
Forensic Analysis of Telegram
Messenger on Android Smartphones

Please cite this paper as:

Cosimo Anglano, Massimo Canonico, Marco

Guazzone,

“Forensic Analysis of Telegram Messenger

on Android Smartphones,”

Digital Investigation, Volume 23, December

2017, Pages 31–49.

DOI:10.1016/j.diin.2017.09.002
Publisher: https://doi.org/10.1016/j.diin.2017.09.002

1



Forensic Analysis of Telegram Messenger on Android

Smartphones

Cosimo Anglanoa,∗, Massimo Canonicoa, Marco Guazzonea

aDiSIT - Computer Science Institute,
Università del Piemonte Orientale, Alessandria (Italy)

Abstract

In this paper we present a methodology for the forensic analysis of the arti-
facts generated on Android smartphones by Telegram Messenger, the official
client for the Telegram instant messaging platform, which provides various
forms of secure individual and group communication, by means of which both
textual and non-textual messages can be exchanged among users, as well as
voice calls.

Our methodology is based on the design of a set of experiments suitable
to elicit the generation of artifacts and their retention on the device storage,
and on the use of virtualized smartphones to ensure the generality of the
results and the full repeatability of the experiments, so that our findings can
be reproduced and validated by a third-party.

In this paper we show that, by using the proposed methodology, we are
able (a) to identify all the artifacts generated by Telegram Messenger, (b) to
decode and interpret each one of them, and (c) to correlate them in order
to infer various types of information that cannot be obtained by considering
each one of them in isolation.

As a result, in this paper we show how to reconstruct the list of contacts,
the chronology and contents of the messages that have been exchanged by
users, as well as the contents of files that have been sent or received. Further-
more, we show how to determine significant properties of the various chats,

∗Corresponding author. Address: viale T. Michel 11, 15121 Alessandria (Italy). Phone:
+39 0131 360188.

Email addresses: cosimo.anglano@uniupo.it (Cosimo Anglano),
massimo.canonico@uniupo.it (Massimo Canonico), marco.guazzone@uniupo.it
(Marco Guazzone)

Preprint submitted to Digital Investigation December 21, 2017



groups, and channels in which the user has been involved (e.g., the identifier
of the creator, the date of creation, the date of joining, etc.). Finally, we
show how to reconstruct the log of the voice calls made or received by the
user.

Although in this paper we focus on Telegram Messenger, our methodology
can be applied to the forensic analysis of any application running on the
Android platform.

Keywords: Mobile forensics, Telegram Messenger, Telegram, Android,
Instant Messaging

1. Introduction

Instant Messaging (IM) platforms are nowadays very popular among
smartphone users, because they provide very convenient ways to share both
textual and non-textual contents. In addition to legitimate users, IM services
are very popular also among criminals (United Nations Office on Drugs and
Crime, 2013), that use them for their communications as they make it harder
than traditional communication means to link the real identity of a person
to an account (s)he uses, and more and more often they use end-to-end en-
cryption to escape interception. The forensic analysis of these applications is
therefore of crucial importance from the investigative standpoint (Wu et al.,
2017; Zhang et al., 2016; Zhou et al., 2015; Anglano, 2014; Anglano et al.,
2016; Mehrotra and Mehtre, 2013; Walnycky et al., 2015).

This is particularly true for Telegram, a very popular IM platform (in
Feb. 2016, the Telegram Messenger LLP company reported that there were
100,000,000 active users per month, with 350,000 new users signing up per
day (Telegram Messenger LLP, 2016)), providing secure one-to-one, one-to-
many, and many-to-many communication services, as well as self-destructing
chats, that is reportedly used for various criminal activities, ranging from
cybercrime (C. Budd, 2016) to those engaged by various terrorist organiza-
tions (J. Warrick, 2016). The ability of accessing the contents of communica-
tions carried out by means of Telegram may thus assume crucial importance
in many investigations.

While it is already known that Telegram Messenger (its official client)
saves on the internal memory of the device a significant amount of unen-
crypted data (Gregorio et al., 2017; Satrya et al., 2016a,b), to the best of
our knowledge there is no published work, addressing the forensic analysis

3



of Telegram Messenger on Android, that provides a methodology to obtain
– from the above data – the complete reconstruction of all the user activi-
ties and, at the same time, to allow an independent party to validate these
results.

Furthermore, while it is true that most prominent mobile forensic plat-
forms (e.g., (Cellebrite LTD., 2015b; Micro Systemation, 2016; Oxygen Foren-
sics, Inc., 2013a; Compelson Labs, 2017)) are able to decode the various data
stored by Telegram Messenger, they do not provide any explanation of how
this decoding is performed, nor they provide any guidance on how to cor-
relate different pieces of evidence to completely reconstruct user activities.
Thus, it is impossible to assess the completeness and the correctness of the
results generated by them.

In this paper we fill this gap by presenting a methodology for the forensic
analysis of applications running on Android, and we apply it to the Telegram
Messenger (the focus on the Android version of Telegram Messenger maxi-
mizes the investigative impact of our work, as 85% of Telegram users use an
Android smartphone (The Telegram Team, 2017)). We show that, thanks
to the use of this methodology, we are able to fully reconstruct all the user
activities by (a) identifying all the artifacts that carry relevant investigative
information, (b) describing how they can be decoded in order to extract that
information, and (c) showing how they can be correlated in order to infer
information of potential investigative interest that cannot be obtained by
considering individual artifacts in isolation.

Our methodology is based on the exploitation of virtualized smartphones
in place of physical ones. The use of virtualized devices brings various bene-
fits, the most important of which are the generality and the reproducibility of
the results, while we establish their accuracy by comparing them with those
obtained by using a physical smartphone.

The original contributions of this paper can thus be summarized as fol-
lows:

• we present a forensic analysis methodology for applications running
on Android, which is based on the use of virtualized smartphones and
provides a very high degree of reproducibility of the results;

• we use this methodology to perform a thorough and reproducible anal-
ysis of Telegram Messenger, and we validate the results we obtained
against those obtained from real smartphones. In particular:

4



– we identify all the forensically-relevant artifacts stored by Tele-
gram Messenger on Android smartphones;

– we determine the structure and format of these artifacts, and we
implement the corresponding decoding procedures in a Java pro-
gram, that we use for our analysis;

– we map the data stored by Telegram Messenger to the user actions
that generated it;

– using the above mapping, we show how to recover the account
used with Telegram Messenger, and how to reconstruct (a) the
contact list of the user, (b) the chronology and contents of both
textual and non-textual messages, and (c) the log of the voice calls
done or received by the user.

The rest of the paper is organized as follows. In Sec. 2 we review existing
work, while in Sec. 3 we describe the methodology and the tools we use
in our study. Then, in Sec. 4 we discuss the forensic analysis of Telegram
Messenger, performed by applying the above methodology and, in Sec. 5 we
conclude the paper.

2. Related works

Smartphone forensics has been widely studied in the recent literature,
which mostly focuses on Android and iOS forensics (Tamma and Tindall,
2015; Epifani and Stirparo, 2015), given the pervasiveness of these platforms.
As a result, well known and widely accepted methodologies and techniques
are available today that are able to properly deal with the extraction and
analysis of evidence from smartphones. In this paper we leverage this vast
body of work for extracting and analyzing the data generated by Telegram
Messenger during its usage.

The importance of the forensic analysis of IM applications on Android
smartphones has been also acknowledged in the literature.

(Wu et al., 2017; Zhang et al., 2016; Zhou et al., 2015) focus on WeChat,
(Anglano, 2014) on WhatsApp, (Anglano et al., 2016) on ChatSecure, and
(Mehrotra and Mehtre, 2013) on Wickr.

(Walnycky et al., 2015) discusses the analysis of the data transmitted or
stored locally by 20 popular Android IM applications, while (Al Barghuthi
and Said, 2013) presents the analysis of several IM applications on various

5



smartphone platforms, aimed at identifying the encryption algorithms used
by them.

(Azfar et al., 2016) proposes instead a taxonomy outlining the artifacts
of forensic interests generated by various communication apps. Other papers
(Ovens and Morison, 2016; Husain and Sridhar, 2010; Tso et al., 2012) have
instead focused on the forensic analysis of IM applications on iOS devices.

None of the above papers, however, focuses on Telegram Messenger, which
is instead the focus of (Gregorio et al., 2017), where a methodology for its
forensic analysis on the Windows Phone platform is presented. Our work
differs from this one in two important regards: (a) our methodology is more
general (indeed, the methodology discussed in (Gregorio et al., 2017) can be
considered a sub-case of ours), and (b) the structure and interpretation of
the artifacts generated by Telegram Messenger on Android are significantly
different from those generated on Windows Phone devices.

The analysis of Telegram Messenger on Android has been also partly
addressed in (Satrya et al., 2016a,b) that, however, focus on the identification
of the location and format of the artifacts generated by Telegram Messenger,
but not on their interpretation and correlation. In particular, in the above
papers only the raw data generated by Telegram Messenger are shown (e.g.,
the raw contents of various tables in the main database of the app), but these
data are not interpreted and are not tied to specific actions performed by the
user.

Analogous considerations hold for (Susanka, 2017) that, although focusing
on vulnerabilities of Telegram Messenger on Android, describes also how
to decode the data stored in two of the tables of the main database (that,
however, contains may other tables storing forensically-relevant information).

In contrast, in our work we provide a much deeper analysis of the arti-
facts generated by Telegram Messenger, in which we show how to analyze
them to reconstruct the various actions carried out by users, that include
contact management, textual and non-textual message exchanges, and voice
communications.

3. The analysis methodology

The methodology we propose for the forensic analysis of Android applica-
tions is based on the controlled execution of a set of experiments, using one
or more Android devices, and on the inspection and analysis of the internal
memory (both persistent and volatile) of these devices.

