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CASE-BASED REASONING FOR MANAGING NONCOMPLIANCE
WITH CLINICAL GUIDELINES

STEFANIA MONTANI
Università del Piemonte Orientale, Alessandria, Italy

Despite the recognized advantages that can be obtained in clinical practice when following clinical guidelines
(GL), situations of noncompliance with them may emerge. Keeping track of such deviations from the default GL
execution, and documenting the physician’s motivations, would clearly be an added value. Moreover, repeated
alterations of GL actions (or flow) may highlight the need for an adaptation of the GL itself to the local reality, or
may even indicate an improper or weak initial GL definition.

In this article, we propose an approach for managing noncompliance with GL, based on the case-based
reasoning methodology. In front of a new noncompliance case, our tool allows the physician to retrieve past
situations similar to the current one, and to decide whether to reapply the same GL modifications adopted in them.
Moreover, the tool is able to learn indications from the ground noncompliance cases that can be deployed for
local adaptation, and possibly, for suggesting more formal GL revisions to be carried out by a committee of expert
physicians.
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1. INTRODUCTION

Clinical guidelines (GL) can be defined as a means for specifying the “best” clinical
procedures and for standardizing them. It has been shown (see, e.g., Overhage et al. 1997) that
GL can improve the quality of patient care, reduce variations in quality of care, and reduce
costs. Nevertheless, in their conventional, paper-based form, GL often present population-
oriented recommendations, and are usually far from being point-of-care facilities (Peleg et al.
2003). Thus, to support physicians in implementing GL into a real hospital setting, a large
number of computer-based systems for GL management have been recently proposed in the
literature (see, e.g., Musen et al. 1996; Shahar, Miksch, and Johnson 1998; Fox et al. 1998;
Shiffman et al. 2000; Peleg and Boxawala 2000; Quaglini et al. 2000; Terenziani, Molino,
and Torchio 2001). By offering several functionalities, such as automatic connection to
the patient databases, decision-making support, or integration with workflow management
systems, such tools can cooperate to make GL really usable and efficient instruments for
care provision.

Despite such efforts to facilitate GL adoption and integration in real-world environments,
physicians may still decide not to follow the GL indications: while in many nonclinical
settings procedures are often very well defined, and strictly dictated by some higher authority,
in the medical domain responsibilities are widely shared, and GL users may be noncompliant
with a GL for a variety of reasons. As a matter of fact, on the one hand a medical professional
is aware that biological systems (i.e., patients) are highly unpredictable, and that GL are a
set of recommendations which fit an average patient and an average situation (Quaglini et al.
2004), but not necessarily the one under examination. On the other hand, a physician might
be scarcely motivated to follow a GL if it is supported by a low level of evidence (see, e.g.,
Cook et al. 1992). Moreover, the physician herself typically well knows that some biases can
affect GL: the knowledge which GL summarize is extracted from clinical trials, but these
studies are conducted in more favorable conditions (e.g., with more funds available) with
respect to many real-world situations. Finally, she might also have the perception that the GL
goal is the one of optimizing resource consumption, and not the one of increasing the quality
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of care (Formoso, Liberati, and Magrini 2001). In summary, noncompliance episodes may
emerge due to two categories of reasons: (1) the physician has to face a somehow unpredicted
situation, which was not (properly) considered when the GL was issued (in complex, quickly
changing domains, it could be possible that a newer version of the GL has addressed such
kind of situation, but a (nonspecialized) physician might be unaware of this last version);
(2) her professional opinion is different from the one expressed in the GL, and she does
not completely trust the GL itself. Keeping track of such deviations from the default GL
execution, and documenting the physician’s motivations, is obviously a requirement, also
from a legal point of view. Moreover, due to the possible presence of biases or to a low level
of supporting evidence in a GL, it can be important to evaluate the GL itself on the field,
and noncompliance episodes may be exploited for revisions and updates in case of need
(Bates et al. 2003). Last, but not least, noncompliance may emerge due to (3) adaptation
issues. It has been observed that GL dissemination and integration into clinical practice
should recognize the multiplicity of working settings within which the GL themselves are
meant to be implemented (Scott-Wright et al. 2002; Burgers et al. 2004). A GL developed
at the (inter)national level by a group of experts may need to be modified, to reflect the local
situation. In particular, two types of adaptation should be considered: (i) local adaptation,
that is, adaptation to local constraints in local settings (e.g., hospital resources availability,
available practitioners’ skills), and (ii) cultural adaptation, that is, the adaptation related to the
fact that different countries and/or cultural settings may have different degrees of acceptance
of specific clinical procedures, and/or local best practices. Legitimate changes, able to deal
with local/cultural constraints, can be made in recommendations, even when the evidence
they are based on is the same (Burgers et al. 2004). GL adaptation is so critical that possible
methodologies are being studied by international working groups (see, e.g., Fervers et al.
2006) to this hand. However, little formal evaluation has been performed so far; therefore,
the identification of proper ways of supporting adaptation is still an open issue, and unsolved
adaptation requirements may still generate noncompliance episodes.

