Energy-Efficient Resource Management for Cloud Computing Infrastructures

Marco Guazzone, Cosimo Anglano, Massimo Canonico

University of Piemonte Orientale
Alessandria, Italy

CloudCom’2011
Athens, Greece

November 30th, 2011
Outline

1. Motivation & Goal
2. Our Contribution
3. Experimental Evaluation
4. Conclusions
5. References
Research Goals & Challenges

Problem

Minimize **TCO** subject to **SLA** constraints

Challenges

- Conflicting objectives
- Physical Resources and Applications heterogeneity
- Workload dynamics

Goals

To **automatically** manage computing resources in order to

- **Satisfy** SLAs (as more as possible)
- **Reduce** TCO (in terms of energy consumption)
- **Adapt** to *dynamic, conflicting and distributed* environment
SLO metric: application-level response time
Shared physical resource: CPU
• **Goal**: to find the *best* tier CPU shares for the monitored application...
 - According to current operating conditions
 - In order to achieve SLOs
• One manager for each application
Adaptive Feedback Control with **Self-Tuning Regulation (STR)** scheme [1]
• **Goal**: *to model application dynamics*

• **We use** **black-box** models

 • Relationships between system **input** and system **output**

 • System input: **CPU shares**

 • System output: **tier mean residence times**

• **Discrete-time MIMO ARX model** [8]
Application Manager: System Parameters Estimation

Controller Design (LQR) → System Parameters Estimation (RLS) → System Model (ARX)

Specifications → Controller Design (LQR) → Controller

Reference Input → Controller Design (LQR) → Controller

Error → Controller Design (LQR) → Controller

Transduced Output → Transducer (EWMA) → Measured Output
• **Goal:** to identify ARX model structure and parameters

• We use **online system identification** to cope with time-varying workload
 - **Recursive Least-Squares (RLS)** algorithm to estimate system parameters at each control interval
 - We evaluated several variants and chose
 - RLS with **variable forgetting factor** [10]
Application Manager: Transducer

Controller Design (LQR)

System Parameters

System Parameters Estimation (RLS)

Controller

System Model (ARX)

Specifications

Reference Input

Error

Transduced Output

Control Input

Output

Energy-Efficient Resource Management for Cloud Computing Infrastructures

Guazzone - Anglano - Canonico
• **Goal:** *to filter system output* in order to
 - Remember past system behavior
 - Mitigate the effect of short peaks
 - Predict outputs during idle periods
• We use the **Exponentially Weighted Moving Average (EWMA)** filter

\[S_k = \alpha X_k + (1 - \alpha) S_{k-1}, \quad 0 \leq \alpha \leq 1 \]

• Exponential decay of the weight of past outputs
• Smooth increments for short peaks
• Smooth decrements for idle periods
Goal: to design controller parameters
We use optimal control by means of the infinite-horizon discrete-time Linear Quadratic (LQ) control design
For each control interval, find the optimal state-feedback gain matrix which minimizes the cost function:

\[J = J_s + J_c \]

where:
- \(J_s \): cost to keep system output near to its SLO value
- \(J_c \): cost to improve controller stability

We evaluated several variants and chose
- Linear Quadratic Regulator with Output Weighting [7]
Goal: to compute optimal tier CPU shares to achieve application SLOs

State-feedback control which computes the optimal control sequence from the LQ control design
• **Goal**: to arbitrate among conflicting CPU share demands.
 - Application Managers work independently from each other
 - The aggregated CPU share demand coming to each physical machine may exceed the maximum available
 - CPU shares are adjusted according to a given policy
 - One manager for each physical machine
• **Proportional** policy: for each control interval $k > 0$:
 - Let n be the number of VMs hosted on a specific physical machine,
 - Let D, for $0 < D \leq 1$, be the maximum CPU share,
 - CPU shares are bounded in the $(0, D]$ real interval
 - Let $d_1(k), \ldots, d_n(k)$ be the incoming CPU share demands for the n VMs,
 - The adjusted CPU share demands $\hat{d}_1(k), \ldots, \hat{d}_n(k)$ is computed as:
 $$\hat{d}_i(k) = \frac{d_i(k)}{\sum_{j=1}^{n} d_j(k)} D$$
Experimental Evaluation: Setup

- We have implemented a discrete-event simulator in C++
- Output analysis by means of the Independent Replications method
 - Performance indices:
 - Response Time
 - % SLO Violations
 - Energy Consumption
 - Replication length: at least 10^6 succeeded requests
 - Number of replications: 95% confidence interval half length $\leq 4\%$
Experimental Evaluation: Setup (cont’d)

- Three **3-tier** applications
 - SLO metric: **0.99th quantile** of response time distribution
 - Per tier request service time:

App1	[Det(0.060), Det(0.060), Det(0.060)]
App2	[Det(0.030), Det(0.060), Det(0.030)]
App3	[Det(0.015), Det(0.030), Det(0.060)]

- Five **homogeneous** physical machines
 - CPU capacity: 2000
 - Energy model (Watt): \(E(u) = 143 + 258.2u + 117.2u^{0.355} \)