6



Given that the goal of any forensic analysis is to allow the analyst to
obtain the digital evidence generated by the application under consideration,
the methodology used to carry out it must exhibit the following properties:

• completeness : the identification of all the data generated by the ap-
plication under analysis. To obtain completeness, suitable experiments
stressing all the relevant functionalities of the application need to be
carried out;

• repeatability : the possibility for a third-party to replicate the experi-
ments under the same operational conditions, and to obtain the same
results. To achieve repeatability, it must be possible for a third-party
to use the same set of devices, operating systems versions, and foren-
sic acquisition tools to repeat experiments under the same operational
conditions;

• generality : the results hold for many (possibly all) Android smart-
phones and versions. To achieve generality, the experiments should be
repeated on as many smartphones and Android versions as possible.

In our methodology, we achieve completeness by designing suitable ex-
periments, by executing them in a systematic way, and by resorting to source
code analysis (when possible) to gather additional insights into the behavior
of the application and/or in the way it encodes the data it stores locally. To
achieve generality and repeatability, we resort to virtualized mobile devices
instead of physical ones (more precisely, we use the Android Mobile De-
vice Emulator (Google, 2016b), see Sec. 4.5.1 for more details). Virtualized
smartphones, indeed, make simple and cost-effective running experiments
on a variety of different virtual devices (featuring different hardware and
software combinations), thus yielding generality. Furthermore, they allow a
third-party to use virtualized devices identical to those we used in our exper-
iments, as well as to control their operational conditions, so that the same
conditions holding at the moment of our experiments can be replicated on
them. In this way, repeatability is ensured.

More precisely, our methodology is organized into a workflow, depicted
in Fig. 1, that encompasses a sequence of distinct phases. The methodology
starts with two distinct and independent activities, that can be carried out
simultaneously.

The first one (“Analysis of application functionalities”) consists in the
analysis of the functionalities provided by the application, and is aimed at

7



Figure 1: Workflow of the analysis methodology for mobile applications.

8



the identification of those functionalities whose use may generate information
that are relevant from an investigative standpoint. These functionalities are
provided as input to the subsequent phase (“Design of experiments”), where
we define a set of experiments that emulate a user who exercises them, so
as to elicit the application to generate and store data on the memory of the
device.

The second one consists instead in locating – on the device memory –
where the application stores the data it generates during the installation
process, with the aim of analyze them to determine their type, their encoding,
and the information they represent. To this end, the application is first
installed (“Application installation”), and then the data stored in the internal
memory of the smartphone during the installation process are identified. This
is achieved by extracting the file systems, located on the internal memory
of the device, before and after the installation of the application, and by
finding the differences among them (“Comparison with clean system state”).
Such extraction can be performed by either dumping the contents of the
file systems (virtualized devices grant root access), or by directly accessing
the files typically used by virtualization platforms to implement persistent
memory.

As shown in Fig. 1, “Source code analysis” may be employed (provided
that the source code of the application is available) to assist the analyst
in determining the format of the data stored in these files, as well as the
procedure to decode and interpret them. Source code analysis is also used
in later stages of the methodology to better understand how the application
works, as well as to corroborate or refute hypotheses about its behavior.

Once the initial stages of the analysis have been completed, the method-
ology contemplates the carrying out of the experiments, that are performed
one after the other until the last experiment has been completed.

Each experiment may consist of several consecutive steps, and at the end
of each one, the contents of the device internal memory (both persistent
and volatile) are extracted and compared with those extracted at the end
of the previous step (“Comparison with previous system state”), in order
to determine whether new data have been generated during the step, and
where these data are located. Furthermore, both allocated and undeleted
files, as well as unallocated space, may be searched for known information
generated by the application, such as specific values or patterns that are
defined in the experiment (“Search system state for known information”).
If requested by the analysis needs, such a search may be also performed on

9



volatile memory, that may be collected and analyzed by means of suitable
tools (e.g., (504ENSICS Labs., 2016; Volatility Foundation, 2016)). Source
code analysis may be also employed to assist in the determination of the
format and meaning of these data.

After the data generated in the last step have been identified, they are
added to the list of known artifacts (“Artifact location and format”), and are
analyzed and correlated among them (if needed) to map them to the user
actions carried out in that step. Finally, at the end of each experiments, the
artifacts created in its steps may be correlated to carry out more complete
reconstructions of user actions.

4. Forensic analysis of Telegram Messenger

In this section, we apply the methodology discussed in Sec. 3 to the foren-
sic analysis of Telegram Messenger, the official client of Telegram that has
been released directly by Telegram Messenger LLP (the company that owns
Telegram).1 While various third-party Telegram clients are available for the
Android platform (e.g., Plus Messenger, Anyways, Supergram, Telegram+,
Telegram Plus, etc.), in this paper we focus on Telegram Messenger because,
at the moment of this writing, it is indeed the most used Telegram client
(it features more that 100 million installations, unlike the other ones that
cumulatively feature no more than a few million downloads). Furthermore,
all these third-party clients use the same code base of Telegram Messenger,
so the results discussed in this paper apply also to them.

We start in Sec. 4.1 with the analysis of application functionalities, whose
results provide the basis for the design of the experiments we carry out in
our study, that are discussed in Sec. 4.2. Then, in Sec. 4.3 we describe the
location and format of the artifacts generated by Telegram Messenger, as
resulting from the experiments we carried out (although this is the outcome
of the whole experimental process, we anticipate them to provide a better
understanding of the material that follows). Next, in Sec. 4.4 we describe
how we exploited source code analysis to gain a better understanding of how
Telegram Messenger encodes most of the relevant information it stores on
the smartphone. Finally, in Sec. 4.5 we describe the results of our analysis,

1At the moment of this writing, Telegram clients exist for both mobile (i.e., Android,
iOS, Windows Phone, and Firefox OS ) and desktop systems (i.e., Windows, Linux, and
Mac OS ), as well as for web-based access (Telegram Messengers LLP, 2017).

10



obtained through the execution of the various experiments. In particular,
we discuss (a) how to determine which account has been used on the mobile
device to access Telegram (Sec. 4.5.2), (b) how to reconstruct the list of
contacts (Sec. 4.5.3), (c) how to reconstruct the chronology and contents of
exchanged messages (Sec. 4.5.4), as well as of the voice calls log (Sec. 4.5.5)
and, finally, we report our (negative) findings concerning the issues of the
recovery of deleted data (Sec. 4.5.6).

4.1. Analysis of application functionalities

As discussed in Sec. 3, the first step of the methodology consists in an-
alyzing the functionalities of the application, in order to identify those that
are relevant from the investigative standpoint.

Telegram is an IM platform that enables its users to exchange messages,
using various communication schemes (namely, one-to-one, one-to-many, and
many-to-many communications), as well as to carry out voice calls, using var-
ious privacy-preserving techniques. Telegram supports the exchange of both
textual messages (whose content is plain text) and non-textual ones (used to
exchange data of any type, including contact information, geo-coordinates,
and files of any type).

Telegram Messenger is a feature-rich application that provides users with
access to all the functionalities provided by the Telegram platform. Of course,
not all these functionalities are of investigative interest, so we analyze them
and we identify those that bring valuable information in various investigative
scenarios, namely:

• The Telegram user account : within the Telegram system, each user
is uniquely identified by means of its Telegram ID (TID), an integer
value (chosen by Telegram) which is associated with a phone number.
Furthermore, each user may optionally set a Telegram username, that
allows other users to find him/her via the search functionality provided
by Telegram, and a profile photo.

All these information may have a significant investigative value. The
TID uniquely identifies the user within the Telegram system, while the
phone number may be instead used to tie the virtual identity of the
user to its real one. The profile photo may instead provide additional
hints about the identity or the location of the user, for instance if
it displays the face of the user, or any location or item that can be
uniquely associated with that person.

11



• Contacts : in Telegram, each user is associated with a list of contacts,
i.e., other Telegram users with whom (s)he may communicate. For each
contact, Telegram Messenger stores his/her TID, phone number, and
profile photo.

The investigative importance of the information about contacts is clear,
as it allows an investigator to determine whom the user was in contact
with, and to possibly determine the real identity of each contact by
using – as already discussed for the user account information – his/her
TID, phone number, and profile photo.

• Message exchanges : Telegram provides its users with the possibility of
carrying out one-to-one, one-to-many, and many-to-many communica-
tion by using, respectively, chats, channels, and groups, where users can
exchange both textual and non-textual messages. Telegram Messenger
organizes the messages exchanged by the user into dialogs, each one
corresponding to a specific chat, group or channel.

The ability of reconstructing the chronology and contents of exchanged
messages is of obvious investigative importance, as it allows the inves-
tigator to determine with whom the user communicated, when these
communications occurred, and what it was exchanged.

Furthermore, the identification of the properties of each dialog in which
the user was involved with (i.e., its type, its creator, its date of creation,
its administrators, etc.) may provide valuable evidence in various in-
vestigative scenarios. For instance, the choice of using a secret chat (a
form of chat where messages are encrypted end-to-end and they self-
destroy after a user-defined amount of time) instead of a regular one
may indicate the intention of the users to totally hide the fact they
are communicating. Analogously, the creation and administration of
a private group or channel (i.e., that cannot be found by the search
function of the Telegram platform) on which illegal material is shared,
or unlawful communications are broadcast, may provide evidence that
the user was involved in criminal activities (e.g., terrorist propaganda
or diffusion of child pornography material).

• Voice calls : starting with v. 3.18, Telegram provides its users with
voice calls that, as secret chats, relies on user-to-user communication
channels and end-to-end encryption. The ability of reconstructing the

12



chronology of voice calls (i.e., when a call has been performed, with
whom, and for how long) is of evident investigative value.

