r and the Spearman’s ρ correlation coefficients, for discovering linear and generic correlations, respec-

tively, among the interested attributes; both coefficients take values in the interval [−1,+1], where −1 means a
strong negative correlation (i.e., if the value of one attribute increases, the value of the other attribute decreases, and
vice versa), +1 means a strong positive correlation (i.e., if the value of one attribute increases, the value of the other
attribute increases too, and vice versa), and a value of 0 means no significant correlation; for all the other values in
this interval, the nearest are to 0, the weaker is the correlation.

Some of these tools have also been used in the data cleaning and processing step for evaluating any difference between
the original marginal distribution of the attribute of interests and the one obtained after removing those values considered
anomalous. Specifically, we use graphical tools like the log-log EDF plot, the log-log CEDF plot and the Q-Q plot for
qualitatively comparing the empirical distribution function, the complementary empirical distribution function and the
quantile function of the two distributions, respectively, and numerical tools like the two-sample Kolmogorov-Smirnov K-
S test, for quantitatively assessing any difference in the empirical distribution function of the two sample distributions, and
the two-sample pooled t-test, the Mann-Whitney U -test, the F -test and the Ansari-Bradley test, for numerically evaluating
any difference in the location and in the scale of the two sample distributions.

2.3 Workload Model Construction
For modeling workload characteristics we need a modeling framework that is able to preserve both first-order and second-
order statistics (e.g., quantiles and correlation, respectively) present in the data. Traditional statistical univariate distribution
fitting lacks of such ability since it enables only to model marginal probability distributions and hence first-order statistics.
However, in real workloads, it is often the case that some of the workload characteristics are tight together according to
some kind of correlation. While correlation can be easily discovered through some graphical or numerical tools, like the ones
introduced above, it is difficult to model with only statistical distributions since one would have to consider multivariate
statistical distributions, something that is hard to fit. In order to model such correlations, we apply cluster analysis [19]
to summarize workload characteristics, in order to identify representative values for each workload characteristic, and
a Bayesian approach in order to exploit the locality of sampling principle [20]. Specifically, we apply cluster analysis
to summarize job submissions in terms of 〈iatime,runtime〉 pairs, and we use a Bayesian approach to estimate the
probability distribution of user job submissions.

Cluster analysis divides data into groups (clusters) according to some similarity concept. The purpose of cluster analysis
is two-fold: (1) it allows to capture the inherent structure of the data (when it exists), and (2) it provides a way to summarize
data. For these reasons, cluster analysis is an appealing way to characterize data. In literature, there can be find several
type of cluster algorithms. In this work, we consider only partitional algorithms, that is algorithms that simply divide the
set of data into non-overlapping subsets (clusters) such that each data point is in exactly one subset. Such algorithms can
be further classified in several sub-categories, according to how they partition the data set. Specifically, in this work we
employ three different partitional algorithms:



5

• CLARA [21], a prototype-based cluster algorithm suitable for large data set;
• MCLUST [22], a (probabilistic) model-based cluster algorithm based on multivariate Gaussian fitting;
• DBSCAN [23], a density-based cluster algorithm suitable for large data set.

This choice has been primarily influenced by the large size of the data set we consider. We now briefly illustrate how such
algorithms work.

The Clustering LARge Applications (CLARA) algorithm is a prototype-based cluster algorithm which derives from the
Partitional Around Medoids (PAM) [21] algorithm. The PAM algorithm is a k-medoids cluster algorithm which attempts to
cluster a set of n points into k partitions (clusters) so that the sum of the dissimilarities of all the objects to their nearest
representative object (medoid) is minimized. After an initial random selection of k objects as medoids, PAM generates k
clusters by repeatedly trying to select the best k representatives objects (medoids) according to a cost function based on
object dissimilarities. Once the k medoids are found, the k clusters are constructed by assigning each object to the nearest
medoid. The most important weakness of PAM is its computational complexity (i.e., O(n2) for both time and space, where
n is the number of observations), which does not allow PAM to scale well for large data sets. The CLARA algorithm is an
adaptation of PAM for handling large data sets. It works by repeatedly sampling a set of data points and by applying to
each sample the PAM algorithm in order to find the best k “sample” medoids. At last, the set of k “sample” medoids that
minimizes a cost function is selected. The computational complexity of CLARA is O(ks2+k(n−k)), where s is the sample
size, k is the number of clusters, and n is the total number of objects. CLARA takes as input parameters the number of
cluster to look for, the sample size and the number of samplings.

The other algorithm we use is the Multivariate Normal Mixture Modeling and Model-Based Clustering (MCLUST) algorithm,
a probabilistic model-based cluster algorithm where data is considered to be a sample independently drawn from a
multivariate Gaussian mixture model, and each cluster is represented by a different multivariate Gaussian distribution
belonging to the mixture model. In MCLUST, the problem of finding k clusters is reduced to the problem of estimating
the parameters of the multivariate Gaussian mixture model from data; this is accomplished by combining agglomerative
hierarchical clustering and the Expectation-Maximization (EM) algorithm [24]. The problem for determining the number
of clusters is reduced to a model selection problem and is approached by using a Bayesian selection model based on the
Bayesian Information Criterion (BIC) [25]. MCLUST combines these aspects by performing the following steps: (1) determines
a maximum number k of clusters, (2) performs agglomerative hierarchical clustering and obtain the corresponding
classification for up to k groups, (3) applies the EM algorithm for each parameterization and each number of clusters
from 2 to k, (4) computes the BIC value for the one-cluster case for each model and for the mixture model with the optimal
parameters from EM for all the clusters from 2 to k, and (5) selects the model which gives the best BIC value, which in
turns gives strong evidence for a fitted model. MCLUST takes as input parameter only the maximum number of clusters
to look for.