In this article, we propose an approach to manage noncompliances with GL, based on the
case-based reasoning (CBR) methodology (Kolodner 1993; Aamodt and Plaza 1994). The
strength of CBR consists in the significant reduction in the knowledge acquisition efforts,
with respect to many other reasoning methodologies. As a matter of fact, acquiring knowledge
simply means maintaining the new data, which informally embed a new 〈situation, action〉
pattern reusable in the future; the system competence is automatically increased as soon as
new cases are stored. In particular, an explicit model does not need to be learnt from the data
themselves, as it happens in, for example, many machine learning paradigms.

In front of a new noncompliance situation, our tool allows the physician to retrieve
past noncompliance cases similar to the current one, and to decide whether to reapply the
same GL modifications (i.e., case solutions) adopted in them. Moreover, the tool is able to
extract more general indications from the ground cases that can be deployed to suggest GL
adaptations, useful to fit the local/cultural implementation context. Additionally, if a repeated
alteration of the GL actions (or flow) is adopted by different physicians in front of similar
motivations, it may be interpreted as an indicator of an improper or weak GL definition (e.g.,
due to the presence of biases, changes in evidence, obsolescence of data and/or procedures,
etc., Shekelle et al. 2001). If this kind of situation emerges, the tool can be used as a starting
point for suggesting a formal GL revision to a committee of expert physicians.1 Consider

1 Obviously, the revised version of the GL, if issued, will always be approved by a charged experts team. The tool’s
suggestions—always checked by the user physician—will be directly adopted only in single noncompliance cases, which would
not follow the default GL procedure anyway.
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that local adaptation itself may sometimes motivate de novo development of a GL (Fervers
et al. 2006).

The article is organized as follows. In Section 2, we describe related work. Section 3
introduces the details of our contribution, while Section 4 is devoted to conclusions and
future work.

2. RELATED WORK

Noncompliance with GL, and more generally exceptions to the execution of medical
workflow systems, are treated in GUIDE (Quaglini et al. 2001). The system allows a user
to redirect, delay, or be noncompliant with a GL action. Noncompliance may lead to the
execution of a different action, still chosen among the ones described in the GL (e.g., by
altering the control flow), or to the definition of a new action: in this case, the operator has
to select it from the SNOMED taxonomy. The requirement is that the goal of the GL is
still reached, even if by means of a different procedure. Goals allow to verify whether the
physician is still compliant with the GL at a high level (i.e., she still shares the GL intentions),
even when an exception is generated at the low level (because she has changed some actions
or execution flows). Goals as well as exceptions are represented also in GLIF3 (Peleg and
Boxawala 2000), in the form of text strings. Here no automation is provided, because the
objective is just the one of showing this information to users or of indexing libraries of GL.
A more formal description of goals is provided in EON (Musen et al. 1996), PROforma
(Fox et al. 1998), and Asbru (Shahar et al. 1998; Duftschmid and Miksch 2001). In Asbru,
in particular, any GL modification is released only after its high-level compliance with the
GL intentions has been verified by means of a rule-based system. Asbru verification facility
also allows to discover anomalies (such as unsatisfiable conditions) that were originally
introduced in the GL during the acquisition phase. Other works address the issue of GL
verification, for example, by means of model checking (Baumler et al. 2006; Giordano et al.
2006) or theorem proving (tenTeije et al. 2006) techniques. However, the aim of these last
works is more the one of discovering logical inconsistencies in the GL or to prove particular
properties it exhibits, while we are basically interested in keeping track of noncompliances
(typically to a well-formed GL) due to reasons of types (1), (2), and (3) presented in
Section 1.

Our CBR-based management of noncompliance is more “lazy” with respect to the
discussed literature approaches. We do not aim at checking on-the-fly the adherence of
a modification to the original GL intentions, thus we do not model goals or verification
rules, whose elicitation might be extremely hard and time consuming. We simply support
the physician by showing her past nonformalized examples that match the current context
(see Section 3.2), and leave to her the responsibility of the final decision. Keeping track
of such cases requires a very limited knowledge acquisition effort (because we just store
the instances of GL as they were edited and executed in the past), and a limited memory
occupancy (because noncompliances are expected to be relatively infrequent). Then, when
some cases related to the same context have been acquired, we try to learn some more general
suggestions from them, thus preparing a structured proposal for GL modification supported
by a set of concrete implementations. Basically, we aim at supporting GL modification
(i.e., GL adaptation or revision) in case of repeated exceptions, more than at verifying the
adherence of a single exception to the GL intentions.

