
Appl Intell (2010) 33: 278–290
DOI 10.1007/s10489-009-0165-z

Prototype-based management of business process exception cases

Stefania Montani

Published online: 9 February 2009
© Springer Science+Business Media, LLC 2009

Abstract Business process optimization may require to de-
viate from a default process model, in response to unex-
pected situations, thus raising exceptions. In this paper, we
present a system for supporting end users in handling excep-
tions in business process management, which exploits the
case-based reasoning (CBR) methodology. CBR offers the
advantage of relying on operative knowledge, thus reduc-
ing the cost of knowledge elicitation, with respect to other
methodologies.

To maintain and organize the case base, we resort to a
type of generalized cases, known as prototypes. The use of
prototypes allows us to structure the case base itself, thus
speeding up retrieval, and avoiding redundancy. In our sys-
tem prototypes are also intended as a means to help process
engineers in defining revised versions of the process schema,
in response to frequent exceptions.

The system is currently in use at one of the largest logis-
tics centres in Italy.

Keywords Business process management · Case-based
reasoning · Prototypes · Case-based maintenance ·
Exception handling support

1 Introduction

Business process management (BPM) is a set of (highly au-
tomated) activities aimed at defining, executing, monitor-
ing and optimizing business processes, with the objective of

S. Montani (�)
Dipartimento di Informatica, Università del Piemonte Orientale,
Alessandria, Italy
e-mail: stefania.montani@unipmn.it

making the business of an enterprise as effective and effi-
cient as possible, and of increasing its economic success.

In particular, the optimization task may ask the enterprise
to be able to flexibly deviate from the predefined process
schema, in response to expected situations (e.g. new laws,
reengineering efforts) as well as to unexpected ones (e.g.
emergencies) [1]. Unexpected situations, in particular, re-
quire a prompt reaction, which operatively translates in gen-
erating and handling an exception to the business process ex-
ecution. These exceptions are ad-hoc changes at the process
instance level, operated by end users (in contrast to changes
at the more general process schema1 level, which can be
forecasted and scheduled, and are operated by domain ex-
perts, i.e. process engineers).

Existing technology typically supports such ad-hoc
changes [2], relying on different methods (e.g. rule-based
and graph-based approaches, see also Sect. 4), which usually
share the characteristic of being based on a strong (and time-
consuming) formalization of domain knowledge. Moreover,
in the existing systems, the effects of ad-hoc changes are
normally kept local to the respective process instance (i.e.
they do not affect other instances of the same process), and
are normally not used to suggest a revised version of the
underlying process schema to the process engineer.

In this paper, on the other hand, we propose to resort to
case-based reasoning (CBR) [3] in order to support the man-
agement of exceptions in business process execution. CBR
is a reasoning paradigm that exploits the specific knowl-
edge of previously experienced situations, called cases. The
use of CBR may mitigate the knowledge formalization ef-
fort, since representing a real world situation as a case is

1Intuitively, many instances of the same process schema may exist, e.g.
the same plant maintenance procedure might have been instantiated
and executed on different dates.

mailto:stefania.montani@unipmn.it

Prototype-based management of business process exception cases 279

often straightforward: given a set of meaningful features
for the domain, it can be sufficient to identify the value
they assume in the situation at hand. The so-obtained set
of 〈feature, value〉 pairs provides the problem description,
which is typically coupled with information about the ap-
plied solution, thus completing the situation-action pattern
adopted on that occasion. Such data encompasses an amount
of domain knowledge, which can be memorized without the
need of making it explicit in a more abstract and structured
form, as it would be required by other methodologies (e.g.
rule-based or model-based reasoning). CBR is particularly
well suited for managing exceptional situations which can
be neither foreseen nor preplanned. As a matter of fact, in
the literature cases have often been resorted to in order to
describe exceptions, in various domains (see e.g. [4–6]).

Within the proposed CBR framework, end users are
enabled to retrieve past exceptions, in order to get sug-
gestions on how to edit a process instance with ad-hoc
changes. Moreover, we also propose an automated way of
learning more general indications from ground exception
cases through a proper maintenance procedure, and to store
them in the form of prototypes [7]. Prototypes are a well-
documented notion in the CBR literature, and are typically
crucial for knowledge base organization, and for optimizing
retrieval performances. In our tool, they are also exploited to
support process engineers in (long term) revisions of process
schemas, as envisioned in Fig. 1.

In summary, our contribution:

1. is based on well-established and well-documented meth-
odological choices (as discussed in Sect. 2), which make
it methodologically sound as well;

2. provides advances in BPM exception handling research,
because:
(a) it allows to mitigate knowledge formalization prob-

lems, and
(b) at the same time, it proposes an automatic memory

organization and maintenance procedure, which can
make retrieval faster, and can support long-term revi-
sions by process engineers.