Finally, the remaining algorithm we use is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm, a density-based cluster algorithm which is able to find clusters of arbitrary shape (even in presence of noise).
DBSCAN looks for clusters by checking the ε-neighborhood (i.e., the neighborhood within a radius of ε) of each point in the
data set. If the ε-neighborhood of a point p contains more than MinPts points, a new cluster with p as a core (i.e., centroid)
object is created. DBSCAN then iteratively aggregates neighbor objects with respect to these core points, possibly merging
near clusters. The process terminates when no new point can be added to any cluster. At last, the resulting clusters are
represented by maximal sets of density-connected points, that is by the largest sets of points each of which contains points
which are reachable by a chain of neighbor points that are far from each other at most by ε. If no special data structure
is used, the computational complexity of DBSCAN is O(n2). DBSCAN takes as input parameters the radius ε and the
minimum number of points MinPts.

It is important to note that cluster analysis is not a “panacea” and thus it should be applied with care. As a matter of fact,
a key motivation is that almost every clustering algorithm will find clusters in a data set, whether the data are naturally
clustered or purely random; this happens since any clustering algorithm will impose a clustering structure due to inherent
properties of the chosen clustering algorithm and to parameters passed to it (e.g., with the k-means algorithm, k clusters
are always found). Moreover, even if data exhibits natural clusters, different clustering algorithms generally find different
clusters; thus, after applying a clustering algorithm, ones should verify that the obtained result is really meaningful. For
these reasons, clustering analysis should always include two parts: (1) clustering tendency, and (2) clustering validation (or
clustering evaluation).

Clustering tendency concerns with determining, before applying any clustering algorithm, if a data set is naturally
clustered, in order to distinguish whether a some kind of structure, other than random, actually exists in the data.
For clustering tendency, several methods have been developed that check for the existence of subgroups with higher
homogeneity; in particular, they divide in graphical and numerical methods.

Graphical methods consist in graphically representing data in order to highlight possible clusters. Actually, most of them
are based on the concept of heat-map [26], [27], a false-color image with an optional dendrogram (i.e., a tree-like visualization
of hierarchical clusters) added to left side and/or to the top, that simultaneously reveals row and column hierarchical
cluster structure in a data matrix. Essentially, a heat-map consists of a rectangular tiling with each tile shaded on a color
scale to represent the value of the corresponding element of the data matrix; the rows (columns) of the data matrix are re-
ordered such that similar rows (columns) are near each other. Historically, heat-maps are used for unsupervised clustering
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validation, specifically, as a tool for validating the result of hierarchical clustering. However, recently it has been proposed
a new method for creating heat-maps for unsupervised clustering tendency, named Visual Assessment Tendency (VAT) [27];
this method consists in creating a heat-map by reordering the dissimilarity matrix according to a minimum-spanning tree
like criterion. One disadvantage of visual methods based on the notion of heat-map, lies in the fact that they work directly
with similarity (or dissimilarity) matrices; this means that such methods are not suitable for very large data sets because of
too large memory requirements. A possible workaround to the dimensionality problem is to compute the similarity matrix
on only a small sample of the input data and hence to create the heat-map on that matrix; however, it is important to note
that since the sample might not be representative of the data (i.e., might not capture the natural structure of the whole data
set) this process should be repeated several times (through sequential resamplings) in order to increase the probability to
obtain a significant sample (e.g., see [19]). Indeed, we use this workaround to produce VAT images in a way similar to the
one proposed by [28].

For what concerns numerical methods for clustering tendency, all of them are essentially stated in terms of internal
criterion (i.e., no additional information is used other than data itself) and can be viewed as the problem of testing for
spatial randomness (i.e., data points are uniformly distributed in the data space) or, similarly, of fitting a spatial point
process to data [29]. A test for clustering tendency can be thought as a statistical hypothesis test where the null hypothesis
H0 is “no structure in data”, while the alternative hypothesis H1 is “data has natural clusters”. If this null hypothesis
cannot be rejected, the result of any cluster analysis procedure will be only a random partitioning of the objects, depending
on the actual algorithm used. There are two key points that have an important influence on the performance of many
statistical tests that are used in clustering tendency. The first point is the dimensionality of data which has a great impact
on the performance. The other key point is the size of the so called sampling window; the sampling window can be viewed
as a set S in a d-dimensional space (where d is the dimension of the data space, that is the number of attributes) used for
testing (under the null hypothesis) that data are uniformly distributed over S and hence that they have no natural clusters.
The choice of the size of the sampling window is critical since the same data can appear as random or non-random by only
varying the sampling-window size. Among the several numerical methods, we use the Hopkins test [30] since it has been
claimed to be the more powerful one [31]. The Hopkins statistic compares Euclidean distances of sample data objects to the
related nearest-neighboring objects, with Euclidean distances of arbitrary artificial points (uniformly generated in the data
space) to the related nearest-neighboring objects. Specifically, a number m of artificial points are randomly generated by
uniformly sampling the d-dimensional data space; further, a number m of data points are randomly selected. For both sets
of points, distances to the nearest neighbors in the original data set are computed. Let ui be the nearest-neighbor distance
of the i-th artificially generated point, and wi be the nearest-neighbor distance of the i-th sampled point. The Hopkins
statistics H is defined as:

H =

∑m
i=1 u

d
i∑m

i=1 u
d
i +

∑m
i=1 w

d
i

=

(∑m
i=1 w

d
i∑m

i=1 u
d
i

+ 1

)−1 (1)

From the above equations (especially, from the second one), it is clear that, in presence of clustering tendency, wi will tend
to be smaller than ui and thus H will be larger than 0.5 and at most be 1. Practically, the Hopkins statistics is computed
for several random selection of points, and the average of all results for H is used for a decision; if this average is greater
than 0.75 then the null hypothesis can be rejected with high (i.e., 90%) confidence. The value of H depends on the choice
of m, which is the size of the sampling window; usually m is taken to be equal to the 10% of the size of the entire data
set (i.e., the number of observations). In literature several modifications to this test have been proposed for mitigating the
sampling window problem (e.g., see [32]). It is worth noting that the Hopkins test, as well as the other numerical test,
comes with several issues. Firstly, as already discussed, the choice of the size of sampling window plays a central role
in the numerical result of the method. Secondly, numerical methods are usually defined in terms of Euclidean distance;
however, for specific data set, other distance metrics are more suitable. Finally, they are computationally inefficient when
the sizes of the sampling window and of the data set are large.

The other important part of cluster analysis is clustering validation, which consists in verifying, after having applied any
clustering algorithm, if the result obtained from the clustering algorithm is significant. It includes the followings task:

• Determining the right number of clusters.
• Evaluating the accuracy of the obtained clustering model against internal information.
• Evaluating the accuracy of the obtained clustering model against external information.

In literature, there exist several graphical and numerical tools for assessing clustering validation; essentially, they divide
in internal (or unsupervised) criteria, external (or supervised) criteria and relative criteria. Internal criteria do not use external
information; they take only the data set and the clustering partition as input and use intrinsic information in the data
to assess the quality of the clustering. External criteria use external information; they measure the extent to which the
clustering structure discovered by a clustering algorithm matches a given external structure. Relative criteria compare
the result of different clustering algorithms or of the same algorithms but with different parameters (e.g., the number of
clusters). For prototype-based cluster algorithms, one of the most popular method for assessing clustering validity is the
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silhouette coefficient [33], an internal criterion which measure the quality of a given cluster; given a point i, the silhouette
width for i is defined as:

si =
bi − ai

max{ai, bi}
(2)

where ai is the average distance of i to all other points in the same cluster, and bi is the minimum between the average
distances of i to all the points in any other clusters (but the one containing i). The silhouette coefficient SC is thus
obtained by averaging over all silhouette widths. The silhouette coefficient is always between −1 and 1. For the purpose
of validation, a common interpretation of SC values is the following:

• If SC ∈ (0.70, 1.00], the clustering structure is strong.
• If SC ∈ (0.50, 0.70], the clustering structure is plausible.
• If SC ∈ (0.25, 0.50], the clustering structure is weak.
• If SC ∈ [0.00, 0.25], lack of clustering structure.

For model-based cluster algorithms, each algorithm usually embeds an optimal model selection criterion which is used for
determining both model parameters and the number of clusters; the most widely used criterion is the Bayesian Information
Criterion (BIC) [25], which is defined as:

BICk = 2 log(Pr{D|θ̂k,Mk})− νk log(n) (3)

where D is the observed data, Mk is a specific model, θ̂k are the estimated parameters of model Mk, n is the number of
data points in D (i.e., the number of observations), and νk is the number of free parameters to be estimated in model Mk.
Given any two estimated models, the model with the lower value of BIC is the one to be preferred. For what concerns
density-based cluster algorithms, to our knowledge, there is no well-proven clustering validation technique.

After applying cluster analysis and choosing the best result (according to the above clustering validation measures), we
characterize user submissions in a probabilistic way (by using a Bayesian approach) in order to maintain possible locality
structures. Specifically, we create a workload modelM = 〈C,u,W,S〉 according to the following steps:

2.4 Synthetic Workload Generation
The workload modelM = 〈C,u,W,S〉 obtained by means of Algorithm 1, described in the previous section, can then be
used to generate synthetic workload traces. This can be accomplished by means of Algorithm 2.

The rationale underlying this algorithm is that correlations between workload characteristics (obtained through cluster
analysis) have to be weighted by the actual contribution that each user provides to the workload. The workload contribution
of each user i is modeled through vectors u and wi which together provide a Bayesian way to compute the probability
ui ∗ wij that a specific user i submits a job represented by a particular cluster Cj .