As regards local/cultural adaptation support, our work is inserted within an active re-
search panorama, in which various alternative ways of dealing with this issue have been
proposed. For instance, Terenziani (Terenziani et al. 2004) proposes to extend the GL
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representation formalism to take into account the resource requirements associated with
each action (and therefore, to each alternative path in the GL): only those actions (paths)
whose resource requirements can be satisfied in the given setting (e.g., hospital) can be
executed. The approach provides an algorithm that takes in input a “general” GL, and a list
of all the locally available resources, and gives in output a new GL, in which all the paths
containing nonlocally executable actions have been pruned away. Peleg (2006) deals with
the double problem of local adaptation and of a complete integration with the Electronic
Patient Record (EPR), and tests the approach on a real-world GL. The authors observe that
the two issues at hand have significant affects on the encoding of the GL, including change
of algorithm design, definition of decision criteria, and specification of data items that are
referenced by the decision criteria themselves; therefore, GL adaptation and integration with
the EPR should be considered as early as possible. Scott-Wright et al. (2002) suggest an ap-
proach in which the (resource-based) dependencies between actions in a GL can be explicitly
described, and where users’ modifications to a general GL must respect these dependencies.
Finally, also the works examined in the beginning of this section, aiming at preserving the
GL goals, can be seen as ways to ensure the adaptability of the procedures to different
local or cultural needs, still preserving the GL intentional objectives. However, all of these
approaches to GL adaptation appear again to be more knowledge intensive with respect
to ours, and therefore more expensive and time consuming if compared to a CBR-based
solution.

In the literature, CBR has often been resorted to maintain knowledge about exceptional
situations (see, e.g., Marling and Whitehouse 2001; Surma and Vanhoof 1995; d’Aquin,
Lieber, and Napoli 2006; Xu 1996 as applications in the medical domain). In particular, in
d’Aquin et al. (2006), a CBR approach has been devised to support the physician in changing
a specific therapeutic protocol to conform an unusual situation (we could say, in defining a
noncompliant version of the protocol; the protocols at hand can be seen as skeletal GL). Nev-
ertheless, only temporary variations of the protocol, for a particular patient, are considered.
Long-term protocol changes, obtained from frequently performed modifications, are not dealt
with. In Bichindaritz, Kansu, and Sullivan (1998) the authors work on the complementation
between theoretical knowledge of GL and experimental knowledge of cases, although here
clinical cases illustrate different interpretations of a GL, rather than noncompliance episodes.
Finally, CBR has also been used to support process modification in Process Aware Informa-
tion Systems (PAIS) (Weber, Reichert, and Wild 2006), which must be able to flexibly adapt
to (unexpected) process changes as well as to new laws or to reengineering efforts within
a business organization. Despite the fact that GL model processes as well, with respect to
medical applications PAIS exhibits different needs. In particular, in PAIS model changes are
much more frequent. The main concern of the work in Weber et al. (2006) is, thus the one of
addressing proper case base maintenance techniques. On the other hand, how to identify re-
dundancies and inconsistencies in the case base (e.g., by evaluating cases that have the same
semantic meaning, or by extracting generalizations when possible) is described as a challenge
for the future. Thus, the issue of reorganizing the case base to learn well-defined suggestions
for supporting long-term GL adaptation or revision, which is a significant need (Scott-Wright
et al. 2002; Bates et al. 2003) in practice, to our knowledge has never been systemati-
cally treated in the literature, and appears to be a relevant and original contribution of our
approach.
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3. CBR FOR MANAGING NONCOMPLIANCE AND FOR SUPPORTING GL
MODIFICATION

Our approach is currently being implemented within GLARE (Terenziani et al. 2001),
a system for acquiring, representing, and executing GL, developed at the Computer Science
Department of our university. Nevertheless, our proposal to manage noncompliance and to
support GL modification is general enough to be implemented within almost any of the sys-
tems for the computerized treatment of GL described in the literature, because it requires the
adoption of knowledge representation choices that are widely shared. In particular, basic GL
representation primitives and control flow rules are very similar in all the systems; moreover,
most of the systems maintain both a general GL description (generated at acquisition time),
and a specific GL instance (generated at execution time) that corresponds to the application
of the general GL to a specific patient. Details about how these aspects have been afforded
in our approach will be provided and resorted to in the remaining of the section, which is
organized as follows: Section 3.1 introduces GL representation primitives, Section 3.2 de-
scribes case representation, and Section 3.3 deals with case retrieval. Section 3.4 is devoted
to illustrate case-based support for GL modification. Finally, Section 3.5 is about testing
results.

3.1. GL Representation

In our approach, a GL can be represented as a hierarchical graph, where nodes are the
actions to be executed, and edges are the control relations linking them. We can distinguish
between atomic and composite actions (plans), where atomic actions represent simple steps
in a GL, and plans represent actions that can be defined in terms of their components via
the has-part relation. The GL itself is a plan. Three different types of atomic actions can be
identified: (1) work actions, that is, actions that describe a procedure which must be executed
at a given point of the GL (e.g., to provide a drug); (2) decision actions, used to model the
selection among different alternatives (e.g., to decide between surgical and pharmacological
treatment for a certain disease); (3) query actions, that is, requests of information (typically
patient’s parameters) that can be obtained from the outside world (physicians, databases,
patient’s visits or interviews: for example, to ask the patient about her family anamnesis).
Actions in a GL are connected through control relations. Control relations establish which
actions can be executed next, and in what order. In particular, the sequence relation explicitly
establishes what is the following action to be executed; the alternative relation describes
which alternative paths stem from a decision action, and the repetition relation states that an
action has to be repeated several times.