As it will be discussed in Sect. 4, point 2(b) appears to be a
particularly significant contribution in the existing literature
panorama.

The paper is organized as follows. In Sect. 2 we intro-
duce CBR preliminaries. In Sect. 3 we present the details of
our contribution: in particular, in Sect. 3.1 we introduce case
representation, while Sect. 3.2 deals with case base mainte-
nance issues, and Sect. 3.3 describes our case retrieval facil-
ity. Our tool is in use at Interporto di Rivalta Scrivia S.p.A.,
one of the largest logistics centres in Italy, since May 2008.
Section 3.4 describes our evaluation activity at Interporto,
and provides objective measures of the application impact
in this setting. In Sect. 4 we describe related work. Finally,
Sect. 5 is devoted to conclusions and future work.

2 Case-based reasoning

CBR is a reasoning paradigm that exploits the knowledge
collected on previously experienced situations, known as
cases.

In the classical approach, a case consists of a problem
description able to summarize the problem at hand, and of
a case solution, describing the solution adopted for solving
the corresponding problem; sometimes a case outcome may
be stored as well.

The problem description can be represented as a collec-
tion of 〈feature, value〉 pairs, a format which was introduced
in the early 90s [8], and which is still often resorted to. In
this work, we basically adopt this format as well. Never-
theless, more complex representations are also possible. For
instance, problems may be reported in the form of images,
time series or text.

CBR can be summarized by the following four basic
steps, known as the CBR cycle, or as the four “res” [3]:
retrieve the most similar case(s) with respect to the input
situation from the case repository, known as the case base;
reuse them, and more precisely their solutions, to solve the
new problem; revise the proposed new solution (if needed);
retain the current case for future problem solving.

Actually, in many application domains it is common to
find CBR tools able to extract relevant knowledge, but that
leave to the user the responsibility of providing its interpre-
tation and of formulating the final decision: reuse and re-
vise are therefore not implemented. However, even retrieval
alone may significantly support the human decision making
process [9]. In the present work, we are following this policy
as well.

Applying CBR can have a computational justification: as
observed in the Introduction, by resorting to CBR the effort
of knowledge acquisition and of knowledge representation
is often mitigated, since, given a set of meaningful features
for the application domain, it can be sufficient to identify
the value they assume in the situation at hand to define the
problem description of a new case. Cases represent an “im-
plicit” form of knowledge, meant as an unstructured, op-
erative knowledge type, which directly stores the problem-
solution patterns that have occurred in time “as they are”,
without any effort in the direction of extracting more ab-
stract information (e.g., of eliciting rules or models, which
can be defined as “explicit” or “structured” knowledge) from
them. Moreover, new implicit knowledge can be automati-
cally stored in the case base during the every day working
process. As the case library grows, more and more represen-
tative examples can be retrieved, and it can become easier
to find a proper solution to the problem at hand by means of
this paradigm.

While augmenting the case library content may be rela-
tively easy, retaining new cases may raise some issues. Ac-
tually, the problem solving competence of the case base not

280 S. Montani

Fig. 1 CBR for exception handling in BPM. A process engineer nor-
mally issues a process schema, which is then instantiated and applied
as a default procedure by end users. Due to an emergency, an end user
may want to deviate from the default process schema, and generate a
process instance with ad-hoc changes. Through our system, she can be
supported in this activity by retrieving from the case base modifica-
tions that were applied to the default procedure in the past, motivated
by similar reasons. The instance with ad-hoc changes finally edited by

the end user is then saved as a new case in the case base. The case
base content can be periodically analyzed, by activating the mainte-
nance procedure we have implemented, which enables to learn more
general indications (e.g. frequent changes) from the collected ground
cases, and to store them in the form of prototypes. The process engineer
can finally retrieve these prototypes, and be supported in issuing a new
version of the process schema, which could, for instance, incorporate
the most frequent changes once and for all

necessarily grows as much as its size. It has been shown
(see e.g. [10, 11]) that storing too many cases may in-
crease retrieval time unacceptably, while some cases could
be deleted, since their problem-solution information is al-
ready represented in other existing ones.

These observations have led to a significant research ef-
fort in the direction of case base maintenance. Case base
maintenance is an important process directly connected to
the retain step of the CBR cycle, which may have a signifi-
cant impact on the actual performance of the reasoning sys-
tem. The work in [12] provides an interesting survey on the
possible policies adopted in the literature to this end. Among
these policies, a very promising one resorts to the definition
and exploitation of prototypes [7]. Prototypes are a gener-
alization from single to clustered typical cases. The main
purposes of such a generalization knowledge are to:

• organize the case base;
• guide and speed-up the retrieval process;
• decrease the storage amount by erasing redundant cases.

In particular, the periodic reorganization of the case base
to learn or update the prototype definitions, by taking into
account the new acquired cases, automatically allows one to

delete or disregard the redundant or useless ground cases.
An evaluation of each newly acquired case is therefore not
needed with this strategy.