4.2. Design of experiments

As discussed in Sec. 3, after the relevant functionalities have been iden-
tified, the next step of the methodology consists in the design of a set of
experiments aimed at reconstructing the actions that a user may carry out
by exploiting them.

On the basis of the functionalities of Telegram Messenger, identified in
the previous section, we define the following sets of experiments:

1. experiments concerning the user account, listed in Table 1, whose goal
is to determine the Telegram account that has been used on the smart-
phone;

Table 1: Experiments concerning the Telegram account of the local user. A and B denote
the Telegram users involved in the experiments.

User account experiments
Description Steps
Configuration of the user account 1. A connects to Telegram providing its credentials

2. B connects to Telegram providing its credentials

2. experiments concerning contacts, listed in Table 2, whose goal is to
reconstruct the contact list of the user, as well as the management
operations carried out on it by the user;

3. experiments concerning dialogs, listed in Table 3, whose goals are the
reconstruction of the dialogs in which the user has been involved with
and the determination, for each one of them, of (a) its type (regu-
lar/secret chat, private/public (super)group or channel), (b) the role
of the user (creator/administrator/member), and (c) its creation date
(for dialogs created by the user) or the date in which the user joined
it;

4. experiments concerning message exchanges, listed in Table 4, whose
goal is the reconstruction of the chronology and contents of the textual
and non-textual messages exchanged within each dialog;

5. experiments concerning phone calls, listed in Table 5, whose goal is the
reconstruction of the chronology of the phone calls made and received
by the user.

13



Table 2: Experiments concerning user contacts. A and B denote the Telegram users
involved in the experiments.

User contacts experiments
Description Steps
Invite a contact 1. A invites B to join Telegram
Add/remove contacts 1. A adds B from within Telegram Messenger

2. A deletes B from within Telegram Messenger
Add/remove contacts 1. A adds B in the phonebook

2. A removes B from the phonebook
Add/remove contacts 1. A adds B from within Telegram Messenger

2. A removes B from the phonebook
Add/remove contacts 1. A adds B in the phonebook

2. A removes B from within Telegram Messenger
Block a contact 1. A blocks B

2. A unblocks B

Table 3: Experiments concerning dialogs. A and B denote the Telegram users involved in
the experiments.

Dialogs experiments
Description Steps
Regular chat 1. A creates a regular chat with B by sending a message to him/her

2. A and B exchange messages (as reported in Table 4)
3. A deletes the chat

Secret chat 1. A creates a secret chat and adds B
2. B opens the message notifying he joined the secret chat
3. A and B exchange messages (as indicated in Table 4)
4. A deletes the chat

Public (private) group 1. A creates a new public (private) group
2. A adds B to the group
3. A and B exchange textual and non-textual messages over the group (as
reported in Table 4)
4. A deletes the group

Public supergroup 1. A joins the public supergroup named “Telegram Party”
2. A sends several messages to the supergroup
3. A receives several replies from the supergroup
4. A leaves the supergroup

Public (private) channel 1. A creates a new public (private) channel
2. A adds B to the channel
3. A and B exchange textual and non-textual messages over the channel
(as reported in Table 4)
4. A deletes the channel

14



Table 4: Experiments involving message exchanges. A, B, and C denote the Telegram
users involved in the experiments.

One-to-one message exchange
Description Steps
Textual message sending, both users are online 1. A and B exchange several messages

2. A and B delete the messages one after the other
Textual message sending, receiver is offline 1. A sends a message to B when B is offline

2. B goes online and replies to A
Textual message sending, sender is offline 1. A goes offline

2. A sends a message to B
3. A goes online

Textual message sending, receiver is blocked 1. A blocks B
2. A sends a message to B
3. A unblocks B

Textual message forwarding 1. A forwards to C the message sent to B
2. B forwards to C the message received from A

Non-textual message sending 1. A sends a picture file to B
2. A sends a video file to B
3. A sends an audio file to B
4. A sends a PDF file to B
5. A sends a contact to B
6. A sends geo-location information to B
7. A and B delete the messages one after the other

Table 5: Experiments concerning phone calls. A and B denote the Telegram users involved
in the experiments.

Phone calls experiments
Description Steps
Successful call 1. A calls B

2. B answers
3. A and B have a conversation
4. A hangs up

Unanswered call 1. A calls B
2. B does not answer
3. A rings B until the call is dropped by Telegram

Refused call 1. A calls B
2. B refuses the call

15



6. deleted information, whose goal is to determine whether it is possible
to recover deleted information. The experiments concerning deletion
are spread across Tables 2, 3, and 4.

4.3. Location and format of Telegram artifacts

In this section we anticipate the results we collected at the end of the
various experiments, concerning the location and format of the artifacts gen-
erated by Telegram Messenger that, as discussed in Sec. 3, is one of the main
output of the proposed methodology. While this output is the outcome of the
whole experimental process, and not of the initial stages of the methodology,
we believe that anticipating it here provides a better understanding of the
interpretation of the data generated during these experiments, and that will
be discussed in detail in the subsequent sections.

During its use, Telegram Messenger stores various data in the internal
memory of the device, and in particular in the folders of the user partition
shown in Fig. 2. These folders are located in the /data directory (which is the
usual mount point of the user partition in the Android file system), and in
particular in folders data (which is inaccessible to standard users) and media
(whose access is instead unrestricted).

Figure 2: Structure of the folders where Telegram stores its artifacts.

As reported in Fig. 2, the results of our analysis show that there are four
main artifacts that provide forensically-relevant data, namely:

16



• the main database, an SQLite database named cache4.db which is lo-
cated in the database folder, and that contains many important infor-
mation, namely the list of contacts of the user, the chronology of ex-
changed messages, the contents of textual messages, the location on the
device memory where the contents of non-textual messages are stored,
and the log of the voice calls;

• the user configuration file, an XML file named userconfing.xml 2 located
in the preferences folder, that stores the details of the Telegram account
used on the device;

• the profile photos of the user and of his/her contacts, stored in the
cache folder, that may reveal information about the real identity of
user contacts;

• the copies of the files sent or received by the user via Telegram Mes-
senger, which are stored in the media folder.

As will be detailed in Sec. 4.5, Telegram Messenger stores most of the
data it generates into complex data structures (Telegram Messenger LLP,
2017c), that we name Telegram Data Structures (TDSs). TDSs are stored
in a binary serialized form (Telegram Messenger LLP, 2017a), whereby their
fields are stored as a sequence of bytes where each one of them appears in a
specific position. Therefore, to retrieve the information stored in a TDS, it
is first necessary to deserialize it, i.e., to extract its various fields from the
corresponding binary sequence, and then to decode each one of them.

To carry out the above steps, the structure and the serialization scheme
of the TDSs must be known. However, at the moment of this writing, the
serialization procedure is known only for a limited set of TDSs. Source code
analysis, which represents the subsequent step of our methodology, has been
used to identify all the different TDSs used by Telegram Messenger, as well as
to reconstruct the structure and serialization scheme for the undocumented
ones, or for those that have been changed since they have been documented.

4.4. Source code analysis

As discussed in Sec. 3, source code analysis should be – whenever possible
– used to gain a deeper understanding of the behavior of the application under

2Please note that the name is misspelled by Telegram.

17



analysis, as well as to determine how it encodes and stores its relevant data,
so that suitable decoding and interpretation procedures can be devised.

In the Telegram Messenger this stage can be performed, thanks to the
availability of its source code (which can be downloaded from (DrKLO,
2017)). The main outcome of this stage has been the understanding of the
structure of the TDSs used by Telegram Messenger and the consequent de-
velopment of a procedure to deserialize them from the binary format in which
they are stored, that we subsequently implemented as a Java program that
we used to decode the results gathered in our experiments.

The structure of these TDSs is specified in the so-called Telegram Lan-
guage (TL) (Telegram Messenger LLP, 2017b), that defines them as compos-
ite types, i.e., data structures that are made up by a set of attributes, each
one consisting in turn either in a base types (which are primitive data types,
like int and string) or in a composite type. Each composite type is uniquely
identified by its constructor, which is represented by a 32-bit integer number.

The official Telegram documentation (Telegram Messenger LLP, 2017a)
provides the rules to deserialize base types. For instance, the int type can be
deserialized by reading from its serialized form a sequence of 4 bytes in little-
endian order and interpreting their concatenation as a 32-bit signed two’s
complement integer. However, for composite types the above documentation
is, at the time of this writing, outdated and incomplete.

The analysis of source code allowed us to determine that the deserial-
ization of a composite type consists in (a) determining the type to be de-
serialized, and (b) recursively deserializing its attributes. The first step is
performed by reading from the binary serialized form of the composite type
a 32-bit header representing the type’s constructor. Since each constructor
uniquely identifies a type, once the constructor is read the logical structure
of the remaining binary sequence is known. Thus, the second step simply
applies the same deserialization procedure to each type’s attribute (except
for attributes of a base type, which do not have a constructor).

For the sake of readability, we do not to provide here the full details of
the deserialization procedure for all the TDSs used by Telegram Messenger.
However, this procedure can be easily deduced from the inspection of the
source code where these TDSs are defined. In particular, each TDS is de-
fined in a specific Java class, as reported in Table 6, that belongs to the
org.telegram.tgnet package (which is located under the TMessagesProj/s-
rc/main/java/org/telegram/tgnet of the source code).

To deserialize a given TDS, we note that the corresponding Java class

18



Table 6: Mappings between TDSs and Telegram Messenger’s Java classes for deserializa-
tion.