These primitives will be referred to in the examples of the following sections; in the
figures, in particular, boxes will be used to represent work actions, and diamonds to represent
decision actions. Control flows will be straightforwardly depicted by arrows.

3.2. Case Representation

In a CBR system, a case usually consists of the following information:

(i) the problem description that is, a collection of 〈feature, value〉 pairs able to summarize
the problem at hand;

(ii) the case solution, describing the solution adopted for solving the corresponding prob-
lem.
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In our domain, the problem description has to keep track of the context that motivated the
choice of being noncompliant. The unavailability of a relevant resource or of some needed
patient data, or the presence of a patient datum, which is outside the range foreseen by the
GL, or very close to a decision threshold defined in the GL, may motivate a noncompliance.
Therefore, in our approach the problem description includes patient features (collected by
means of query actions in the GL) and local resources information (collected by query ac-
tions or modeled as preconditions for executing the GL action at hand). By local resources
we mean technological devices and drugs, as well as human competences. To support stan-
dardization, the terminology used for features names, and the range of feature values, need
to be maintained, for example, as an ontology, to be referenced by all physicians applying
the GL itself; operatively, in our approach terms and values are currently stored in proper
databases, used as a thesaurus for GL acquisition and execution (Terenziani et al. 2001).

Because a physician may want to adapt/change a GL also when its applicability conditions
are met (and thus when the context alone is not sufficient to clarify the reasons for rejecting
the GL advice), we also add a free text field (see also Weber et al. 2006) in which she can
justify the reasons for her deviation. Such text can provide an insight of the physician’s
motivations to a colleague that will retrieve that noncompliance case in the future, but will
not be resorted to when automatically examining cases for supporting GL modification (see
Section 3.4).

Another special feature we introduce is reputation (Weber et al. 2006). Reputation is a
sort of score, set to 1 when the case is generated, and increased by 1 every time a physician
retrieves the case and judges it to be useful for her current problem. Reputation is decreased
if the physician retrieves the case, but then discards it. A high reputation is, therefore,
an indicator of semantic correctness. Physicians are also encouraged to decrease a case
reputation if the modifications suggested in that case resulted in problems when applied in
practice.

Finally, we introduce an intra-case relation feature to keep track of semantic similarity
among cases. The value type of this feature is a case list. How we use it will be explained in
Section 3.4.

The case solution, on the other hand, is the GL instance properly edited and executed in
the situation summarized by the problem description.

3.3. Case Retrieval

When a physician is executing a GL, and does not agree with the GL indications, she may
ask our tool to retrieve suggestions on how to restructure the GL itself, held as past cases in
the noncompliance case base. The current patient characteristics and resources information
represent the context to be used to index the base, and are interpreted as the input case
features.

To retrieve the most similar (i.e., less distant) cases with respect to the input one,
a measure of distance in the features space has to be provided. Generally speaking, the
distance d(ci , cj ) between cases ci and cj can be computed as a weighted average of the
normalized distances between their various features, that is

d(ci , c j ) =

N∑

f =1

w f · d(ci ( f ), c j ( f ))

N∑

f =1

w f

, (1)
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where d(ci ( f ), cj ( f )), and w f denote the normalized distance between feature f of cases ci

and cj , and the weight associated with this feature, respectively. Weights can be properly set
to state that some features are more “important” for retrieval relatively to the others. They
are experimentally set and tuned, and their choice varies from domain to domain.

Various metrics can be relied upon to calculate d(ci ( f ), cj ( f )); we are currently choosing
the heterogeneous Euclidean-overlap metric (HEOM) (Wilson and Martinez 1997), a distance
metric able to treat both symbolic and numeric variables, and to cope with the problem of
missing data.

In our approach, the solutions of the retrieved cases are then shown to the physician for
a personal interpretation. As in Weber et al. (2006), we leave to the user the responsibility of
the final decision to be taken in the situation at hand.

3.4. Case-Based Support for GL Modification

After some noncompliance cases have been stored in the case base, we search for
redundancies or inconsistencies among them, and we try to identify suggestions for GL
modification that, supported by a set of consistent examples, could be taken into consideration
for local/cultural adaptation, or—in case of need—for a real GL revision by a committee of
experts.

In particular, we aim at learning a more abstract level knowledge from available data, by
discovering

• frequent modifications, confirmed by several examples;
• atomic modifications, identified by separating heterogeneous information within a single

case;
• semantic relations between different situations.2

Note that our strategy for extracting high-level knowledge from ground cases does not
require an explicit formalization of the domain knowledge, and a consequent involvement
of a domain expert.