In this work, we deal with case base maintenance issues
resorting to prototypes.

The idea of relying on prototypes is founded over a
well-established literature tradition, well examined in [13],
in which the same notion is also referred to with differ-
ent names. In particular, a notion somehow similar to the
one of prototype was originally introduced in the theory
of dynamic memory [14]; according to this theory, gener-
alized knowledge is held by Memory Organization Pack-
ets (MOPs), which also organize specific experiences in
cases. In this model, cases are the starting point for prob-
lem solving, while MOPs provide guidance for adaptation.
In the 90s, Bergmann [15] introduced the concept of gener-
alized case, intended as an entity that can be directly reused
for wider ranges of problems than specific cases. A very
early approach using an equivalent notion in instance–based
learning research was represented by Protos [16]. The defi-
nition of prototype is also very similar to the one of abstract
case [17], obtained by merging two or more cases with the
same solution in a single entity.

Prototype-based management of business process exception cases 281

The tool we have implemented is thus grounded on strong
literature foundations.

Details of how it operates can be found in the next sec-
tion.

3 Case-based reasoning for business process exception
management

In this section, we introduce the details of our framework.
First, we describe process schema primitives, and case rep-
resentation ones (see Sect. 3.1). Cases are stored in the case
base, within a hierarchical organization which relies on pro-
totypes; details of case base maintenance and of memory
organization are provided in Sect. 3.2. The retrieval proce-
dure, which takes advantage of the case base hierarchical
organization, is described in Sect. 3.3. Finally, our evalua-
tion results, obtained in a real world setting, are presented in
Sect. 3.4.

3.1 Process schema and case representation

BPM activities are based on a predefined process schema,
consisting of the tasks to be executed, of their control flow
connections, of the actors meant to perform them, and on the
data which have to be provided to enable the task execution.
In this section, for the sake of simplicity, we make the hy-
pothesis that a single actor is responsible for completing all
the tasks of the process schema.2 Therefore, we need to rep-
resent: (i) tasks, (ii) control flow relations and (iii) data. As
in many process modeling systems (see e.g. [18]), in order
to enhance usability, we have defined a reduced set of repre-
sentation primitives, enabling to describe a process schema.

According to our representation formalism, a process
schema can be represented as a hierarchical graph, where
nodes are the tasks to be executed, and edges are the con-
trol flow relations linking them. We can distinguish between
atomic and composite tasks (plans), where atomic tasks rep-
resent simple steps in the process, and plans represent tasks
which can be defined in terms of their components via the
has-part relation. The overall process itself is a plan. Two
different types of atomic tasks can be identified: (1) actions,
i.e. tasks that describe an activity which must be executed
at a given point of the process (e.g. to switch on a software
device); (2) decisions, used to model the selection among
different alternative paths (e.g. to test if a software device is
responding or not; different actions will then be taken, de-
pending on the answer).

Needed data (e.g. resources and constraints) are stored as
properties of the actions in which they are resorted to.

2A rather realistic assumption in some application domains, and in par-
ticular in the one in which we are currently working, see Sect. 3.4.

Control relations, on the other hand, establish which tasks
can be executed next, and in what order. In particular, the se-
quence relation explicitly establishes what is the following
task to be executed; the alternative relation describes which
alternative paths stem from a decision, and the repetition re-
lation states that a task has to be repeated several times (until
an exit test, modeled by means of a decision, becomes true).
Join and fork constructs are modeled as well; thus, we can
also represent parallel executions.

These primitives will be referred to in Sect. 3.4; in Fig. 3,
in particular, boxes will be used to represent actions, dia-
monds to represent decisions and circles to represent joins.
Additional control flow relations will be straightforwardly
depicted by arrows.

A process schema or exception instance can be acquired
by means of our tool’s graphical interface, which also incor-
porates a set of logical consistency checking facilities. For
instance, it automatically verifies that different alternatives
only stem from decisions (and not e.g. from an activity).

The process schema, as well as its exception instances
(i.e. cases), and prototypes built upon them, are then main-
tained in a relational database. Cases and prototypes share
the same structure (i.e. they have the same features).

In particular, a case stores an atomic change made to a
process schema at execution time, together with its problem
description.

In the BPM domain, the problem description has to keep
track of the context which motivated the exception raised
by the end user. The unavailability of some needed data
may justify an exception. Therefore, in our approach the
problem description includes information about the pres-
ence of required technological resources, human compe-
tences, time constraints and additional (application-specific)
data, all modeled as case features.

Since a user may need to adapt/change a process in-
stance also when its applicability conditions are met (and
thus when the context alone is not sufficient to clarify the
reasons for raising an exception), we also add the possibil-
ity of justifying the reasons for deviation as free text. Such
text can provide an insight of the user’s motivations to a col-
league that will retrieve that case in the future, but will not
be resorted to when calculating distances in the retrieval step
(see Sect. 3.3); an interpretation of textual features is left as
a future work.