TDS Java class
Base types (e.g., int and string) org.telegram.tgnet.NativeByteBuffer

Chat org.telegram.tgnet.TLRPC.Chat

documentAttributeAudio org.telegram.tgnet.TLRPC.TL_documentAttributeAudio

documentAttributeFileName org.telegram.tgnet.TLRPC.TL_documentAttributeFilename

documentAttributeVideo org.telegram.tgnet.TLRPC.TL_documentAttributeVideo

EncryptedChat org.telegram.tgnet.TLRPC.EncryptedChat

FileLocation org.telegram.tgnet.TLRPC.FileLocation

GeoPoint org.telegram.tgnet.TLRPC.GeoPoint

Message org.telegram.tgnet.TLRPC.Message

messageActionPhoneCall org.telegram.tgnet.TLRPC.TL_messageActionPhoneCall

MessageMedia org.telegram.tgnet.TLRPC.MessageMedia

messageMediaContact org.telegram.tgnet.TLRPC.TL_messageMediaContact

messageMediaDocument org.telegram.tgnet.TLRPC.TL_messageMediaDocument

messageMediaGeo org.telegram.tgnet.TLRPC.TL_messageMediaGeo

messageMediaPhoto org.telegram.tgnet.TLRPC.TL_messageMediaPhoto

messageMediaVenue org.telegram.tgnet.TLRPC.TL_messageMediaVenue

Peer org.telegram.tgnet.TLRPC.Peer

PhotoSize org.telegram.tgnet.TLRPC.PhotoSize

User org.telegram.tgnet.TLRPC.User

UserProfilePhoto org.telegram.tgnet.TLRPC.UserProfilePhoto

contains a TLdeserialize() method, that is able to deserialize the compos-
ite type corresponding to that TDS, as well as its subtypes. This method
reads the type’s constructor and, according to the value read, calls the right
readParams() method to deserialize the right subtype.

4.5. Analysis results

As illustrated in Sec. 3, the core of our methodology is the carrying out
of the experiments designed in the previous stage of the methodology. In the
Telegram Messenger case, these experiments have been described in Sec. 4.2.

In this section we illustrate how to decode, interpret, and correlate the
data generated by these experiments in order to reconstruct the actions per-
formed by the user during his/her interactions with Telegram Messenger.

We start with the description of the various settings holding for the exper-
iments (Sec. 4.5.1), and how we collected the data generating during their
execution. Then, we show how to identify the Telegram account used on
the smartphone under examination (Sec. 4.5.2) and, subsequently, how to
reconstruct the contact list and the operations the user did on it (Sec. 4.5.3).
Next, we show how to reconstruct the chronology and contents of textual
and non-textual messages exchanged over the various dialogs, as well as of
the properties of these dialogs (Sec. 4.5.4), and then we discuss how to recon-

19



struct the voice call logs (Sec. 4.5.5). Finally, we report our negative findings
about the possibility of recovering information that have been deleted by the
user (Sec. 4.5.6).

4.5.1. Experimental settings

In our experiments we used various releases of Telegram Messenger, that
include those ranging from v. 3.15 to v. 3.18. As a matter of fact, the
application is updated quite frequently, and in the time frame spanning our
study, we observed several updates. Hence, we repeated the experiments with
all these versions, as they were released. In this way, we could observe that
the results of the experiments were the same regardless of the specific version
of Telegram Messenger used to carry out them since, despite the updates, the
location, format, amount, and interpretation of the data they store remained
unchanged.

Furthermore, in our study, we use – as the mobile virtualization plat-
form – the Android Mobile Device Emulator (Google, 2016b), that allows
one to create virtual smartphones (named Android Virtual Devices, or AVD
for brevity) behaving exactly like real physical devices, and that can be cus-
tomized with different hardware characteristics and Android versions. In
particular, in this study we use the three AVDs configurations shown in Ta-
ble 7 below, that are characterized by different Android versions, processor
families, and volatile and persistent storage sizes. To extract the file systems

Table 7: Characteristics of the AVDs used in the experiments.

Characteristics of AVDs used for experiments
Processor RAM (MB) Internal storage (MB) Android version

ARM (armeabi-v7a) 512 2047 4.4 (API 19)
Intel Atom (x86) 1536 1024 5.1 (API 22), 6.0 (API 23)

Intel Atom (x86 64) 1536 1024 6.0 (API 23), 7.1 (API 25)

located in the internal memory of the AVD, we use the pull functionality
of the File Explorer, a component of the Android Device Monitor (Google,
2016a). Alternatively, it is possible to directly analyze the files used by the
emulator to implement the various partitions of the internal memory (each
partition corresponds to an image file in QCOW2 format (Marc McLoughlin,
2008)).

The interested reader may refer to (Anglano et al., 2017) for the complete

20



description on how to concretely configure and use the various tools to create,
run, and analyze an AVD.

To validate the results obtained with AVDs, we compare a sample of
them, generated in a subset of selected experiments, with those obtained
by running the same experiments on a real smartphone. More precisely, we
run a subset of the experiments also on a Samsung SM-G350 Galaxy Core
Plus smartphone running Android 4.4.2, and we use the Cellebrite UFED4PC
platform (Cellebrite LTD., 2015b) to perform device memory extraction, and
the UFED Physical Analyzer (Cellebrite LTD., 2015a) to decode its contents.
In all the tests we performed, the results collected from this smartphone were
identical to those obtained from the virtualized smartphones we considered.

4.5.2. Identification of the Telegram account

To determine the Telegram account used on the smartphone under ex-
amination, we carry out the experiments reported in Table 1, whose results
show that this information is stored in the user configuration file, and in
particular into one of its attributes, which is named user. This attribute
stores a TDS of type User, whose structure is reported in Table 8, that in
turn uses other TDSs of type UserProfilePhoto and FileLocation (also shown
in the same table). The structure of these TDSs is reported in the official
documentation. 3

As can be seen from the above table, the information concerning the TID
(field id), first name (field first name), last name (field last name), Telegram
username (field username), and phone number (field phone) of the user are
stored as simple values (of suitable type) into the first five fields of the User
TDS. 4

The information concerning the user profile photo is instead stored in
field photo, where it is encoded into a TDS of type UserProfilePhoto, that
in turn contains the identifier of the photo (field photo id), as well as the
information concerning the names of two JPEG files (Telegram Messenger
converts all profile photos in the JPEG format) storing a smaller version
(field photo small) and a larger version (field photo big) of that photo.

These files, which are both stored in the cache folder (see Fig. 2) are
named as V L.jpg, where V and L denote the values stored in fields volume id

3See https://core.telegram.org/type/User, https://core.telegram.org/type/UserProfilePhoto,
and https://core.telegram.org/type/FileLocation.

4The name assignment rule is described in https://core.telegram.org/constructor/userContact.

21



Table 8: Structure of the various TDSs used to encode the user account information.

Structure of TDS User
Field Type Meaning
id int User TID
first name string first name the user assigned to himself
last name string last name the user assigned to himself
username string Telegram username
phone string phone number
photo TDS UserProfilePhoto profile photo
self bool flag indicating whether the contact refers to the user itself

(True) or not (False)
contact bool flag indicating whether the contact is in the contact list of

the user (True) or not (False)
mutual contact bool flag indicating whether the user is in the contact list of the

contact (True) or not (False)
Structure of TDS UserProfilePhoto

Field Type Meaning
photo id long identifier of the photo
photo small TDS FileLocation location of the file on the local storage, corresponding to

the small profile photo thumbnail
photo big TDS FileLocation location of the file on the local storage, corresponding to

the big profile photo thumbnail
Structure of TDS FileLocation

Field Type Meaning
dc id int number of the data center holding the file
volume id long identifier of the server volume
local id int identifier of the file

22



and local id of the corresponding TDS FileLocation.
An example is reported in Fig. 3, that shows the serialized User TDS

stored in the user field of the user configuration file, and its fields after it has
been deserialized and decoded as reported in Table 8.

Figure 3: Decoded user information extracted from the user configuration file.

As can be seen from this figure, the TID of the user is 278291552, while
its Telegram username is ‘@foobar ’. This user has set his first and last name
to Foo and Bar, respectively, and has also set a profile photo. In particular,
the smaller-size profile photo is stored in file 42601607 151958.jpg, while the
larger-size one is stored in file 42601607 151960.jpg.

4.5.3. Reconstruction of operations on contacts

To reconstruct both the contact list and the operations carried out on
it by the user, we perform the experiments reported in Table 2. From the
analysis of the results we collected, we devise methods (a) to reconstruct the
contact list starting from the data stored in the main database (Sec. 4.5.3.1),
(b) to identify those contacts that have been added to the list explicitly by
the user, and which ones have been instead automatically imported from the
phonebook of the device by Telegram Messenger (Sec. 4.5.3.2), and (c) to
identify blocked contacts, i.e., contacts that are no longer allowed to send
messages to the user (Sec. 4.5.3.3).

4.5.3.1. Reconstruction of the contact list.
Telegram Messenger splits the information concerning each contact across

two tables of the main database, namely contacts and users, whose structure
is described in Table 9. In particular, the former table stores the TIDs of
the actual contacts, while the latter one stores the information about all the

23



Telegram users that are known to the local user (e.g., those that have posted
a message in a common group) even if they do not belong to the contact list.

Table 9: Structure of tables contacts and users.

Table contacts
Field Type Meaning
uid int TID of the contact (connects the record with the corresponding

one in table users)
mutual int indicates whether the local user is also in the contact list of the

contact (1) or not (0)
Table users

Field Type Meaning
uid int TID of the user
name string name of the user as given by the local user (i.e., it is not the

Telegram username chosen by that user)
status int date and time, encoded as a Unix epoch timestamp, of the last

status change of the user
data TDS User (see Table 8) information about the user

As shown in Table 9, each record in table contacts stores the TID of the
corresponding contact (field uid), and a boolean value (field mutual) indicat-
ing whether the local user is also in the contact list of that contact. The
corresponding record in table users is linked via its uid field, that also stores
the same TID value. This latter record stores also the name given by the
local user to the contact (field name), the time and date of its last status
change (field status), and all the contact details (field data), encoded into a
TDS of type User, whose structure is described in Table 8.