3 EXPERIMENTAL EVALUATION

In this section, we present the characterization of the workload coming from the Large Hadron Collider Computing grid (LCG)
system [34]. The LCG trace contains data corresponding to 11 days of activity (from November 20th to 30th in 2005) from
multiple machines that constitute the LCG system. This log was previously analyzed and described in [35] and has been
graciously provided by the Parallel Workload Archive (PWA) [36]. As described in that work, data are collected at the level
of grid resource brokers, and hence does not include any locally generated load. The total number of entries is 188041.
Each entry in the log represents a possibly parallel job. Moreover, the log is at the level of individual processes, and does
not contain data about which processes may be part of the same parallel job. As a consequence there is no information
about job parallelism and hence all jobs (actually processes) are recorded as having a size of 1. The log format includes five
attributes:

• timestamp: a numerical integer attribute representing the timestamp of the job submission time, expressed as Unix
epochs, that is as the number of seconds elapsed since 00:00:00 on January 1, 1970 Coordinated Universal Time
(UTC).

• uid: a categorical attribute representing the identifier of the user who submitted the job.
• vo: a categorical attribute representing the name of the Virtual Organization to which the submitting user belongs.
• ce: a categorical attribute representing the name of the computing element where the job has executed.
• runtime: a numerical value representing the duration of the job execution, expressed in seconds.

It is important to note that even if the attribute uid has integer values, it is to be considered as a categorical attribute
because it is not possible to define an order between its values (e.g., user identifier 401 is neither less than nor greater to
user identifier 10). Since we are interested in studying the behaviour of the running time as well as the interarrival time,
we extend the original log format with the derived attribute iatime, a numerical integer attribute representing the job
interarrival time, and computed it by subtracting to each submission (arrival) time the immediately preceding arrival time,
that is:

iatime1 = 0

iatimei = timestampi − timestampi−1, i > 1
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Algorithm 1 The workload model construction algorithm
1: function CREATEWORKLOADMODEL
2: Create and normalize the input data set in order to contain only pairs of interarrival times and runtimes.
3: Apply cluster analysis to interarrival and runtime attributes for obtaining the set of clusters C = {C1, . . . , Cm},

such that Ci is a cluster of centroid (ai, ri) where ai and ri are the representatives of interarrival times and runtimes
inside cluster Ci, respectively.

4: Create a vector u = (u1, . . . , un) representing the fraction of job submissions given by each user; that is, given a
user i, the i-th component ui of vector u is defined as:

ui =
# jobs submitted by user i

# jobs submitted by all users
, i = 1, . . . , n (4)

obviously it results that
∑n

i=1 ui = 1. The vector u can be viewed as a discrete probability mass function giving the
probability pu(·) that a specific user submits a job; specifically, the probability pu(i) that user i submits a job is given
by:

pu(i) = ui, i = 1, . . . , n (5)

5: Create the set of vectors W = {w1, . . . ,wn} such that each vector wi = (wi1, . . . , wim) represents the fraction of
workload contributed by user i for each cluster:

wij =
# jobs in cluster Cj belonging to user i

# jobs submitted by user i
, i = 1, . . . , n and j = . . . ,m (6)

where
∑m

j=1 wij = 1, for each i = 1, . . . , n. The vector w can be viewed as a discrete conditional probability mass
function giving the probability pw(·|i) that a specific user i submits a job characterized by the interarrival time and the
runtime summarized by a particular cluster, given that user i submits a job; specifically, the probability pw(j|i) that
user i submits a job with interarrival time and runtime represented by the centroid of cluster Cj , given that user i
submits a job, is defined as:

pw(j|i) = wij , i = 1, . . . , n and j = 1, . . . ,m (7)

Together, the quantities pu(i) and pw(j|i) can be viewed as the probability that a user i submit a job characterized by
cluster Cj , and can be thought as a Bayesian way to characterize user job submissions.

6: Denormalize the input data set.
7: Create an m×2 matrix S = (sij), where each row i contains the unbiased sample standard deviations of interarrival

time (first column) and runtime (second column) inside cluster Ci. This matrix can be used during synthetic workload
generation in order to estimate data variability.

returnM = 〈C,u,W,S〉
8: end function

Algorithm 2 The synthetic workload generation algorithm
1: function GENERATESYNTHWORKLOAD(M = 〈C,u,W,S〉, N )

Input: C = {C1, . . . , Cm} is the set of clusters.
Input: u = (u1, . . . , un) is the vector of user weights.
Input: W = {w1, . . . ,wn} is the set of vector of cluster weights for each user.
Input: S = (sij) a m× 2 matrix containing the standard errors of attributes for each cluster.
Input: N is the size of the final synthetic trace.
Output: A set T of size N .

2: T ← ∅ . The final synthetic workload trace.
3: repeat
4: ru ← UNIFRAND(0, 1) . Randomly generate a number uniformly distributed in [0, 1]
5: i∗ ← max{i|

∑i
k=1 uk ≤ ru, i = 1, . . . , n}

6: rw ← UNIFRAND(0, 1) . Randomly generate a number uniformly distributed in [0, 1]
7: j∗ ← max{j|

∑j
k=1 wi∗k ≤ rw, j = 1, . . . ,m}

8: (âj , r̂j)← CENTROID(Cj∗)
9: a← EXPRAND(âj) . Sample from an Exponential distribution with mean âj

10: r ← EXPRAND(r̂j) . Sample from an Exponential distribution with mean r̂j
11: T ← T ∪ {(a, r)}
12: until |T | = N

return T
13: end function
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TABLE 1
Summary statistics for the original and filtered distributions of runtime and iatime.

runtime iatime
original filtered original filtered

Count 188041 187520 188041.00 187520.00
Min 0 1 0.00 0.00
1st Quartile 136 136 1.00 1.00
Median 255 255 3.00 3.00
Mean 8971 8996 5.05 5.07
3rd Quartile 4490 4537 7.00 7.00
Max 586700 586700 122.00 122.00

(a) Comparison of EDFs (in log-scale). (b) Comparison of CEDFs (in log-
scale).