Another special feature we introduce is reputation (see
also [19]). Reputation is a sort of score, set to 1 when the
case is generated, and increased by 1 every time a user re-
trieves the case and judges it to be useful for her current
problem. Reputation is decreased if the user retrieves the
case, but then discards it. A high reputation is therefore an
indicator of appropriateness. Users are also encouraged to
decrease a case reputation if the modifications suggested in
that case resulted in problems when applied in practice.

282 S. Montani

Finally, we introduce the link feature, to keep track of the
parent relation between a prototype and the ground cases it
subsumes. Details on feature setting in prototypes will be
discussed in Sect. 3.2.

The atomic change to the process schema more prop-
erly represents the case solution. Different types of atomic
changes may take place, namely: insertions, deletions and
updates, of activities, decisions and control flow relations.

Cases thus store atomic elements of an exception. The
overall set of changes applied as a single exception to a
process schema on a certain date can be reconstructed by
executing a query in the case base, restricted to the excep-
tion date.

Thus, an exception is not stored as a single memory item
(i.e. as a single case) in the database, but it is a meta–level
concept, whose ground implementation consists of a set of
cases, that can be joined by means of their execution date.
Since each case reports an atomic change, justified by a set
of features, the set of features justifying the overall excep-
tion can be obtained as the union of the features associated
to every atomic case composing it.

3.2 Case base maintenance

After a set of new exception cases are generated, we search
for redundancies or partially matching features between
their problem descriptions and the ones of the already stored
cases, with the double aim of (1) hierarchically organizing
the case base, and (2) avoiding to retain useless information.
The maintenance procedure can be activated by process en-
gineers through the tool’s interface.

The generalized information that can be extracted from
a set of ground cases is stored as a prototype. In particular,
similarly to an abstract case [17], in our approach a pro-
totype summarizes a set of ground cases sharing the same
solution. Operatively, it has the same structure of a ground
case, and its features are automatically calculated as follows.
The feature values that all the ground cases share in their
problem descriptions are kept unchanged in the prototype
problem description. On the other hand, the features assum-
ing different values in the ground cases take a null value
in the prototype. However, if all the subsumed cases have
a null value in a certain feature, except one, the prototype
assumes the only non-null value in the feature at hand. The
rationale behind this choice is that the prototype solution is
justified by the union of the motivations (i.e. of the problem
descriptions) of the subsumed cases.3 The reputation feature
of a prototype is initially set to the sum of the reputations of
the ground cases it summarizes. The prototype also refer-
ences all the ground cases it subsumes by means of the link
feature—which allows for an easy memory navigation.

3Other policies are possible, and may be chosen depending on the ap-
plication domain.

Fig. 2 Pseudo-code of the prototype creation procedure, in the hy-
pothesis of working with two cases, sharing the same solution

Figure 2 summarizes the procedure, in the hypothesis
(without loss of generality) of working with just two cases,
sharing the same solution.

Ground cases perfectly represented by a prototype (i.e.
sharing all the same feature values of the prototype, or hav-
ing a null value in a feature which assumes a non-null value
in the prototype) can be deleted on demand,4 thus avoiding
redundancies. Actually, when retrieval efficiency is related
to the case base size, keeping redundant cases only degrades
performances, by increasing retrieval time [11].

In the current version of the system, due to the character-
istics of the application domain (see Sect. 3.4), it was suffi-
cient to define prototypes which only subsume ground cases.
However the framework could be trivially extended to al-
low a multi-level hierarchy, in which more generalized pro-
totypes reference more specific ones, progressively moving
towards ground cases. Also observe that less strict policies
in the prototype definition are allowed: for instance, it could
be possible not to force all subsumed cases to share the same
solution of the prototype, but just part of it [20]; moreover,
a prototype could include a non-null feature value which is
shared only by a certain percentage (lower than 100%) of
the subsumed cases.

The use of prototypes, while allowing to automatically
identify/delete useless cases, also imposes a hierarchical or-
ganization to the case base. Such an organization allows a
quicker and more focused retrieval (see also [21]), since the
identification of the most similar prototype (with respect to
the input case) can be exploited to reduce the retrieval search
space only to the cases subsumed by the prototype itself,

4In the application domain in which we are currently working (see
Sect. 3.4) case deletion has not been required yet, due to the relatively
low number of collected cases.

Prototype-based management of business process exception cases 283

thus ignoring the rest of the case base (details on the retrieval
procedure are provided in the following section).