The contact list of the user can be reconstructed by selecting the records
in table users that have a corresponding record in table contacts, as done by
the following SQL query:

SELECT ∗ FROM u s e r s WHERE u id IN (SELECT u id FROM con t a c t s )

An example is reported in Fig. 4, that shows how a record in table contacts
is linked to the corresponding record in table users, together with other two
records of the latter table that do not correspond to a contact.

In particular, the only contact in this contact list corresponds to the user
with TID=278291552, whose detailed information is shown in the box con-
nected to the corresponding record of table users. The other two records
in table users correspond instead to Telegram users that, albeit “known” to
the local user, do not belong to its contact list. In particular, the first one

24



Figure 4: Reconstruction of a contact list.

(TID=777000 ) corresponds to the fictitious user which is used by the Tele-
gram platform to broadcast service messages on a public channel, while the
second one (TID=296851918 ) corresponds to the local user (field self=true).

4.5.3.2. Identifying contacts added explicitly.
In addition to the explicit insertion or deletion of a contact (where these

operations are carried out by the user), Telegram Messenger is able to syn-
chronize the phonebook of the device with the contact list. In particular,
it automatically adds to the contact list any Telegram user whose phone
number is stored in the phonebook of the device. Furthermore, it automati-
cally removes from the contact list any Telegram user whose phone number
is removed from the phonebook.

Being able to tell which contacts have been added deliberately by the
user may be important in some investigative scenarios. The results of our
analysis, however, show that Telegram Messenger does not store locally any
information allowing one to distinguish between the explicitly-added and
automatically-added contacts. Nevertheless, we find that explicitly-added
contacts can be identified by analyzing the database corresponding to the
phonebook of the device, which is implemented as an SQLite database,

25



named contacts2.db and stored in folder com.android.providers.contacts (Tamma
and Tindall, 2015).

In particular, when a contact is added (either automatically or explic-
itly) to the contact list, Telegram Messenger writes a record also in the
raw contacts table of the phonebook database. Hence, contacts imported
from the phonebook will correspond to two distinct records in this table:
one already present in the phonebook, and another one added by Telegram
Messenger. Conversely, contacts added by the user were not already present
in the phonebook, and therefore will correspond to only one record in table
raw contacts.

An example of a contact that has been imported by Telegram Messen-
ger is reported in Fig. 5, that shows the two records of table raw contacts
corresponding to the same Telegram user. In this figure, we see that table

Figure 5: Records created in table raw contacts when the contact is automatically imported
by Telegram Messenger (phone numbers have been obscured to preserve privacy).

accounts (also belonging to the phonebook database) stores a record cor-
responding to the local Telegram user: it is the record that in fields ac-
count name and account type store the TID of the local user and the string
‘org.telegram.messenger ’, respectively. This record is linked, as shown in the
figure, with the record added by Telegram Messenger to table raw contacts,
that stores the phone number and TID of the contact in fields sync1 and
sync2, respectively.

4.5.3.3. Identifying blocked contacts.
Telegram Messenger allows a user to block a contact, which from that mo-

ment on cannot send messages to him/her anymore, and cannot receive
his/her status updates. When the user blocks a contact, Telegram Messen-
ger adds a record to table blocked users of the main database, which contains
only one field (named uid), that stores the TID of the blocked contacts.

26



Therefore, the set of blocked users may be reconstructed by selecting those
records in table contacts whose TIDs are stored also in table blocked users,
as done by the following SQL query:

SELECT ∗ FROM con t a c t s WHERE u id IN (SELECT u id FROM
b l o c k e d u s e r s )

The results of our analysis show also that when a contact is unblocked (af-
ter having been blocked), the corresponding record in table blocked users is
deleted. Therefore, it is not possible to tell whether a currently unblocked
contact has been blocked in the past, or how many times a currently blocked
contact has been blocked and unblocked in the past.

4.5.4. Reconstruction of message exchanges

To reconstruct the communication activities carried out by the user, we
perform the experiments reported in Tables 3 and 4. In this section we
describe the methods we devised to reconstruct these activities. After a brief
discussion of the main characteristics of the various dialogs types provided
by Telegram Messenger (Sec. 4.5.4.1), we show how to identify the dialogs
stored in the main database (Sec. 4.5.4.2), how to determine their properties
(Sec. 4.5.4.3), and how to reconstruct the chronology and contents of the
messages exchanged in each one of them (Sec. 4.5.4.4).

4.5.4.1. Dialog types.
As already mentioned, Telegram Messenger provides various types of dialogs
enabling its users to exchange both textual (i.e., that carry UTF-8-encoded
text) and non-textual (i.e., used to exchange files of any type, as well as
contact information and geo-location information) messages, namely:

• One-to-one regular chats (also known as cloud chats in the Telegram
jargon): messages are relayed by the Telegram system, where a copy
of them is kept so that they can be synchronized on all the devices
the user utilizes to access Telegram. Server-client encryption is used to
encrypt messages when in transit between the sender and the Telegram
system, and then from the latter one to the final recipient. For each
pair of users, Telegram allows only a single regular chat.

• One-to-one secret chats : messages are exchanged directly between the
devices of the users, i.e., their messages are never sent to nor stored
on the Telegram system. End-to-end message encryption is used to

27



encrypt messages before transmission. Unlike regular chats, the same
pair of users may create and use simultaneously as many secret chats
as they desire. A secret chat is created by one of the users, and is au-
tomatically joined by the other one, after the creation has been carried
out, the first time that (s)he connects to Telegram.

• One-to-many channels : a channel broadcasts, to all its subscribed
users, the messages published by its creator or by one of its admin-
istrators (no one else is allowed to send messages on the channel). As
for regular chats, messages are relayed by the Telegram system, where
a copy of them is kept, and server-client encryption is used. A chan-
nel may be either public or private: in the former case, their Telegram
username is published on the Telegram system and anyone can join
them, while in the latter case they do not have a username and only
invited users may join.

• Many-to-many groups and supergroups : a group broadcasts to all its
members the messages sent by anyone of them. Telegram provides two
distinct types of groups: standard groups, that can have up to 200
members, and supergroups, that can have from 201 to 5,000 members.
As for channels, a (super)group may be either public or private.

Telegram Messenger organizes the messages exchanged by the user into di-
alogs, each one corresponding to a specific chat, (super)group or channel.
At any given time, the user may be involved with as many dialogs as (s)he
wants. The information concerning the various dialogs the user is involved
with, and the messages exchanged within them, is stored into various tables
of the main database.

4.5.4.2. Identification of dialogs.
Telegram Messenger stores into table dialogs (see Table 10) the information

concerning the dialogs the user has been involved with. Each record stores
the Dialog Identifier (DID) in the field did, an integer number that uniquely
identifies the corresponding dialog, and other information concerning that
dialog, namely the time and date of the last operation carried out in the
dialog (field date), the number of messages that still have to be read (field
unread count), whether the dialog has been pinned (i.e., it always appears on
top of the dialog list), and other less relevant information. To identify the

28



Table 10: Structure of table dialogs.

Table dialogs
Field Type Meaning
did int Dialog ID (DID) of the dialog
date int time and date of the last operation carried out in the conversation (message

sending, reception, deletion, etc.), expressed in Unix epoch time format
unread count int number of messages that have been received, but still have to be read
inbox max int highest Message ID (MID) among received messages
outbox max int highest MID among sent messages
last mid int MID of the last message that has been sent or received in the dialog (max

between inbox max and outbox max)
pinned int flag indicating whether the dialog has been pinned, i.e., locked in the app so

that it always appears on top of the dialogs list (1), or not (0)

messages exchanged within a given dialog, we anticipate that Telegram Mes-
senger stores into one of its tables (i.e., messages) a record for each message
that has been sent or received, and that this record stores – into one of its
fields named uid – the DID of the dialog it belongs to (the complete discus-
sion of table messages, and how the data it stores are used in the forensic
analysis, is postponed to Sec. 4.5.4.4).

Therefore, the messages exchanged in a dialog whose DID is x can be
identified by selecting those records in table messages whose uid field contains
the value x, as done by the following SQL statement:

SELECT ∗ FROM messages WHERE u id=x

An example is reported in Fig. 6, that shows two dialogs, corresponding
to DIDs 77000 and 278291552, respectively, and the related messages.

Figure 6: Contents of the dialogs table, and association with the corresponding records in
the messages table. The fields of table messages are described in Table 13.

29



4.5.4.3. Determination of dialog properties.
As mentioned before, each dialog is characterized by various properties, that
include its type (i.e., the specific communication mechanism it uses, namely
regular or secret chat, public or private (super)group or channel), the role of
the user (creator, administrator, or simple member), the user who created it,
and the date of creation or of joining.

Telegram encodes the type of a dialog into its DID value, which is chosen
according to specific rules, while its properties are stored in additional tables
of the main database, as discussed below.

Identification of regular chats
In Telegram, each regular chat is identified by using as DID of the corre-
sponding dialog the TID of the correspondent user of that chat. For this
reason, as mentioned before, only a single regular chat is allowed between
any pair of users.

Hence, regular chats can be identified by selecting the records of table
dialogs whose field did contains one of the values stored in field uid of records
in table users, i.e., any Telegram user the local user has exchanged messages
with, as done by the following SQL statement:

SELECT ∗ FROM d i a l o g s WHERE d id IN (SELECT u id FROM u s e r s )

For instance, both the dialogs shown in Fig. 6 correspond to regular chats
between the local user and users identified by TIDs 777000 and 278291552,
respectively.

A regular chat is automatically created when the first message is ex-
changed between the involved users. Hence, the creator of the chat is the
user who sent the first message, and the date of creation coincides with that
of the sending of this message (see Sec. 4.5.4.4).

Identification of secret chats
For each secret chat, Telegram Messenger stores a record in table enc chats
(see Table 11). Hence, these chats can be identified by looking at the records
in the above table.