What we do is learning by reorganizing the case base content, by means of an automatic
pair-to-pair comparison between the available ground cases. The comparison between pairs of
cases was adopted with the aim of learning adaptation rules/knowledge, for example, in Craw,
Wiratunga, and Rowe (2006) and d’Aquin et al. (2007), as well as in earlier contributions.
In this work, on the other hand, to goal is not the one of learning adaptation knowledge,
because the choice of whether and how to reuse/revise past noncompliance cases to support
a current noncompliance case is completely left to physicians. Here, case comparison is a
means for maintaining and reorganizing the case base itself. In particular, the identification
of frequent changes, and of semantic relations between past noncompliance cases, provides
support for a structured long-term GL modification proposal, justified by a set of consistent
applied examples.

In this reorganization process, we can distinguish different situations that can emerge
when comparing two cases. Such situations can be classified in a clear manner if we examine
the process along two directions, namely

1. the feature values found in the two case contexts, and

2 Note that we do not aim at defining a formal mechanism to check semantics, but we just look for similarities in the
underlying meaning of the noncompliance episodes we are comparing. The example in Section 3.5 will clarify the point.
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2. the modifications proposed in the two case solutions.

We introduce three reorganization methods operating on case pairs, whose declarations
are the following:

• method merge

– input: the two cases to be compared
– output: one single case that properly merges the input ones

• method normalize

– input: the two cases to be compared
– output: (up to) three cases, able to separate the heterogeneous information embedded

in the input cases

• method keep separate

– input: the two cases to be compared
– output: the input cases themselves.

The method selection depends on the comparison between the two case solutions (di-
rection 2 above). The case solutions may be completely identical (i.e., they suggest the very
same modifications to the GL structure), identical only in some parts (i.e., with a nonempty
intersection between the two suggested modification sets), or completely different (i.e., with
an empty intersection between the two suggested modification sets). Each one of the three
reorganization methods is meant to be applied in exactly one of these situations.

On the other hand, details on each method implementation depend on the comparison be-
tween the two case contexts (direction 1 above). In particular, the contexts can be completely
identical (i.e., the feature lists and respective values are the same in the two case contexts),
identical only in some parts (i.e., with a nonempty intersection between the context features
sets), or completely different (i.e., with an empty intersection between the context features
sets).

By taking into account these two directions, the case base reorganization procedures can
be classified as follows:

1. identical solutions: method merge

(a) identical contexts: this is a redundant situation that can be quickly solved by merging
the two instances in just one case. The implementation of merge simply keeps
one of the two input cases and deletes the other;

(b) nonempty intersection between contexts: the implementation of merge here creates
a new case, with the same solution as the input ones, and with a context composed
by the union of the input contexts;

(c) empty intersection between contexts: we act as above; the rationale of these two last
implementations is that we want to merge all the reasons that may have led to a
certain GL modification at different times in just one reference case, confirming
the suggested changes.

Figure 1 shows an example, in which case1 and case2 solutions are identi-
cal, while contexts are different. The figure abstractly depicts the steps of a GL
about the treatment of patients with a bacterial infection. Action C represents the
provision of amoxicillin; the other actions are not of interest for the purpose of ex-
plaining how the method merge works. Both cases are noncompliance examples,



204 COMPUTATIONAL INTELLIGENCE

FIGURE 1. Case base reorganization by merging: an example.

because case1 deals with a patient who is allergic to amoxicillin (Feature1), while
case2 deals with a patient who has been already cared by providing amoxicillin
(which is a moderate-spectrum antibiotic), but unsuccesfully (Feature2): a dif-
ferent class of broad-spectrum antibiotics needs to be adopted for her, to treat
the infection. Both cases actually substitute amoxicillin with an antibiotic of a
different class (action D). The method merge substitues case1 and case2 with a
new case (case3), in which the solution (the antibiotic change) is coupled with a
context including both allergy and therapy inefficacy. Both original contexts are
thus kept, because either the first or the second could justify the therapy change;

2. nonempty intersection between solutions: method normalize

(a) nonempty intersection between contexts: this situation emerges when heterogeneous
information has been stored in the same case. Here, both cases suggest some
modifications (the ones in the intersection) due to the common context features.
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Moreover, each of the two also embeds additional context information that justify
the additional suggested modifications. We propose to afford this situation with
a sort of normalization procedure, as the method name suggests. The term is
borrowed from relational databases design, where normalization is performed
when heterogeneous information is recorded in a single relation, and may lead to
anomalies. The implementation of normalize derives three cases from the two
input ones, as follows: one case maintains the common context/solution pair,
thus confirming the shared knowledge, and the other two maintain the additional
knowledge implicitly stored in the first and in the second input case respectively.
The original cases are deleted.
Note that, if the solution intersection coincides with one of the two solutions, just
two cases will be generated.