- VMs initial placement: **Best-fit**
 - Place each VM in the physical machine which leave the least amount of residual space
Four scenarios based on the type of the arrival process:

- **Behavioral pattern**: Deterministic Modulated Poisson Process (DMPP)
- **Self-similarity**: Pareto Modulated Poisson Process (PMPP)
- **Temporal burstiness**: Markov Modulated Poisson Process (MMPP)
- **Mix**: a mixture of the three types above

Three resource management approaches:

- **STATIC-SLO**: SLO-conserving approach
- **STATIC-ENERGY**: energy-conserving approach
- **OUR-APPROACH**: our solution
 - **No Migration Manager**
Experimental Evaluation: Results

DMPP Scenario

<table>
<thead>
<tr>
<th>Approach</th>
<th>Application #1 % SLO violations</th>
<th>Application #2 % SLO violations</th>
<th>Application #3 % SLO violations</th>
<th>Power Consumption Watt</th>
<th>% Wasted Joules</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC-SLO</td>
<td>0.67%</td>
<td>0.75%</td>
<td>0.78%</td>
<td>1043.59</td>
<td>0.73%</td>
</tr>
<tr>
<td>STATIC-ENERGY</td>
<td>19.19%</td>
<td>14.05%</td>
<td>19.40%</td>
<td>1013.04</td>
<td>17.68%</td>
</tr>
<tr>
<td>OUR-APPROACH</td>
<td>0.36%</td>
<td>0.49%</td>
<td>0.49%</td>
<td>1037.69</td>
<td>0.44%</td>
</tr>
</tbody>
</table>

PMPP Scenario

<table>
<thead>
<tr>
<th>Approach</th>
<th>Application #1 % SLO violations</th>
<th>Application #2 % SLO violations</th>
<th>Application #3 % SLO violations</th>
<th>Power Consumption Watt</th>
<th>% Wasted Joules</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC-SLO</td>
<td>0.86%</td>
<td>0.78%</td>
<td>0.69%</td>
<td>1158.37</td>
<td>0.78%</td>
</tr>
<tr>
<td>STATIC-ENERGY</td>
<td>21.91%</td>
<td>17.41%</td>
<td>15.58%</td>
<td>1083.23</td>
<td>18.28%</td>
</tr>
<tr>
<td>OUR-APPROACH</td>
<td>0.88%</td>
<td>0.75%</td>
<td>0.59%</td>
<td>1150.11</td>
<td>0.75%</td>
</tr>
</tbody>
</table>
MMPP Scenario

<table>
<thead>
<tr>
<th>Approach</th>
<th>Application #1</th>
<th>Application #2</th>
<th>Application #3</th>
<th>Power Consumption</th>
<th>% Wasted Joules</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC-SLO</td>
<td>0.68%</td>
<td>0.76%</td>
<td>0.77%</td>
<td>1064.90</td>
<td>0.74%</td>
</tr>
<tr>
<td>STATIC-ENERGY</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>OUR-APPROACH</td>
<td>0.81%</td>
<td>0.77%</td>
<td>0.66%</td>
<td>1064.12</td>
<td>0.75%</td>
</tr>
</tbody>
</table>

Mix Scenario

<table>
<thead>
<tr>
<th>Approach</th>
<th>Application #1</th>
<th>Application #2</th>
<th>Application #3</th>
<th>Power Consumption</th>
<th>% Wasted Joules</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC-SLO</td>
<td>0.77%</td>
<td>0.77%</td>
<td>0.53%</td>
<td>1029.71</td>
<td>0.68%</td>
</tr>
<tr>
<td>STATIC-ENERGY</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>OUR-APPROACH</td>
<td>0.77%</td>
<td>0.76%</td>
<td>0.64%</td>
<td>1036.31</td>
<td>0.72%</td>
</tr>
</tbody>
</table>
Summary

• Effective administration of Cloud Infrastructure resources is challenging
• Our goal is to design an automatic and adaptive resource management for SLO satisfaction and TCO reduction
• Our approach is based on control-theoretic techniques
• Preliminary results show that by implementing smart resource management strategies it is possible to achieve good results in terms of both energy consumption and SLO preservation
Future Works

• Application Manager
 • Consider *minimum-variance* controllers
 • Evaluate other type of control design (e.g., PID)
 • Evaluate other type of system models (e.g., ARMAX)

• Migration Manager (WiP)
 • Optimization techniques
 • Approximated algorithms
 • Incremental VMs placement
Thank You!!
References

Adaptive Control.

Exponential convergence of a modified directional forgetting identification algorithm.

Feedback Control of Computing Systems.

Linear Systems Theory.
Designing controllable computer systems.

Tracking of slowly varying parameters by directional forgetting.

Linear Optimal Control Systems.
System Identification: Theory for the User.

Process Modelling, Identification, and Control.

Fast tracking rls algorithm using novel variable forgetting factor with unity zone.