Moreover, prototypes can support long-term revisions of
the process schema by the process engineer. As a matter of
fact, prototypes properly group sets of consistent examples,
representing frequent, similar modifications to instances of
the same process schema, which could justify the choice of
issuing a new version of the default process schema itself,
incorporating such changes once and for all. Within our tool,
we allow the process engineer to retrieve a prototype, and
then to progressively navigate down in its hierarchy, in order
to inspect the details of the subsumed cases. This facility is
meant to support her in such a schema revision activity, still
leaving her the complete responsibility of the final decision.

Finally, it is worth observing that prototypes allow to ex-
tract more generalized knowledge from ground cases. How-
ever, such extraction does not require an explicit formaliza-
tion of domain knowledge, and a consequent involvement
of a domain expert. Actually, despite the fact that prototypes
do summarize a set of (very similar) cases, and generalize
them to some extent, they do not constitute highly abstracted
evidence. Thus, our memory organization and maintenance
strategy still keeps the knowledge elicitation advantages of
the CBR methodology discussed in the Introduction.

3.3 Case retrieval

Within our framework, case retrieval is primarily conceived
as a support for exception handling by end users.

When a user encounters an emergency in executing a
process instance, she may ask our tool to retrieve sugges-
tions from the case base, providing as an input the current
data and resources information, which represent the context
to be used for indexation, and which are interpreted as the
input case features.

The most similar prototypes are then shown to the user;
she can indicate a subset of them, thus restricting further
retrieval just to the ground cases subsumed by the selected
prototypes. She could also decide to stop the search at the
prototype level, if she believes that the retrieval information
is sufficient. Additional ground cases can also be retrieved if
they are not indexed under any prototype in the taxonomy,
but are similar to the query case.

In order to retrieve the most similar (i.e. less distant)
prototypes/cases with respect to the input one, it is a com-
mon technique to provide a measure of distance in the fea-
tures space. As already observed, prototypes are generalized
cases, are physically stored in the same memory and share
the ground cases structure. Thus, distance calculation can
operate identically on prototypes and on ground cases. Gen-
erally speaking, the distance d(ci, cj) between cases ci and

cj can be computed as a weighted average of the normalized
distances between their various features, that is:

d(ci, cj) =
∑N

f =1 wf · d(ci(f), cj (f))
∑N

f =1 wf

(1)

where d(ci(f), cj (f)) and wf denote the normalized dis-
tance between feature f of cases ci and cj , and the weight
associated with this feature, respectively. Weights can be
properly set to state that some features are more “important”
for retrieval relatively to the others. They have to be experi-
mentally set and tuned, and their choice varies from domain
to domain.

Various metrics can be relied upon to calculate d(ci(f),

cj (f)); we are currently choosing the heterogeneous euclid-
ean-overlap metric (HEOM) [22], a distance metric able to
treat both symbolic and numeric variables, and to cope with
the problem of missing data.

Prototypes and/or cases are inversely ordered by distance
with respect to the query case; if two or more items have the
same distance, they are further ordered by reputation.

In our approach, retrieval solutions are then shown to the
user for a personal interpretation. After she has selected a
prototype or case from the retrieval output list, since re-
trieved items represent atomic modifications within a more
complex exception, she is also allowed to reconstruct the
whole exception information happened on the date at hand,
by properly querying the case base. We then leave to her the
responsibility of the final decision.

Prototype retrieval can also support process engineers in
schema redefinition, as already explained in Sect. 3.2.

3.4 Evaluation results

3.4.1 A real world application

The tool described in this paper is implemented in Java, and
relies on MySQL for the case base storage, while the graph-
ical interface has been implemented by resorting to JGraph-
Pad software (an open-source product written in Java which
can be extended to support additional features, and which
can be properly interfaced with other software modules, see
http://sourceforge.net/projects/jgraph/).

The current version of the tool has been made available at
Interporto di Rivalta Scrivia S.p.A., Italy, since May 2008.
Interporto, with its 1300000 m2 of surface extension and
with more than 500 employees, is one of the largest logis-
tics centres in Italy. Interporto does not only take care of
goods storage, but also of their preprocessing; in particular,
several plants for food pre-processing are available. Engi-
neers and employees responsible for goods and tanks move-
ment, and for plants administration and security, follow spe-
cific process schemas for designing and executing equip-
ment management and maintenance procedures. Our tool is

http://sourceforge.net/projects/jgraph/

284 S. Montani

enabling them to keep track of unexpected exceptions, to
deal with them, and to learn generalized knowledge which
can be useful to restructure the schemas.

Our evaluation activity at Interporto has been structured
as follows. First, we conducted a pilot study, in order to as-
sess the reliability of our tool. The pilot study lasted eight
weeks, and involved the adoption of the tool for support-
ing exception handling to the bag cutter machines mainte-
nance process. Four identical bag cutters are available at In-
terporto, and cases were collected from all of them. The de-
tails and the main results of the pilot study are presented in
Sect. 3.4.2.