(c) Q-Q plot

Fig. 1. Comparison between original and filtered distributions of runtime.

To perform the characterization of the LCG workload, we develop a set of statistical libraries in R, that are publicly
available for the sake of research reproducibility [37]. All the experiments presented in this section are carried out on a
dedicated Intel Quad-Core XeonX3220 machine equipped with 4GB of RAM and running the 64 bit Linux 2.6.30 operating
system.

3.1 Data Cleaning and Preprocessing
Looking at the data stored inside the trace, we find few entries with the attribute runtime set to 0. The number of these
entries only represented the 0.28% of the whole dataset. We are not able to give them an exact interpretation; we can only
suppose that their presence could represent an error condition (e.g., a failure during the job execution) or the run time of
very fast jobs, whose execution times were smaller than the time granularity used for tracing the job execution. Due to
this uncertainty, we consider two versions of the trace, the original and the filtered version (i.e., without the entries with
run times equal to zero), and performed for each of them a separated preliminary data analysis in order to understand the
impact of the removal of these suspicious entries. Since our aim is to characterize the interarrival time and the run time, we
investigate for any difference in the distributions of both runtime and iatime attributes. From Table 1, it results that only
the runtime distribution showed non negligible variations after the filtering process; indeed, the removal of suspicious
observations, made to increase the mean value and to slightly move to the right the skewness of the distribution (i.e.,
to stretch its right tail). However, subsequent statistical tests revealed that such modifications were not significant. As a
matter of fact, from a graphical comparison of the original and the filtered distribution of runtime (shown on Figure 1) and
iatime (shown on Figure 2), we don’t found any evident difference. Moreover, further statistical hypothesis tests (shown
on Table 2) confirmed that the original and the filtered distribution of both attributes was not significantly different. 1 Since
the distributions did not change significantly, we decide to remove from the trace all the entries with run time equal to 0.

3.2 Statistical Analysis of Workload Characteristics
In Table 3 are shown summary statistics for the filtered distribution of iatime, runtime vo and uid attributes at grid
level. It is important to note that, since the vo and uid attributes are categorical, we consider only, as summary statistics,
the order statistics (i.e., quantile values) and the mode of the related frequency distribution; in the table, the symbol “n/a”,
which stands for “not applicable”, is used to indicate that the computation of the associated statistics is meaningless.
Analyzing the values of skewness and kurtosis, shown in the above table, we can conclude that both the distribution

1. We are unable to perform the Ansari-Bradley test due to integer overflow errors possibly caused by the large size of the data set.
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(a) Comparison of EDFs (in log-scale). (b) Comparison of CEDFs (in log-
scale).

(c) Q-Q plot.

Fig. 2. Graphical comparisons between original and filtered distributions of iatime.

TABLE 2
Statistical hypothesis tests, at 5% of significance level, performed for assessing any significant difference between the original and filtered

distributions of runtime and iatime: a non-rejected null hypothesis H0 indicates the original and filtered distributions are statistically equivalent.
The “n/a” symbol means “not available” and is due to integer overflow errors during the computation.

runtime iatime
p-value H0 p-value H0

Kolmogorov-Smirnov test 0.4669 no reject 0.5750 no reject
Pooled (Welch) t-test 0.8162 no reject 0.2006 no reject
Mann-Whitney test 0.1414 no reject 0.1753 no reject
F -test 0.5781 no reject 0.4387 no reject
Ansari-Bradley test n/a n/a n/a n/a

Result original ≡ filtered original ≡ filtered

of iatime and that of runtime is highly positive (i.e., right) skewed and presents a high and thin peak around the
mean; this is a possible indication of a power-law distribution. This is even confirmed by the high (i.e., greater than 1)
sample coefficient of variation (CV), that is the ratio between the sample standard deviation and the sample mean, and by
the sample mean (i.e., the center of the mass), which is far from the sample median (i.e., the center of the distribution);
indeed, the mass-count disparity plot, shown in Figure 3, reveals that the distribution of runtime attribute is likely to be
a power-law distribution; the skewness is particularly strong for the distribution of runtime.

In order to discover correlations among workload characteristics, we use both graphical and statistical tools. In Figure 4

(a) Mass-Count disparity for iatime attribute. (b) Mass-Count disparity for runtime attribute.

Fig. 3. Mass-Count disparity plots for iatime and runtime attributes: the runtime distribution present an indication of the power-law property.