A comparison of high-level full-system power models.
Additional Slides...
• Input-output relationship at control interval $k > 0$:
 • System input: CPU shares $s_i(k)$
 • System output: tier mean residence times $p_i(k)$
 • Application mean response time $p(k)$ is simply $p(k) = \sum_i p_i(k)$

• Issues:
 ① Nonlinear relationship between $p_i(k)$ and $s_i(k)$ [3]
 ② Different order of magnitude of $p_i(k)$ and $s_i(k)$ [5]

• Solution:
 ① Local linearization around an equilibrium point [4]
 ② Normalization
Relative deviations with respect to the equilibrium point \((\bar{s}_i, \bar{p}_i)\)

\[
\Delta \tilde{p}_i(k) = \frac{p_i(k) - \bar{p}_i}{\bar{p}_i}, \quad \text{(controlled variable)}
\]

\[
\Delta \tilde{s}_i(k) = \frac{s_i(k) - \bar{s}_i}{\bar{s}_i}, \quad \text{(control variable)}
\]
Discrete-time MIMO ARX model with structure \((n_a, n_b, n_k)\):

\[
\Delta \tilde{p}(k) + \sum_{j=1}^{n_a} A_j \Delta \tilde{p}(k - j) = \sum_{j=1}^{n_b} B_j \Delta \tilde{s}(k - j - n_k) + e(k)
\]

where:

- \(\Delta \tilde{p}(k) \in \mathbb{R}^m\) is the column vector of output relative deviations, at control interval \(k\)
- \(\Delta \tilde{s}(k) \in \mathbb{R}^m\) is the column vector of input relative deviations, at control interval \(k\)
- \(n_a, n_b, n_k\) are the number of poles, the number of zeros plus one, and the input delay, respectively
- \(A_1, \ldots, A_{n_a}\) and \(B_1, \ldots, B_{n_b}\) are the system parameters matrices with dimension \(\mathbb{R}^{m \times m}\)
- \(e(k) \in \mathbb{R}^m\) is the white noise column vector, at control interval \(k\)
Application Manager: System Parameters Estimation

- Identification of:
 - ARX model structure \((n_a, n_b, n_k)\)
 - ARX parameters \(A_1, \ldots, A_{n_a}\) and \(B_1, \ldots, B_{n_b}\)

- Offline system identification
 - Only used to infer the model structure
 - Inadequate to estimate system parameters
 - Unable to find a reasonable low-order model with a good fit

- Online system identification
 - Recursive Least-Squares (RLS) algorithm to estimate system parameters at each control interval
 - Exponential Forgetting [8]
 - Direction Forgetting (DF) [6]
 - DF + Bittanti’s correction [2]
 - Exponentially Weighted RLS (EWRLS) [10]
System output $\hat{p}_i(k)$ (at control interval k) is filtered by an Exponentially Weighted Moving Average (EWMA) filter:

$$p_i(k) = \alpha \hat{p}_i(k) + (1 - \alpha)p_i(k - 1)$$

- Smooth increments for short peaks
- Smooth decrements for idle periods
Application Manager: Controller Design

- Optimal control by means of the infinite-horizon discrete-time Linear Quadratic (LQ) control design:
 - Find the optimal state-feedback gain matrix L which minimizes the cost function:
 \[
 J(u) = \sum_{k=0}^{\infty} \left(x^T(k)Qx(k) + u^T(k)Ru(k) + 2x^T(k)Nu(k) \right)
 \]

- Variants:
 - Linear Quadratic Regulator (LQR)
 - Linear Quadratic Regulator with Output Weighting (LQRY)
 - Linear Quadratic control with Integral Action (LQI)

Note

Need a state-space representation of the target system
From MIMO ARX to state-space MISO system representation:

\[x(k + 1) = Ax(k) + Bu(k) \]
\[y(k) = Cx(k) + Du(k) \]

such that:

\[
x(k) = \begin{pmatrix} \Delta \hat{p}(k - n_a + 1) \\ \vdots \\ \Delta \hat{p}(k) \end{pmatrix}, \quad u(k) = \begin{pmatrix} \Delta \hat{s}(k - n_b - n_k + 1) \\ \vdots \\ \Delta \hat{s}(k - n_k) \end{pmatrix}
\]

\[
A = \begin{pmatrix} Z & I & Z & \cdots & Z \\ Z & Z & I & \cdots & Z \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Z & Z & \cdots & \cdots & \vdots \\ -A_{n_a} & -A_{n_a-1} & -A_{n_a-2} & \cdots & -A_1 \end{pmatrix}, \quad B = \begin{pmatrix} Z & \cdots & Z \\ \vdots & \vdots & \vdots \\ Z & \cdots & Z \\ B_{n_b} & \cdots & B_1 \end{pmatrix}
\]

\[
C = \begin{pmatrix} 0^T \\ \vdots \\ 0^T \\ 1^T \end{pmatrix}, \quad D = 0^T
\]
• State-feedback control which computes the optimal control sequence

\[u^*(k) = -Lx(k) \]

which minimizes the LQ cost function

• The feedback gain matrix L is obtained during the LQ design from the solution of the associated DARE