As can be seen from Table 11, table enc chats stores various information
concerning each secret chat, including its identifier (field uid), its name (field
name), and the TID of the chat partner (field user).

30



Furthermore, other relevant information are encoded in the TDS stored
in field data, whose structure is also shown in Table 11, and in particular: (a)
the TID of the user who created the chat (field admin id), (b) the creation
date (field date), and (c) the TID of the user who joined the chat after
creation (field participant id).

To identify the messages exchanged in a given secret chat, it is necessary
to identify the corresponding record in table dialogs, so that its did value can
be used to retrieve the records of table messages that are linked to it. The
results of our analysis show that, for these records, we have that dialogs.did =
enc chats.uid � 32, where � denotes the left-shift bitwise operator. Hence,
dialogs corresponding to secret chats can be identified accordingly, as done
by the following SQL statement:

SELECT ∗ FROM d i a l o g s WHERE d id IN (SELECT uid<<32 FROM
enc cha t s )

As an example, consider the scenario shown in Fig. 7, where we show a
record in table enc chats and the corresponding record in table dialogs (note
that 1952104764 � 32 = 8384226119745798144). By decoding the fields of

Figure 7: Determining the properties of a secret chat and the corresponding dialog.

the enc chats record as reported in Table 11, we see that (a) the secret chat
has been created by the user whose TID is 247533163, (b) it has been created
on Nov 24, 2016, and (c) it has been joined later by the user whose TID is
281235098.

Identification of groups, supergroups, and channels
For each group, supergroup, or channel, Telegram Messenger stores a record
in table chats (see Table 12), in addition to a record in table dialogs.

31



The records of these tables that correspond to the same dialog are linked
together via the values stored in fields uid and did, respectively. In particular,
we have that dialogs.did = -chats.uid. Therefore, the dialogs corresponding
to a (super)group or channel can be identified accordingly, as done by the
following SQL statement:

SELECT ∗ FROM d i a l o g s WHERE d id IN (SELECT −u id FROM cha t s )

As can be seen from Table 12, table chats stores the identifier of the (su-
per)group chat (field uid) and its name (field name). Additional information
is instead encoded in the TDS of type Chat stored in field data (also reported
in Table 12).

The data stored in this TDS allow one to determine many properties
of the dialog. In particular, the type of the dialog can be determined by
correlating the values stored in fields version and megagroup as follows:

• if version=1, then the dialog is a group;

• if version=0 and megagroup=True, then the dialog is a supergroup;

• if version=0 and megagroup=False, then the dialog is a channel.

Its public or private nature can be instead determined by the value stored in
field username, which is set to its Telegram username for public dialogs, and
to the null value for private ones.

Dialogs created or administered by the user can be identified by means of
the value stored in fields creator and administrator, respectively, while their
date of creation is stored in field date. This latter field contains instead the
date of joining, for those dialogs that were not created by the user. The
number of members of the dialog is instead stored in field participants count,
while its optional title and profile photo are stored in fields title and photo,
respectively. Finally, active dialogs (i.e., dialogs the user is still participating
in) are those where left=False.

To illustrate, let us consider the scenario shown in Fig. 8, representing an
excerpt of table chats that contains four records, each one corresponding to
a different (super)group/channel, and in particular:

• Record no. 1 corresponds to a private (username = null) group (version=1),
which has been created by the local user (creator=True) on April 9,
2017 at 11:42:15 UTC (date=1491738135), and whose title is ‘GroupTest ’.
The user is still member of the group (left=False), that has two par-
ticipants (participants count = 2).

32



Table 11: Structure of table enc chats and of the TDS EncryptedChat it contains.

Structure of table enc chats
Field Type Meaning
uid int identifier of the secret chat
user int TID of the secret chat partner
name string name given to the secret chat by the user that created it
data TDS EncryptedChat stores additional information about the secret chat

Structure of TDS EncryptedChat
Field Type Meaning
id int identifier of the secret chat
admin id int TID of the user who created the secret chat
date int creation date and time (in Unix epoch format) of the secret

chat
participant id int TID of the user who joined the secret chat after creation

Figure 8: Determining the properties of (super)groups and channels.

33



Table 12: Structure of table chats and of the TDS Chat it contains.

Structure of table chats
Field Type Meaning
uid int identifier of the (super)group/channel
name string name given to the public (su-

per)group/channel, null if private
data TDS Chat stores additional information about the

(super)group/channel
Structure of TDS Chat

Field Type Meaning
id int identifier of the (super)group/channel

(same value stored in field uid)
username string username if the (super)group/channel

is public, null if it is private
title string name given by the creator
photo TDS UserProfilePhoto profile photo of the (su-

per)group/channel (see Table 8)
creator bool True if the user is the creator of the

(super)group/channel, False otherwise
date int date and time of creation (if cre-

ator=True) or joining (creator=False),
expressed in Unix epoch format

admin enabled bool True if the (super)group/channel has
administrators, False otherwise

admin bool True if the local user is an administra-
tor of the (super)group/channel, False
otherwise

version int 0 for channels or supergroups, 1 for
standard groups

megagroup bool True for supergroups or channels, False
for standard groups

participants count int number of participants for standard
groups (set to 0 for channels and su-
pergroups)

left bool True if the user has left the (su-
per)group/channel, False otherwise

34



• Record no. 2 corresponds to a public (username=PublicTestGroup) su-
pergroup (version=0 and megagroup=True), whose title is ‘Telegram
Party ’, which the local user has joined (creator=False) on April 14,
2017 at 8:01:23 UTC (date=1492156883), and has subsequently left
(left=True). This supergroup is associated with a profile photo, stored
in files 421206657 74766.jpg (smaller size) and 421206657 74768.jpg
(larger size), both stored in the cache folder (see Fig. 2).

• Record no. 3 refers to a private (username = null) channel (version=0
and megagroup=False), whose title is ‘TeleTest ’, that has been joined
by the local user (creator=False) on March 23, 2017 at 15:12:36 UTC
(date=149028195), and to which the user is still participating as a mem-
ber (left=False).

• Record no. 4 refers to a public (username = teletestpub) channel (version=0
and megagroup=False), whose title is ‘TeleTestPub’, which has been
created by the local user (creator=True) on 24 March, 2017 at 13:35:14
UTC (date = 1490362514).

4.5.4.4. Reconstructing the chronology and contents of messages.
The information concerning the messages exchanged in the various dialogs,

including secret chats, is stored in table messages (see Table 13), that contains
a record for each message. This record stores the unique Message Identifier
(MID) and the DID of the corresponding dialog (fields mid and did, respec-
tively), whether the message has been sent or not (field send state), whether
it has been read or not (field read state), whether it is an incoming or outgo-
ing message (field out), the date of the last modification of its status (field
date), and its contents that are encoded into a TDS of type Message (see
Table 14) stored in field data.

The reconstruction of the chronology of message exchanges can be carried
out by means of the information stored in fields out, date, send state, and
read state of table messages.

As an example, in Fig. 9 we report the chronology of messages exchange
reconstructed from the records of table messages shown in Fig. 6.

The contents of both textual and non-textual messages are instead en-
coded into the TDS of type Message (see Table 14) stored in field data of
table messages. It is worth pointing out that the following discussion applies
also to messages belonging to secret chats, that are stored unencrypted in
the main database.

35



Table 13: Structure of table messages.

Field Type Meaning
mid int Message ID (MID) of the message
uid int DID of the dialog the message belongs to
read state int 2: delivered but not read, 3: delivered and read
send state int indicates whether the message has been already sent (0)

or it is pending (1). If pending, the mid is negative, and
the field date corresponds to the timestamp when message
sending has been requested. After actual transmission,
mid gets the next available sequence number, and the field
date is modified with the timestamp of the sending

date int date and time of the last modification of the message sta-
tus, expressed in the Unix epoch time format

data TDS Message (see Table 14) stores information about the message content, sender, and
recipient

out int indicates whether the message has been sent (1) or re-
ceived (0) by the user

Figure 9: Reconstruction of the chronology of message exchanges for the two dialogs shown
in Fig. 6.

36



Table 14: Structure of the TDSs used to encode information about messages.

Structure of TDS Message
Field Type Meaning
message string for textual messages, stores the body of

the message, encoded as an UTF-8 string
media TDS MessageMedia for non-textual messages, stores the details

about transferred files
action TDS messageActionPhoneCall (see Ta-

ble 20)
details of the voice call (for records corre-
sponding to voice calls, see Sec. 4.5.5)

attach path string for non-textual messages, stores the path-
name of the file that has been sent

from id int TID of the sender (for channels, stores the
DID of the dialog the message belongs to)

to id TDS Peer Information about the recipient (content
depends on the type of dialog)

Structure of TDS Peer
Field Type Meaning
user id int TID of the correspondent user for regular

chat (0 for other dialog types)
channel id int Identifier of the channel (0 for other dialog

types)
chat id int Identifier of the (super)group of the sender

(0 for other dialog types)

In particular, the content of textual messages is stored in field message.
Conversely, for non-textual messages two distinct fields are used, namely: (a)
field media, that encodes into a TDS of type MessageMedia either the content
or the information about its location (depending on the type of data carried
by the message), and (b) field attach path, that stores the location of the file
that has been sent (if any). The other fields contain instead the identifiers
of the sender (field from id) and of the recipient (field to id) of the message.

While the decoding of the content of a textual message is straightforward,
as it is stored as an UTF-8 string in field message, for non-textual ones the
situation is more elaborate. In particular, the MessageMedia TDS, stored in
field media, is instantiated to a different TDS according to its content type,
as specified in Table 15.

In the following, we describe how to decode the information stored in the
TDS specific for each content type, and how to retrieve the corresponding
content.

Image files

37



Table 15: List of TDSs used to store the details about non-textual contents.