11

TABLE 3
Summary statistics for the iatime, runtime, vo and uid attributes (“n/a” stands for “not applicable”).

iatime runtime vo uid

Count 187520.000 187520.000 28 216
Min 0.000 1.000 dzero, photon 102, 111, 112, 121,

133, 166, 182, 190,
206, 208, 217, 218,
229, 234, 252, 276,
294, 365, 373, 401,
426, 446, 447, 451,
454, 459

1st Quartile 1.000 136.000 vlefi, vlibu 22, 28, 80, 85, 441
Median 3.000 255.000 babar, see 51, 65, 74
3rd Quartile 7.000 4537.000 phicos, zeus 64, 123
Maximum 122.000 586702.000 lhcb 26
Mode 1.000 134.000 lhcb 26
Mean 5.068 8995.843 n/a n/a
Mean 95% C.I. [5.041, 5.095] [8847.045, 9144.640] n/a n/a
Std Dev 5.939 32875.240 n/a
Std Dev 95% C.I. [5.920, 5.958] [32770.370, 32980.800] n/a n/a
CV 1.172 3.654 n/a n/a
IQR 6.000 4401.000 n/a n/a
Kurtosis 13.160 65.765 n/a n/a
Skewness 2.432 7.145 n/a n/a
Quartile Skewness 0.333 0.946 n/a n/a

(a) Run-sequence plot of
iatime attribute.

(b) ACF plot of iatime at-
tribute.

(c) Run-sequence plot of
runtime attribute.

(d) ACF plot of runtime at-
tribute.

Fig. 4. Run-sequence plot and autocorrelation function (ACF) plot for the iatime and runtime attributes.

are presented the run-sequence plot and the autocorrelation plot for the iatime and runtime attributes. From the run-
sequence plot of the iatime attribute (see Figure 4a) we can note that the trend is very bursty, while from the ACF plot
(see Figure 4b) we can observe the possible presence of a weak short-range dependence and of a moderate long-range
dependence. For what regards the runtime attribute, its run-sequence plot (see Figure 4c) shows a bursty behavior too;
however, the ACF plot (see Figure 4d) shows that the presence of both short-range dependence and long-range dependence
is very weak. For what concern the correlation among different attributes, we use the scatter-matrix plot. As shown in
Figure 5, at grid level we don’t find any significant linear correlation among the attributes, since the absolute values of
the Pearson’s correlation coefficient r are all nearly equal to 0; among these values, we can note that there might be a
weak linear correlation between the timestamp and uid attributes (|r| = 0.28), the vo and uid attributes (|r| = 0.35),
and the vo and runtime attributes (|r| = 0.15). Note that, while there is some kind of correlation between uid and
timestamp, it disappears if we concentrate on interarrival times (attribute iatime). Instead, looking at the absolute
values of the Spearman’s correlation coefficient ρ, a much stronger and possibly non-linear correlation seems to be present
between the vo and uid attributes (|ρ| = 0.51), the vo and runtime attributes (|ρ| = 0.4), and the uid and runtime
attributes (|ρ| = 0.42). This figure reveals us other important facts. Firstly, from the timestamp-vo and timestamp-uid
plots, we can note that there are VOs and users, respectively, which submit more jobs than others. Secondly, from the
runtime-iatime plot, it seems there is little difference between the interarrival time of long jobs and the one of short jobs,
and the majority of jobs are submitted at short or moderate interarrival time. These considerations suggest that additional
investigations on these relationships are to be carried on. We try to understand what are the most influential VOs and users
with respect to the number of jobs submitted and the runtime; the result is reported in Figure 6. To obtain this information,
we create the distribution of the number of submitted jobs and the one of the job runtimes, for both VOs and users, and
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Fig. 5. Scatter-plot matrix among the workload attributes: |ρ| and |r| are the absolute values of the Spearman’s and Pearson’s correlation coefficients,
respectively.

for every distribution (of each attribute) we take the 5 most influential attributes. Specifically, we consider the five VOs
with the greatest number of submitted jobs and the (possibly different) five VOs with the greatest execution times, and we
join them together (removing the overlapping ones). The result is shown in Figure 6a; from the figure we can note that the
five most influential VOs in terms of number of submitted jobs are (in order of importance): lhcb, cms, dteam, alice and atlas;
while the five ones with the longest runtime are (in order of importance): cms, lhcb, alice, atlas and phicos; the label other
is used to aggregate the values of all the other least influential VOs. Similarly, from Figure 6b we can observe the most
influential users in terms of number of submitted jobs; they are (in order of importance): 26, 53, 18, 49 and 45; while the
five ones with the greatest runtime are (in order of importance): 105, 26, 53, 32 and 39; as for the attribute vo, the label
other is used to aggregate the values of all the other least influential users. Further investigations revealed that: (1) nearly
each user belongs to only 1 VO but 12 users, who belong from 2 to 4 different VOs; in particular, 3 of such users (i.e., user
45, 53, and 105) are among the most influential users and nearly all of them belong to the most influential VOs , and (2)
roughly all the most influential VOs (i.e., atlas, cms, dteam, lhcb) group the largest number of users. Consequently, we can
conclude that the most influential VOs, namely alice, atlas, cms, dteam and lhcb, are, at the same time, those with the largest
user community, those with the largest number of submitted jobs, those with the longest job runtime; further, nearly all of
the influential users belongs to such VOs.