After the pilot study results became available, we evalu-
ated them together with the process engineer responsible for
the bag cutter machines. Given the very encouraging out-
come, in September 2008 we started a second, more exten-
sive evaluation phase, which is still going on. Currently, the
tool is being routinely applied to all the equipment manage-
ment and maintenance procedures—and not only to the bag
cutter machines, as in the pilot study. Section 3.4.3 provides
an analysis of the impact of three months of usage of the
tool at Interporto, and highlights advantages and improve-
ment suggestions identified so far.

3.4.2 The pilot study

The eight-week pilot study involved the usage of the tool
just on the four bag cutter machines. Each bag cutter avail-
able at Interporto automatically cuts bags (typically contain-
ing coffee and cocoa beans), empties them, and arranges
the content in a tank for transportation. If the machine does
not work properly, some beans may remain inside the bags,
so that the bags have to be manually verified and emptied,
highly increasing the time and cost of the activity. Thus, the
status of the machine elements (e.g. blades, drive shaft, ball
bearings) is periodically evaluated, and deteriorated pieces
are properly treated or substituted.

Part of the default maintenance process schema is pro-
vided in Fig. 3, as represented by our tool’s graphical inter-
face, and is described below. Some details of the procedure
that were useless for the discussion, have been removed, for
the sake of legibility.

By following such part of the schema, (1) the slope of
the drive shaft is first evaluated, and corrected, in case of
need. Then, (2) the cutting performances are tested on a set
of bags. If the result is not satisfactory, (3) the drive shaft
and (4) the ball bearings are verified for possible fractures,
and substituted if necessary. Finally, (5) the blades are sharp-
ened.

In the first two weeks of our pilot study, during the every-
day working activity, some exceptions were raised with re-
spect to this procedure. In particular, in the first excep-
tion (case1), due to time constraints, step (2) was skipped.

In the second exception, time constraints problems as well
as the unavailability of the grindstone determined not only
that step (2) was skipped, but also that the blades were not
sharpened—see step (5)—but directly substituted with new
ones. These two modifications were stored as two separate
cases (case2 and case3), as explained in Sect. 3.1. In the
third exception (case4), blade substitution instead of sharp-
ening took place as well (step (5)), simply motivated by the
fact that blades had not been substituted recently.

The tool organized these 4 cases under two prototypes:
(p1) the blade substitution one; and (p2) the skipped cutting
performance verification one.

Figure 4 shows the (main) features of the exception cases
described above, together with the prototypes created from
them.

After this hierarchy definition, end users exploited the
tool for the subsequent six weeks. In particular, those who
were affected by strict time constraints, could retrieve both
the p1 prototype, and the p2 prototype (which code the pres-
ence of time constraints in their features). Both p1’s solu-
tion (i.e. substituting the blades) and p2’s one (i.e. skipping
the cutting performance verification) were then suggested to
them. Moreover, users were allowed to navigate the hierar-
chy, thus accessing the details of the ground cases subsumed
by the two prototypes. By querying the case base on the ba-
sis of the date, for instance, they were also allowed to re-
trieve the whole exception composed by case2 and case3,
thus obtaining the suggestion of applying both the solutions
at the same time. All these data were provided to help users
to better understand the solutions taken in the past, and to
further guide them in decision making. However, they were
always free to decide whether to reapply (one of) the re-
trieved solutions, or to edit a new one.

After six weeks of usage, 10 cases confirming the blade
substitution change, motivated by various reasons, were col-
lected and stored under prototype p1. The process engineer
then evaluated this suggestion, in order to understand if it
could be implemented within the default bag cutter process
schema, being it a very frequently happening change. He
judged the possibility of converting blade sharpening into
blade substitution as a reasonable modification, and then de-
cided to adopt it. Actually, even if this change obviously in-
creases costs, it is also true that blades, due to the normal
working activity, soon become so deteriorated that sharp-
ening them during preplanned maintenance procedures can
be not enough. Therefore, either sharpening frequency is
significantly increased (which also increases costs and in-
creases the machine unavailability time), or blades are al-
ways substituted. This second alternative, suggested by the
tool, was preferred. The modified bag cutter maintenance
procedure has been adopted in the second phase of our eval-
uation activity, described in the next section.

Prototype-based management of business process exception cases 285

Fig. 3 Part of the bag cutter
maintenance procedure,
acquired by means of our tool

3.4.3 Routine adoption of the tool at Interporto:
measurable outcomes

Our tool is being routinely used at Interporto since Septem-
ber 2008. In this section, we report on the impact of the first
three months of usage, and discuss the improvement sugges-
tions that emerged so far.

Several equipment and people were (and still are) in-
volved in this extensive evaluation phase. In particular, the
tool is being applied to process schemas concerning the
management/maintenance of:

1. 150 carts for goods movement within the warehouse;
2. 6 carts for tanks movement;
3. 4 bag cutter machines (as in the pilot study);
4. 1 cocoa butter melting machine, which melts cocoa but-

ter, filters such pre–processed food, and loads it into a
tank;

5. 1 pallet assembler machine, which properly organizes
food bags in a movable platform;

6. 3 identical freezing plants, globally serving 100000 m3

of refrigerated warehouses.