Type of file/information Instantiated with
picture TDS messageMediaPhoto
video, audio, generic TDS messageMediaDocument
contact TDS messageMediaContact
geo-coordinates TDS messageMediaGeo or TDS messageMediaVenue

When a file containing an image is sent or received, Telegram Messenger
creates several copies of it, that differ from each other in their size, and
stores them either in the Telegram Images subfolder of the media folder or in
the cache folder (see Fig. 2).

The details of these files are stored in the messageMediaPhoto TDS (see
Table 16) that – for image files – instantiates the MessageMedia TDS con-
tained in field data of table messages. In particular,5 the information about

Table 16: Structure of TDSs used to store the information about exchanged pictures.

Structure of TDS messageMediaPhoto
Field Type Meaning
id long picture identifier
user id int TID of the sender
date int date of creation of the picture (optional)
caption string textual description of the picture (optional)
geo GeoPoint (see Table 19) TDS description of the geo-coordinates associated

with the picture (optional)
sizes list of PhotoSize TDS list of available images

Structure of TDS PhotoSize
Field Type Meaning
type string type of the thumbnail5

location FileLocation TDS (see Table 8) location of the file on the local storage
w int image width
h int image height
size int size in bytes of the file

these files is stored in field sizes, that contains a list of TDSs of type Pho-
toSize, each one storing the detail concerning one of them, and in particular
its name (field location), its width (field w) and height (field h), and its size
in bytes (field size).

5See https://core.telegram.org/constructor/photoSize for the list of possible thumbnail
types.

38



Other possibly relevant information stored in messageMediaPhoto are the
TID of the sender (field user id), and various optional fields (storing the date
in which the picture has been created, a textual caption specified by the
sender, and geo-coordinates of the place where the picture has been taken).

Finally, in the sender’s database, attribute attach path of the Message
TDS (see Table 14) reports where – on the device file system - it is stored
the file that has been sent.

An example is depicted in Fig. 10, where we show how to decode the data
field of a record in table messages corresponding to a picture that has been
sent, together with the copies of this file that have been saved in the folders
mentioned before.

Figure 10: Data stored in the main database for a picture that has been sent.

In the figure, we see the path of the file that has been sent (field at-
tach path). We also see that three distinct copies (whose details are stored
in attribute sizes) have been sent. However, as also shown in the bottom
part of Fig. 10, only two of them are actually present either in the cache or
in the Telegram Images folder. It is unclear whether the third one has been
transferred (and, subsequently, automatically deleted by Telegram) or not.
The situation in the recipient database is exactly the same shown in Fig. 10,
with the only difference that, in this case, the attach path attribute is empty.

39



Audio, video, and generic files
For files different from images, Telegram Messenger stores only one copy
(instead of multiple ones) in one of the subfolders of the Telegram media
folder (see Fig. 2), according to its specific type. In particular, audio, video
and generic files are stored in folder Telegram Audio, Telegram Video, and
Telegram Documents, respectively.

The information concerning these files are stored in the messageMediaDoc-
ument TDS (see Table 17) that – for files of the above type – instantiates the
MessageMedia TDS contained in field data of table messages.

Table 17: Structure of TDSs used to store the information about exchanged files other
than pictures (only forensically-relevant fields are shown).

Structure of TDS messageMediaDocument
Field Type Meaning
id long filename of the file on local storage
user id int TID of the sender
date int date of creation of the file (optional)
mime type string MIME type of the file
size int size in byte of the file
thumb list of PhotoSize TDS list of available thumbnail images (only for

video files)
attributes list of either documentAttibuteVideo, docu-

mentAttributeAudio, or documentAttribute-
FileName TDSs (the actual instantiation
depends on the file type)

information about the file

Structure of TDS documentAttibuteVideo and documentAttibuteAudio
Field Type Meaning
duration int duration (in seconds) of the audio/video
performer string name of the author of the audio/video
title string title of the audio/video file
w int video width
h int video height

Structure of TDS documentAttibuteFileName
Field Type Meaning
file name string name of the file as on the sender’s file sys-

tem

As reported in this table, the name of these files is an integer value stored
in field id (unlike image files that, instead, use a FileLocation TDS), while the
TID of the sender is stored in field user id. Other information include the
size in bytes of the file (field size), its (optional) date of creation (field date),
and the type of the data it stores (field mime type).

40



Other properties of the file are encoded into the TDSs stored as a list
in field attributes, that are instantiated with either documentAttributeAudio,
documentAttributeVideo, or documentAttributeFileName TDSs according to
the file type. The attributes of these TDS are also described in Table 17.

An example is reported in Fig. 11, where we show how to interpret the
information stored in the TDS messageMediaDocument of three records of
table messages, corresponding to a video, an audio, and a PDF file sent by
the user.

Figure 11: Data stored in the main database for files of various types that have been sent.

Phone contacts
In addition to files, Telegram allows users to exchange information about
contacts using non-textual messages. As indicated in Table 15, for this type
of non-textual messages Telegram Messenger uses a messageMediaContact
TDS (see Table 18) to store the details concerning the contact that has
been exchanged. An example is shown in Fig. 12, where record with mid=9
corresponds to the sending of a contact whose phone number is 111222333,
and whose first and last names are Fake and Contact, respectively.

41



Table 18: Structure of messageMediaContact TDS.

Structure of TDS messageMediaContact
Field Type Meaning
phone number string phone number of the contact
first name string first name of the contact (as given by the

sender)
last name string last name of the contact (as given by the

sender)

Figure 12: Data stored in table contacts for two non-textual messages corresponding to a
contact and two geo-locations.

Geo-coordinates
The last type of non-textual message allowed by Telegram transfers is geo-
location information. As indicated in Table 15, for this type of non-textual
messages Telegram Messenger uses either a messageMediaVenue or a message-
MediaGeo TDS (see Table 19) to store the details concerning the geo-location
information that has been exchanged.

As can be seen from this table, messageMediaGeo has only field geo, and
is used when only the geo-coordinates are sent, while messageMediaVenue has
also fields title, address, provider, and venue id, and is used when also a map
is transferred.

An example is shown in Fig. 12, where the record of table messages whose
mid=731 corresponds to the sending of just the coordinates of a point, while
the one with mid=732 corresponds to the sending of a map. For the latter

42



Table 19: Structure of TDSs used to store the information about exchanged geo-locations.

Structure of TDS messageMediaVenue and messageMediaGeo
Field Type Meaning
geo TDS GeoPoint geo-coordinates of the location
title string title of the map (for messageMediaVenue

only)
address string address corresponding to coordinates (for

messageMediaVenue only)
provider string identifier of the map provider (for message-

MediaVenue only)
venue id string identifier of the map (for messageMediaV-

enue only)
Structure of TDS GeoPoint

Field Type Meaning
long double longitude of the location
lat double latitude of the location

one, we see also that field provider is set to ‘foursquare’, and field venue id
stores the identifier that can be used to retrieve the map using the FourSquare
API.

4.5.5. Reconstruction of the voice calls log

To reconstruct the logs of the voice calls made or received by the user, we
carry out the experiments reported in Table 5. The analysis of the results
collected during these experiments show that the data stored in the main
database allow one to reconstruct the log of the voice calls in which the
user has been involved. In particular, we found that, for each incoming or
outgoing call, Telegram Messenger stores a record in table messages, that in
turn stores into field action of the corresponding Message TDS (see Table 14)
the identities of the calling and called parties, the duration of the call and,
for unsuccessful calls, the reason of the failure.

More specifically, field action stores a TDS of type messageActionPhoneCall
(see Table 20), where the above information are encoded.

As can be observed from Table 20, this TDS stores the identifier of the call
(field call id), its duration (field duration), and the reason of its termination
(field reason). The TIDs of the partners involved in the call are instead stored
in fields from id and to id of the Message TDS for outgoing calls, while for
incoming calls both these fields store the value of the caller (as the callee is
the local user).

An example is shown in Fig. 13, where we show the records in table

43



Table 20: Structure of TDS messageActionPhoneCall.

Structure of TDS messageActionPhoneCall
Field Type Meaning
call id int identifier of the call
duration int duration of the call (in seconds)
reason string reason of the termination of the call: possible values are hangup, missed, and busy

messages corresponding to four distinct voice calls, together with the in-
formation recovered from the various relevant fields of the TDS stored in
their data fields. From the data shown in Fig. 13, it is easy to see that the

Figure 13: Data stored in the main database for four voice calls.

first two records correspond to outgoing calls towards the user whose TID
is 264990279, while the last two correspond to incoming calls coming from
that user. We can also see that the first and third calls have been successful,
and lasted 69 and 70 seconds, respectively, while the second and fourth ones
were unsuccessful because the user was busy (second) and did not answer
(fourth). Finally, the date and time of the call can be retrieved by decoding
the field date of the records in table messages.

4.5.6. Dealing with deletions

In the attempt to hide past interactions, the user may delete various
information from the main database, namely contacts, individual messages,
or entire chats.

It is well-known that in SQLite databases deleted records are kept in the
so-called unallocated cells, i.e., slack space stored in the file corresponding to
the database, from which in some cases (notably, if the SQLite engine has

44



not vacuumed the involved tables yet), they can be recovered (Jeon et al.,
2012).

To verify whether such a recovery is possible with Telegram Messen-
ger, during the various experiments we performed, we collected the main
database after the various delete operations reported in Tables 2, 3, and 4,
and we analyzed them with Oxygen Forensic SQLite Viewer (Oxygen Foren-
sics, Inc., 2013b) (a tool which is able to recover deleted records from SQLite
databases).

This analysis revealed indeed that deleted records persist in the main
database, and may therefore be recovered. However, in general, the persis-
tence time of these records is unpredictable, as they are permanently deleted
when the database is vacuumed, an operation that is under the complete
control of the SQLite engine. Therefore, although the possibility of recov-
ering deleted information exists in theory, it cannot be assumed that – in
general – such a recovery is possible for the specific case at hand.