3.3 Cluster-Based Model for Workload Characteristics
In this section we present an approach to model workload characteristic primarily based on cluster analysis. Among the
attributes in the LCG trace, the ones that play a central role from the point of view of a grid scheduler are the job interarrival
time (i.e., iatime attribute), the user who submitted the job (i.e., uid attribute) and the job execution time (i.e., runtime
attribute). The knowledge of the interarrival time lets the scheduler to predict when the next job will likely arrive; the
information on the job execution time lets the scheduler to predict the possible amount of time a job will execute and thus
to assign to it a suitable computing machine. Finally, the knowledge about the user allows to characterize typical user
usage patterns. It results that, in order to create a realistic workload model, it is important to characterize all these three
workload characteristics.
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(a) Number of jobs versus job runtime, at VO level. (b) Number of jobs versus job runtime, at user level.

Fig. 6. Number of jobs versus job runtime, at both VO and user level.

As discussed in Section 2.3 our intent was to create a workload modelM = 〈C,u,W,S〉 where C = {C1, . . . , Cm} is
the set of cluster found through cluster analysis (summarizing pairs of interarrival and run times), u is the user weights
vector (giving the fraction of job submissions for each user), W = {w1, . . . ,wn} is the set of vectors of user workload
contributions (representing the weights that each user provides inside each cluster), and S = (sij) is the m × 2 matrix
containing information on the variability of every attribute j inside each cluster Ci.

Before applying any cluster algorithm, we firstly normalize our data set and then investigated on the clustering
tendency. To this purpose, we use the VAT graphical method and the Hopkins test. Unfortunately, both methods incur
in the curse of dimensionality problem and hence we are not able to apply them on the entire data set. Nevertheless, we try
to apply these methods on a restricted data set, anyway; specifically, we reduce the size of the original data set by taking
only 1875 observations (approximatively 1% of the whole data set) for VAT and 938 observations (approximatively 0.5%
of the entire data set) for the Hopkins test. It is important to note that this reduction of size might remove patterns that are
important for detecting the possible natural structure of data; in order to try to capture these patterns as much as possible,
we apply the clustering tendency tests on 30 different random data sample. In Figure 7 is presented the result of VAT for
the first 21 samples (the other samples exhibited similar behavior). From the figure, we can conclude that apparently there
is no indication of clustering tendency; however, this result should be taken with care since it is based only on a small
fraction of the entire data. For what concern the Hopkins test, we use, for each data sample, a sampling windows of size 94
(approximatively 10% of the data sample size); for each data sample, we run the Hopkins test against 5 sampling windows
and taken the average value as the final value of the Hopkins statistics. The result was that for every data sample we obtain
an average Hopkins statistic nearly equal to 1. Thus, according to the Hopkins test, there would be an high confidence on
the presence of natural clusters in the data set. This result is totally in contrast with the one we obtain with VAT. Again,
due to the reduction in size of data set, this finding should be taken with care.

Since we are not able to prove neither the presence nor the absence of natural clustering tendency, we apply some
cluster algorithm, anyway. As reported in Section 2.3, we consider three different partitional algorithms, namely CLARA,
MCLUST and DBSCAN. The CLARA algorithm requires only one mandatory parameter, namely the number of cluster to
look for. In our experiments, we run CLARA on the whole data set using the Euclidean distance and by trying different
number of clusters, from a minimum of 2 to a maximum of 11; for the remaining input parameters, namely the sample size
and the number of samplings, we employ the same values used in the original algorithm, that is, 40 + 2k for the sample
size (where k is the current number of clusters), and 5 for the number of samplings. In order to evaluate the best number
of clusters for CLARA, we use the silhouette coefficient. As can be noted from Table 4, the highest silhouette coefficient
is 0.8984573 and it is obtained with 2 clusters. According to the interpretation of the silhouette coefficient provided in
Section 2.3, the found clustering structure is strong.

The MCLUST algorithm requires only one mandatory parameter, namely the maximum number of clusters to look for
(with a minimum of 2). In our experiments, we instruct MCLUST to use the value 10 as the maximum number of clusters.
When we first run this algorithm, we face with the curse of dimensionality problem; indeed, MCLUST does not scale well
for large data set. Similarly to what we have done for clustering tendency, to mitigate this problem we reduce the size of
the data set to 18752 (i.e., to 10% of the total number of observations); moreover, in order to capture as much as possible
important data patterns, we apply MCLUST on 10 different random data samples. The results of MCLUST for every run
are reported on Table 5. These results are misleading; indeed, with different data sample we obtain very different values of
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(a) 1st sample. (b) 2nd sample. (c) 3rd sample. (d) 4th sample. (e) 5th sample. (f) 6th sample. (g) 7th sample.

(h) 8th sample. (i) 9th sample. (j) 10th sample. (k) 11th sam-
ple.

(l) 12th sample. (m) 13th sam-
ple.

(n) 14th sam-
ple.

(o) 15th sam-
ple.

(p) 16th sam-
ple.

(q) 17th sam-
ple.

(r) 18th sam-
ple.

(s) 19th sam-
ple.

(t) 20th sample. (u) 21st sam-
ple.

Fig. 7. VAT images for the first 21 data samples of size 1875. From each VAT image it seems there is a possible lacks of clustering tendency.

TABLE 4
Clustering with CLARA: average silhouette coefficient against different number of clusters.