Figure 2 shows a normalization example, in which case1 presents a solution
whose elements are subset of case2 solution. The figure abstractly depicts the
steps of a GL about a surgical treatment. In particular action C represents lo-
cal anesthesia provision, while F represents postsurgery therapy. Both cases are
noncompliance examples, because they treat two patients affected by mental defi-
ciency (Feature1) who, in the physician’s opinion, would probably not cooperate
in the operating theatre. Both cases, thus exclude the local anesthesia option,
and substitute it with general anesthesia (action D). Moreover, the patient in
case2 suffers from a rare disease (Feature2) and will thus require an additional
therapy X. Normalization produces two cases, one obtained by intersecting the
context features and keeping the common solution, and one obtained by taking
the remaining case2 information;

(b) identical contexts: the method normalize is implemented similarly to the previous
situation, with just one difference; because all features are in common, the three
cases will have the same context, and normalization will operate just on solutions.
The rationale behind this choice is that we have identified three different groups
of modifications (i.e., solution elements), which we want to separate, and that all
of them are justified by the same contextual motivations;

(c) empty intersection between contexts: we act as aforementioned, but because no
common feature can be identified, we build a context made by the union of
all the original features in the case maintaining the solution intersection, while
we keep unchanged case1 and case2 contexts in the two cases that we separately
derive from them. The rationale is that, in this way, in the case storing the common
solution part we might come out with a redundant context description but because
we do not know what features determined the various modification choices, we
are not loosing any potentially useful datum;

3. empty intersection between solutions: method keep separate

(a) empty intersection between contexts: in this situation the two cases have no relation.
Both should be kept as they are. The implementation of keep separate leaves the
case base as it is;

(b) identical contexts: here, the two cases might share the same semantics, but the GL
update is obtained by different procedures. Both cases are kept as they are in
the case base, but the method keep separate highlights this finding, which may
be useful for GL modification. In particular, the method lists the related case
identifier in the intra-case relation feature (see Section 3.2) in both the elements
of the pair;
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FIGURE 2. Case base reorganization by normalizing: an example.

(c) nonempty intersection between contexts: the two cases might share similar seman-
tics, but again the GL update is obtained by different procedures. We act as
aforementioned.

Figure 3 summarizes the various alternatives. A set of examples is also provided in
Section 3.5.

Note that, each time a case is built by merging or normalizing over two cases, its
reputation is calculated as the sum of the input case reputations.

After the case base has been processed by means of this reorganization procedure, the
resulting cases, showing a positive reputation, are listed as suggestions for long-term GL
modification. A more strict reputation threshold (which appears to be a parameter dependent
on the clinical domain in which the GL is meant to be applied) can be manually set by
the physician responsible for extracting the suggestions. The physician may also decide to
increase reputation by 1 every time the case is linked to another case, by the method keep
separate.



CBR FOR MANAGING NONCOMPLIANCE 207

N. Solution Context Method Final case Final case Reputation
intersection intersection context modifications

1(a) all all merge as case1(2) as case1(2) sum
1(b) all non empty merge union as case1(2) sum
1(c) all empty merge union as case1(2) sum
2(a) non empty non empty normalize intersection intersection sum

diff(case1,case2) diff(case1,case2) as case1
diff(case2,case1) diff(case2,case1) as case2

2(b) non empty all normalize intersection intersection sum
intersection diff(case1,case2) as case1
intersection diff(case2,case1) as case2

2(c) non empty empty normalize union intersection sum
as case1 diff(case1,case2) as case1
as case2 diff(case2,case1) as case2

3(a) empty empty keep separate as case1 as case1 as case1
as case2 as case2 as case2

3(b) empty all keep separate as case1 (R) as case1 as case1
as case2 (R) as case2 as case2

3(c) empty non empty keep separate as case1 (R) as case1 as case1
as case2 (R) as case2 as case2

FIGURE 3. Case base reorganization, obtained by comparing two cases (namely, case1 and case2). diff(case1–
case2) denotes a set of context features (or elementary modifications) obtained as the difference between the set
of context features (or elementary modifications, respectively) in case1 and the ones in case2. An (R) in the final
case context column indicates that the intra-case relation feature has been properly set.

3.5. Testing Results

Since May 2007, we have made the CBR tool described in this article available to the
pediatricians of the Obstetrics Department of Policlinico S. Matteo Hospital in Pavia, Italy.
The Obstetrics Department is a setting where five to eight newborns are typically admitted
every day, and are cared by a team of five physicians. Some testing results are being collected
here, and a wider validation is foreseen in the next months.3

So far, two relevant successful experiences have been reported by our medical collab-
orators. They both refer to a jaundice management GL adopted for newborns (American
Academy of Pediatrics 2004), which is depicted in Figure 4, as it is represented by means of
our tool. In particular, only a subset of the GL actions is shown, for the sake of clarity. A
complete version of the GL is available in American Academy of Pediatrics (2004). The GL
applies to babies of 35 or more weeks of gestation. The American Academy of Pediatrics
clearly states that this GL was based on limited evidence, and might show approximations.
The deployment of our tool therefore appears to be particularly suited for this situation, at
least for supporting adaptations to the local reality.

Experience 1. The Pavia Obstetrics Department suffers from an insufficient avail-
ability of beds for mothers, in front of a growing number of women who choose this site
for the birth of their babies. Therefore, if a baby is discharged, but later on she needs to be
rehospitalized (e.g., due to jaundice problems), it may become very difficult to readmit the
mother as well, thus creating troubles with breast-feeding.