5. Conclusions

In this paper we have presented a methodology for the forensic analysis
of applications running on Android, and we have applied it to the analysis of
Telegram Messenger. The general methodology is based on the execution of
suitably designed experiments on virtualized smartphones, instead of physical
ones, so as to obtain generality and reproducibility of the results, and has
been suitably instantiated for Telegram Messenger. The accuracy of the
results obtained by using our methodology has been assessed by validating
them against those obtained from the execution of a subset of the experiments
on a real smartphone.

Thanks to the application of this methodology, we have been able to iden-
tify all the artifacts left by Telegram Messenger on Android smartphones, and
we have shown how these artifacts can provide many information of inves-
tigative value. In particular, we have discussed methods to interpret the data
stored in the main database and in the user configuration file, to determine
the specific Telegram account used on the local device, and to reconstruct
the contact list of the user, the chronology and contents of exchanged textual
and non-textual messages, as well as to determine whether the user created
or administered a secret chat, a (super)group, or a channel.

More importantly, we have also shown the importance of correlating
among them the artifacts generated by Telegram Messenger in order to gather

45



information that cannot be inferred by examining them in isolation. As a
matter of fact, while the analysis of user profile information, or of the con-
tact list, makes it possible to determine some of the relevant information
(e.g., the Telegram identifier of these users or their phone number), other
information of investigative interest (such as the profile photos, or the files
that have been exchanged) may be determined only by correlating the data
stored in the main database with the files stored in the various folders used
by Telegram Messenger.

The results discussed in this paper have a two-fold value. On the one
hand, they provide analysts with the full picture concerning the decoding,
interpretation, and correlation of Telegram Messenger artifacts on Android
devices. On the other hand, they represent a benchmark against which the
ability of mobile forensic platforms to retrieve and correctly decode all the
Telegram Messenger artifacts can be assessed.

As future work, we plan to investigate the extension of our methodology
to other mobile platforms (most notably, iOS and Windows Phone). As a
matter of fact, while the individual stages of the methodology are agnostic
with respect to the mobile platform, its core properties of repeatability and
generality require the availability of a virtualization solution enabling the use
of virtualized smartphones. At the moment of this writing, virtualization
platforms for Windows Phones are available (Microsoft Corp., 2017), while
the same is not true for iOS. Once the methodology has been extended, it
will be possible to analyze Telegram Messenger, as well as other applications,
on these mobile platforms.

References

504ENSICS Labs., 2016. Linux memory extractor (lime). Available at
http://codeload.github.com/504ensicsLabs/LiME/zip/master.

Al Barghuthi, N., Said, H., Nov. 2013. Social Networks IM Forensics: En-
cryption Analysis. Journal of Communications 8 (11), 708–715.

Anglano, C., Sept. 2014. Forensic Analysis of WhatsApp Messenger on An-
droid Smartphones. Digital Investigation 11 (3), 201–213.

Anglano, C., Canonico, M., Guazzone, M., Dec. 2016. Forensic Analysis of
the ChatSecure Instant Messaging Application on Android Smartphones.
Digital Investigation 19, 44–59.

46



Anglano, C., Canonico, M., Guazzone, M., 2017. Configuration and Use
of Android Virtual Devices for the Forensic Analysis of Android Ap-
plications. Technical Report TR-INF-2017-06-02-UNIPMN, University
of Piemonte Orientale, http://www.di.unipmn.it/TechnicalReports/

TR-INF-2017-06-02-UNIPMN.pdf.

Azfar, A., Choo, R., Liu, L., Sept. 2016. An Android Communication App
Forensic Taxonomy. Journal of Forensic Sciences 61 (5).

C. Budd, Aug. 2016. Following the mark: Hackers begin to leverage Telegram
messaging app. Available at https://goo.gl/Q84fJe.

Cellebrite LTD., 2015a. UFED Mobile Forensics Applications. Available at
http://www.cellebrite.com/Mobile-Forensics/Applications.

Cellebrite LTD., 2015b. UFED4PC: The Software-Based Mobile
Forensics Solution. Available at http://www.cellebrite.com/Mobile-
Forensics/Products/ufed-4pc.

Compelson Labs, 2017. Mobiledit Forensic Express. Available at
http://www.mobiledit.com/forensic-solutions/.

DrKLO, 2017. Telegram Messenger for Android. Available at
https://github.com/DrKLO/Telegram.

Epifani, M., Stirparo, P., 2015. Learning iOS Forensics. Packt Publishing.

Google, 2016a. Android Device Monitor. Available at
https://developer.android.com/studio/profile/monitor.html.

Google, 2016b. Run Apps on the Android Emulator. Available at
https://developer.android.com/studio/run/emulator.html.

Gregorio, J., Gardel, A., Alarcos, B., 2017. Forensic analysis of telegram
messenger for windows phone. Digital Investigation (In Press).

Husain, M. I., Sridhar, R., 2010. iForensics: Forensic Analysis of Instant Mes-
saging on Smart Phones. In: Goel, S. (Ed.), Digital Forensics and Cyber
Crime. Vol. 31 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering. Springer Berlin
Heidelberg.

47



J. Warrick, Dec. 2016. The app of choice for jihadists: ISIS seizes
on Internet tool to promote terror. The Washington PostAvailable at
https://goo.gl/3MKSnP.

Jeon, S., Bang, J., Byun, K., Lee, S., 2012. A recovery method of deleted
records for SQLite database. Personal and Ubiquotous Computing 16 (6),
707–715.

Marc McLoughlin, 2008. The QCOW2 Image Format. Available at
https://people.gnome.org/ markmc/qcow-image-format.html, accessed on
June 21st, 2017.

Mehrotra, T., Mehtre, B. M., Dec 2013. Forensic analysis of Wickr appli-
cation on android devices. In: 2013 IEEE International Conference on
Computational Intelligence and Computing Research. pp. 1–6.

Micro Systemation, 2016. XRY. Available at
http://www.msab.com/xry/xry-current-version.

Microsoft Corp., 2017. Windows Phone Emulator for Windows Phone
8. https://msdn.microsoft.com/en-us/library/windows/apps/

ff402563(v=vs.105).aspx.

Ovens, K. M., Morison, G., Jun. 2016. Forensic analysis of Kik messenger on
iOS devices. Digital Investigation 17.

Oxygen Forensics, Inc., 2013a. Oxygen Forensics. Available at
http://www.oxygen-forensic.com/en/features/analyst.

Oxygen Forensics, Inc., 2013b. SQLite Viewer. Available at
http://www.oxygen-forensic.com/en/features/analyst/data-
viewers/sqlite-viewer.

Satrya, G. B., Daely, P. T., Nugroho, M. A., Oct 2016a. Digital forensic
analysis of Telegram Messenger on Android devices. In: 2016 Interna-
tional Conference on Information Communication Technology and Systems
(ICTS). pp. 1–7.

Satrya, G. B., Daely, P. T., Shin, S. Y., July 2016b. Android forensics anal-
ysis: Private chat on social messenger. In: 2016 Eighth International Con-
ference on Ubiquitous and Future Networks (ICUFN). pp. 430–435.

48



Susanka, T., Jan. 2017. Security Analysis of the Telegram IM. Master’s thesis,
Czech Technical University inPrague, Faculty of Information Technology,
https://www.susanka.eu/files/master-thesis-final.pdf.

Tamma, R., Tindall, D., 2015. Learning Android Forensics. Packt Publishing.

Telegram Messenger LLP, Feb. 2016. 100,000,000 Monthly Active Users.
Available at https://telegram.org/blog/100-million.

Telegram Messenger LLP, May 2017a. Binary Data Serialization. Available
at https://core.telegram.org/mtproto/serialize.

Telegram Messenger LLP, May 2017b. TL Language. Available at
https://core.telegram.org/mtproto/TL.

Telegram Messenger LLP, May 2017c. TL Schema. Available at
https://core.telegram.org/schema.

Telegram Messengers LLP, 2017. Telegram Applications. Available at
https://telegram.org/apps.

The Telegram Team, Jan. 2017. Android Developers Never Sleep. Avail-
able at https://telegram.org/blog/unsend-and-usage#android-developers-
never-sleep.

Tso, Y.-C., Wang, S.-J., Huang, C.-T., Wang, W.-J., 2012. iPhone Social
Networking for Evidence Investigations Using iTunes Forensics. In: Proc.
of the 6th International Conference on Ubiquitous Information Manage-
ment and Communication. ICUIMC’12. ACM, New York, NY, USA, pp.
1–7.

United Nations Office on Drugs and Crime, Feb. 2013. Comprehensive Study
on Cybercrime. Tech. rep., United Nations.

Volatility Foundation, 2016. An advanced memory forensics framework.
Available at http://volatilityfoundation.org/.

Walnycky, D., Baggili, I., A.Marrington, Moore, J., Breitinger, F., 2015.
Network and device forensic analysis of Android social-messaging appli-
cations. Digital Investigation 14, Supplement 1, S77–S84, proc. of 15th

Annual DFRWS Conference.

49



Wu, S., Zhang, Y., Wang, X., Xiong, X., Du, L., 2017. Forensic analysis of
WeChat on Android smartphones. Digital Investigation.

Zhang, L., Yu, F., Ji, Q., July 2016. The Forensic Analysis of WeChat Mes-
sage. In: 2016 Sixth International Conference on Instrumentation Measure-
ment, Computer, Communication and Control (IMCCC). pp. 500–503.

Zhou, F., Yang, Y., Ding, Z., Sun, G., June 2015. Dump and analysis of An-
droid volatile memory on Wechat. In: 2015 IEEE International Conference
on Communications (ICC). pp. 7151–7156.

50