Three process engineers and eight end users are exploiting
the tool, and providing their feedback.

From September to November 2008, we were able to col-
lect the following cases:

1. 2 cases related to the goods movement carts maintenance
process schema;

2. 0 cases related to the tanks movement carts maintenance
process schema;

3. 7 cases related to the new version of the bag cutter ma-
chines maintenance process schema (see Sect. 3.4.2). 5 of
them were further indexed under 2 prototypes;

286 S. Montani

Fig. 4 A snapshot of the case base in the pilot study

4. 2 cases related to the cocoa butter melting machine main-
tenance process schema;

5. 13 cases related to the pallet assembler machine main-
tenance process schema. 3 of them were further indexed
under 1 prototype;

6. 25 cases related to the freezing plants management
process schema. The first 14 were collected during the
first six weeks of usage, and were all indexed under 3
prototypes. Eventually they led to a process schema re-
definition. The other 11 were collected during the follow-
ing six weeks, and were related to the new version of the
process schema. 8 of them were further indexed under 3
prototypes.

The very low number of exceptions raised for devices 1, 2
and 4 in the list above are justified by two reasons: the main-
tenance procedures are very simple, and the devices rely on
a very well established technology and design. Devices 1, 2
and 4, therefore, have not been considered for measuring the
impact of our tool on Interporto’s outcomes.

On the other hand, devices 3, 5, and 6 raised a relatively
high number of exception. This fact was foreseen by process
engineers. Actually, machines 3 and 5 are not commercial

devices (they have been partly designed by Interporto engi-
neers themselves), and are still in their testing phase; there-
fore frequent exceptional needs can emerge during their
maintenance. Also observe that device 5 is composed by a
very large set of simpler modules. The collected cases of-
ten involved different modules, so that it was not possible to
organize them under the same prototype. This also explains
why no new maintenance process schema was issued by the
process engineers for device 5 in these three months.

On the other hand, the freezing plants (device 6) manage-
ment procedure is complex per se, and (similar) exceptions
are frequent: as a matter of fact, environmental conditions,
such as humidity and temperature, can strongly influence the
freezers performances, and have a significant effect on elec-
trical and water consumptions, motivating tuning activities
and changes. Additionally, the I/O food flow in the refrig-
erated warehouses, and the initial food temperature and hu-
midity, have to be considered as well.

Thus, devices 3, 5 and 6 were very useful to measure the
impact of the retrieval facility of our tool, and device 6 was
also useful to evaluate the impact of the case base main-
tenance and schema revision suggestion facility (while en-

Prototype-based management of business process exception cases 287

gineers issued a revised process schema for device 3 only
during the pilot study). Details are provided below.

Impact of the retrieval facility The main advantage of the
adoption of the tool, focusing on the retrieval facility, was
measured in terms of time: since, when raising an exception,
end users were allowed to retrieve similar cases occurred in
the past, they were able to manage the current problem more
quickly, with respect to what happened before the tool was
made available.

In particular, in 85% of the situations, end users could
rely on (one of) the most similar retrieved cases or proto-
types, in order to manage the emergency at hand, since (its)
their motivations were indeed very close to the input case
ones.

Thanks to end users’ time savings, Interporto obtained
several objectively measurable advantages:

1. machine unavailability time was reduced of about 20%,
as an average, for devices 3 and 5. The freezing plants
management procedure completion time was reduced of
about 10% in the first six weeks, and of a further 20%
after the new version of the process schema was issued;

2. 30% less overtime work had to be paid in the end users’
wages;

3. end users could employ their time to properly complete
other, less urgent procedures, which used to be delayed
of several days before the tool was adopted;

4. as a consequence of items (1) and (3) above, with all de-
vices working more properly thanks to the quicker and
more effective maintenance procedures, Interporto was
able to deliver its goods always on time during the eval-
uation period.

Outcomes (3) and (4) above were judged to be par-
ticularly relevant by Interporto managers, since they al-
lowed them to be more compliant with ISO 9004, a guide-
line developed by the International Organization for Stan-
dardization (ISO), meant to improve business organizations
performances—see http://www.iso.org/iso/home.htm.

However, in 15% of the situations, the tool was unable to
retrieve very helpful suggestions. This could be partly due to
the relatively low number of cases stored in the case base—a
problem of knowledge competence that, very probably, will
be automatically overcome in the future, as the tool adop-
tion goes on. On the other hand, the issue may be also partly
due to a low capability of the case features to capture the
reasons why a specific change was made. Textual comments
may be helpful to clarify the motivations of such “ambigu-
ous” cases: in the future we will thus work on an automatic
interpretation of such information, in order to improve the
tool reliability.