3 Nevertheless, it is worth noting that the practical reachability of significant validation conclusions appears to be quite
hard to be obtained in the short period because noncompliances to a well-formed GL are relatively infrequent.
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FIGURE 4. Part of the American Academy of Pediatrics GL for managing jaundice (adapted from American
Academy of Pediatrics 2004), visualized by means of our tool. The pop-up window on the left shows the plot
about risk levels for phototherapy, referred to in action 7.

By following the American Academy of Pediatrics GL, at 48 h of age total serum
bilirubin (TSB) is measured in all babies in whom jaundice by visual assessment appears
to be severe enough. Healthy term babies with TSB values between 11 and 13 mg/dl are
considered as low-risk subjects; a value between 13 and 15 mg/dl classifies the baby as
a medium-risk subject, and a value above 15 mg/dl classifies her/him as a high-risk one.
High-risk infants are treated with phototherapy; medium-risk ones are reexamined before
discharge (typically at 72 h of age). Thresholds can be lowered for near-term babies and
for those with additional risk factors, such as temperature instability, acidosis, etc. (see the
pop-up window in Figure 4).

Motivated by beds unavailability in Pavia, one pediatrician generated a noncompliance
case (case1), in which a healthy term baby with a TSB = 13.6 mg/dl at 48 h of age was
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treated with phototherapy. To avoid rehospitalization, the baby was therefore managed as if
she was a high-risk infant.

Analogously, a colleague generated a second case (case2) in which a healthy term baby
with TSB = 14 mg/dl at 48 h of age was treated with phototherapy as well.

In a third case (case3), the physician suggested to repeat the TSB control before discharge
(at 72 h of age), for a healthy term baby with TSB = 12 mg/dl at 48 h of age. The baby was
thus treated as if she was a medium-risk one.

The system merged case1 and case2 (see Section 3.4), which showed a complete inter-
section between contexts, due to the identification of the following common (main) features:
(i) healthy term newborn, and (ii) medium-risk TSB. The two cases also showed an identical
solution, namely: (iii) change of risk level from “medium” to “high” (action 7 in Figure 4);
the risk-level upgrade determined the consequent application of phototherapy (action 8). The
method merge was implemented as in row 1(a) in Figure 3.

The obtained case (case4, with reputation = 2) was later compared with case3, which ex-
hibited the following features in its context: (i) healthy term newborn, and (iv) low-risk TSB.
Feature (i) determined a nonempty intersection with case4 context. Case3 solution consisted
in the (v) change of risk level from “low” to “medium” (action 7 in Figure 4); the risk-level
upgrade this time determined the consequent repetition of TSB measurement/treatment be-
fore discharge (action 8). The method keep separate was applied here, as in row 3(c) in
Figure 3. As a matter of fact, technically case3 and case4 suggested different solutions, but
with very similar semantics: in both situations the risk level was increased, and this change
led to the application of the proper procedures to face jaundice problems.

The team of physicians working with us formally reviewed this result, and finally decided
to routinely adopt the revised GL version obtained by generalizing the hints in case3 and
case4. Therefore, phototherapy is now applied to all babies with a medium (or high) TSB
value at 48 h of age, and an additional TSB control/treatment is performed before discharge
in all babies who showed jaundice, even if in a mild form.

Experience 2. Experience 2 started from a couple of relatively unusual situations that
took place in Pavia.

In the first case (case1), a baby with a gestational age of 34 weeks + 5 days, but with
a birth weight of more than 2,000 g, was managed by following the GL. At 48 h of age his
TSB was 13.1 mg/dl (i.e., quite a good value, significantly below 15 mg/dl, the healthy term
newborns high-risk threshold—see the pop-up window in Figure 4). Since he was well and
had a good birth weight, and because the TSB value was relatively low, he was considered
as an infant at medium risk (instead of an infant at high risk, as his gestational age might
suggest). Therefore, he was not treated with phototherapy.

In the second case (case2), a 38-week baby born with a weight of 2,300 g had a very
significant weight loss at 48 h of age, because breast-feeding was highly recommended to the
mother, but nursing was not going well at all. This infant was treated with phototherapy, even
if his TSB was 14.2 mg/dl, and thus below 15 mg/dl. Moreover, a bottle-feeding suggestion
was added to the GL actions.

Case1 context included as (main) features: (i) gestational age = 34 weeks + 5 days
(which made it technically out of the GL scope; but the value was very close to the admis-
sibility threshold); (ii) weight with respect to the gestational age = nonaverage (namely:
high); (iii) medium-risk TSB. Case2 context included: (i) gestational age = 38 weeks; (ii)
weight with respect to the gestational age = nonaverage (namely: low); (iii) medium-risk
TSB; (iv) food intake = insufficient. Case1 solution suggested: (v) evaluation of weight
(action 6); (vi) definition of risk considering weight too (action 7). Case2 solution suggested:
(v) evaluation of weight (action 6); (vi) definition of risk considering weight too (action 7);
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(vii) introduction of action 6 is between action 6 and action 7 (see Figure 4): bottle feeding
(see Figure 4).