Number of Clusters Silhouette Coefficient

2 0.8984573
3 0.6093906
4 0.5970364
5 0.4900663
6 0.5204294
7 0.4925825
8 0.4776292
9 0.4929831

10 0.5360077
11 0.5368265

BIC; furthermore, the fact that for every run we obtain the maximum number of clusters that we set as input to MCLUST,
should be judged with suspect. For these reasons we decide to do not consider the results obtained with MCLUST.

The DBSCAN algorithm requires two mandatory parameters, namely the radius ε (used for limiting the neighborhood of
each point) and the threshold MinPts (representing the minimum number of points inside the neighborhood of a centroid).
In our experiments, we set ε to 0.1053428 and MinPts to 5. The result of DBSCAN was a total of 242 clusters. As mentioned
in Section 2.3 we do not find any clustering validation measure suitable for density-based cluster algorithms; thus, being
unable to quantitatively evaluate the goodness of this result, we decide to not consider it.

From the above results, we decide to use clusters obtained from CLARA since this algorithm is the only one that we are

TABLE 5
Clustering with MCLUST: BIC and number of clusters obtained with different data samples of size 18752.

Run BIC Number of Clusters

1 41387.73 10
2 41152.10 10
3 31619.22 10
4 40048.53 10
5 14519.82 10
6 15455.38 10
7 -787.22 10
8 43141.89 10
9 44458.10 10

10 22925.48 10
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(a) The CLUSPLOT: the first 2 principal components
explain 100% of the point variability.

(b) The silhouette plot.

Fig. 8. Clustering with CLARA: the CLUSPLOT and the silhouette plot of the 2 clusters.

(a) Comparison between the real and synthetic EDF. (b) Comparison between the real and synthetic CEDF.

Fig. 9. Comparison between real and synthetic workload for the iatime attribute.

able to run on the whole data set and, at the same time, it was supported by a well-proven clustering validation measure.
In Figure 8 are illustrated the CLUSPLOT [38] of the 2 clusters obtained with CLARA (see Figure 8a) as well as the related
silhouette plot (see Figure 8b). The first cluster C1 contains 183459 observations and has its centroid at point (3, 2325),
while the second cluster C2 contains 4061 observations and has its centroid at point (3, 188938).

Using the clustering obtained with CLARA, we create a modelMLCG for the LCG trace. In order to validate our model,
we run a simulation for creating a synthetic workload of 200000 entries (by means of Algorithm 2), and compared, for each
attribute, the empirical cumulative function of the real data with the one resulting from the generated data. The result for
the iatime attribute is shown in Figure 9, while that for the runtime attribute is reported in Figure 10. For the iatime
attribute we can observe that the model fails to reproduce the real tail behavior (see Figure 9b), while it is able to capture
the general behavior of the body part of the distribution (see Figure 9a). For what concerns the runtime attribute we
can note that the model fails to mimic the real tail behavior too (see Figure 10b) even if to a less extent than the iatime
attribute, while it is able to capture the general behavior of the body part of the distribution (see Figure 10a), even if it is
unable to model the multi-modality of the real workload due to the use of univariate distributions.
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(a) Comparison between the real and synthetic EDF. (b) Comparison between the real and synthetic CEDF.

Fig. 10. Comparison between real and synthetic workload for the runtime attribute.

4 CONCLUSION

In this work, we model workload characteristics of real grid systems through data mining techniques and propose and
algorithm to generate synthetic workload traces.

Specifically, we apply cluster analysis as a tool for summarizing workload characteristics. We choose to use partitional
clustering for representing workload characteristics by means of possibly few representatives. Since every cluster algorithm
impose a structure that is inherent to the nature of the algorithm itself, we evaluate, before running any cluster algorithm,
the clustering tendency of the data set. Then we apply three famous cluster algorithms: CLARA, a prototype-based cluster
algorithm suitable for large data sets, DBSCAN, a density-based cluster algorithm, and MCLUST, a model-based clustering
algorithm based on multivariate Gaussian fitting. By means of clustering validation measures, we find that the algorithm
that provided the best result was CLARA. On the basis of the result obtained with CLARA, we create a workload model
by mixing cluster information and Bayesian probability. Finally, we validate our model through the generation of synthetic
workload, where interarrival time and runtime variates were generated according to an Exponential distribution with
mean equal to the centroid of the clusters.

The result of model validation indicates that the model fails, in general, to reproduce the behavior of the tail of the
empirical distribution. This is almost surely due to the use of the Exponential distribution for modeling both the body and
the tail of the empirical distribution. As a matter of fact, during the statistical analysis of workload characteristics we find an
indication of power-law behavior for which the Exponential distribution is not a good model candidate. As a final remark,
we want to point out that our analysis was greatly influenced by the curse of the dimensionality problem. Indeed, we are
unable to determine clustering tendency on the whole data set, nor we are able to run MCLUST on the entire data set. For
these reasons, possible future works include the evaluation of different cluster algorithms, more suitable for large data set
and, at the same time, more reliable than CLARA. Another interesting aspect that would be worth investigating would be
the comparison of the model presented in this work with the one obtained with traditional distribution fitting. Finally, it
could be interesting to evaluate different probability distributions, other than the Exponential distribution, possibly taking
care of the power-law behavior.
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