By applying the method normalize as in row 2(a) in Figure 3, the system identified
nonaverage weight and medium-risk TSB (see items (ii) and (iii)) in the context intersection,
and weight evaluation (see item (v)) as well as the definition of risk on the basis of weight
too (see item (vi)) in the solution intersection. The tool thus incorporated these common
elements in a new noncompliance case, with reputation = 2.

The operation was again formally analyzed by the pediatricians working with us, who
judged it as sound and meaningful. In particular, the system helped them in defining a new
version of the GL, in which also weight (in addition to TSB, gestational age at birth and
hours of life—see Section 6) is conceived as a very important indicator for determining the
risk level of an infant, and then for suggesting therapy. In the new version of the GL, weight
evaluation is added to action 6 and risk assessment (action 7) is changed, to take weight into
account. The revised procedure is being routinely applied in Pavia.

Observe that, while the GL adaptation in experience 1 was strongly motivated by the
local situation, and leads to additional costs which would not be easily accepted in a different
context, the modification in experience 2 might have a more general impact on jaundice
treatment: the collection of similar results in different hospital settings might also justify
the request of a formal revision of the GL in American Academy of Pediatrics (2004), to
produce a new GL version suited to properly handle less typical cases like the ones presented
in experience 2.

4. CONCLUSIONS AND FUTURE WORK

In this article, we have described an approach for managing noncompliance with GL,
and for suggesting GL adaptations or revisions, based on the CBR methodology. With
respect to the other literature approaches, we are more interested in supporting long-term
GL modification, in case of repeated noncompliance episodes, rather than in verifying the
adherence of a single episode to the GL intentions. To this hand, we have defined an automatic
strategy to reorganize the case base, to learn high-level knowledge from ground cases.

From a technical viewpoint, several enhancement are foreseen as a future work. First, at
the moment we do not take into account the textual motivations introduced by physicians,
when we reorganize the case base. An effort to structure this free text feature would be
very relevant, because physicians motivations may help in better distinguishing between
potentially ambiguous situations, such as the ones in which two cases share (part of) the
same solution, but do not share the same features.

Moreover, we could evaluate whether a distinction between action modifications and
flow modifications (Ciccarese et al. 2003) could be relevant for reorganizing the case base,
thus providing more significant suggestions.

We could also try to automatize the choice of the reputation threshold, which currently
has to be manually set.

Because GL are represented as graphs, we will also evaluate the possibility of exploiting
learning techniques over graphs to figure out isomorphism, which might be useful to discover
common actions that have been taken for different patients (Perner 2003).

In the future, we also plan to complete the integration of our tool as a facility within
GLARE (Terenziani et al. 2001). The integration will allow physicians to insert the revised
version of the GL by means of the GLARE acquisition interface, to easily build the noncom-
pliance case base. Note that GLARE is also interfaced with the EPR; therefore, all the needed
patient data for the GL execution will be automatically retrieved. Then, a more extensive
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validation will be carried out at Policlinico S. Matteo, where the first testing experiences are
showing encouraging results, at least as regards GL local adaptation support.

It is worth noting that our approach explores a research direction, namely, the one
of exploiting CBR for clinical knowledge discovery/update, which is recently emerging
as a significant trend in the literature. For instance, the idea of using cases to possibly
complement the knowledge formalized whithin a GL, or even to generate hypotheses to
amend it, is envisioned also in Bichindaritz and Marling (2006). More generally, the work
in Bichindaritz (2007) relies upon CBR to mine knowledge from the biomedical literature,
by taking advantage from the exploitation of prototypes, which allow to face the otherwise
overwhelming rate of knowledge creation in this domain.

It is also worth noting that, despite the fact that this article refers to a medical application
domain, the CBR approach presented here could also be seen as a valuable methodology
for supporting process update in the PAIS domain (to our knowledge, CBR has not been
extensively relied upon to this end, see just Weber et al. 2006). As a matter of fact, we
have recently implemented a tool with analogous functionalities with respect to the ones
described in this work for Interporto di Rivalta Scrivia, Italy. Interporto is one of the largest
logistic centers in northern Italy; at Interporto, several plants for food preprocessing are also
installed and routinely used. Engineers and employees responsible for plant administration
and security follow specific protocols (similar to GL) for designing and executing plant
maintenance procedures. Our tool, which is interfaced with the Interporto DBMS, is enabling
them to keep track of protocol alterations (which are relatively frequent), and to learn high-
level knowledge from such noncompliance cases, which can be useful to restructure the
protocols themselves. The tool is currently being tested, and the first evaluation results from
this industrial setting will be soon available. At that time, we will be allowed to draw some
more general conclusions about our CBR approach for process adaptation and revision,
beyond the specific example of medical processes (i.e., GL).
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