Finally, end users were interviewed, in order to assess
the tool usability (consider that they are not computer scien-
tists). Globally, the tool interface was judged as quite easy

to use, and user friendly. However, all the eight end users
needed a training phase before using the system, and two of
them, in several occasions, asked a computer technician to
help them. The further simplification of the tool graphical
interface will be another objective of our future work, and
we will make a new release of the tool available as soon as
these changes are completed.

Impact of the case base maintenance and schema revision
suggestion facility During the overall evaluation, Inter-
porto engineers issued just two new versions of the exist-
ing process schemas: one for the bag cutter machines (in the
pilot study), and one for the freezing plants (in the second
phase of the evaluation procedure). As already observed,
the freezing plants management process is particularly com-
plex, since it often has to be tuned/changed depending on
weather or food conditions: this motivates the high number
of (similar) exceptions happened during the three months of
tool usage. On the other hand, no enough cases and proto-
types were collected for the other equipments, as an aver-
age. A relatively high number of exceptions took place only
for the pallet assembler machine, but, as explained before,
it was not possible to identify many common suggestions in
them.

The changes to the bag cutter machines process schema
have been already discussed. In the following, we will thus
draw some conclusions about the impact of the tool adop-
tion, focusing on the case base maintenance and schema re-
vision suggestion facility, by considering the freezing plants
management procedure.

From the beginning of September to mid October 2008,
14 cases were collected, reporting modifications to such
procedure. The tool was able to identify common changes
in them, thus indexing all of them under 3 prototypes.
Guided by memory navigation, the responsible engineer was
helped in defining a new version of the management process
schema, in which these very frequent modifications could be
permanently addressed. According to the engineer’s com-
ments, the need for these modifications was not trivially
evident. Moreover, with the help of the tool, he could im-
mediately issue a new schema incorporating all of the three
changes, instead of reaching the same result by issuing sev-
eral versions in sequence, each one addressing only one
change at a time, as it often happened in the past.

The main advantage was thus measurable in terms of
time, but also of quality: the engineer was helped to quickly
issue a better version of the process, which has been made
available since October 2008, and which allowed Interporto
to:

• reduce energy consumption of about 8% and water con-
sumption of about 15%.

http://www.iso.org/iso/home.htm

288 S. Montani

Despite the fact that the procedure is probably still ame-
liorable (further exceptions have been raised from mid Oc-
tober on), such savings help in keeping under control the
impact that Interporto’s activities have on the environment.
This result is considered as very valuable by Interporto man-
agers, since they aim at certifying the business organization
according to the ISO 14001 environmental quality standard
(see http://www.iso.org/iso/home.htm). Such a certification
is not compulsory in Italy, but testifies the will to make the
activities of an organization more and more sustainable.

As a final consideration, regarding the graphical inter-
face, its usage did not represent a major issue for engineers,
since they all have a strong computer science background.

We are aware that a deeper analysis of the impact of
the tool adoption for long-term process schema revision re-
quires more time and more examples; the collection and the
interpretation of additional data about schema revision sug-
gestions will thus be the main objective of our evaluation
work from now on.

4 Related work

A wide literature exists about dynamic changes in BPM,
as regards both modifications at the process schema level,
and at the process instance level. An adaptive workflow
approach is typically envisioned when supporting process
schema changes (see e.g. [18, 23, 24]). The survey in [2]
provides a comparisons of a set of works in this area, along
the lines of several correctness criteria. Besides the specific
differences, the survey reveals a trade–off between the com-
plexity of the used representation model, and the flexibility
of the system during runtime. Such observation supports our
choice of defining a rather limited (though sufficiently ex-
pressive) set of representation primitives, in order to handle
process changes in an easier way.

However, note that our work is only loosely related to
these ones, since we primarily aim at supporting excep-
tions, i.e. changes at the process instance level. It is true that
we also provide a form of support to process engineers in
schema revision, when it is triggered by frequent exceptions;
however, schema revision is not automated. Moreover, we
do not deal with the problem of migration, which is one of
the main concerns of the works described in [2]. Migration
means ensuring that, after a process schema change has been
operated, instances that have not progressed too far will be
executed according to new schema, while instances whose
state is not compliant with the new schema will be executed
according to the old one. Migration was not an issue in our
application domain; however, we will possibly consider this
problem as a future research direction.

As regards the works in the area of handling changes at
the process instance level, which are more closely related to
ours, they can be subdivided into three main categories [2]:

• rule-based approaches (see e.g. [18]): they rely on the so
called ECA (Event/Condition/Action) rules [25] to au-
tomatically detect logical failures, and to determine the
needed process changes. ECA rules specify adaptation at
an abstract and general level, independently of any con-
crete execution, and are fired at execution time;

• goal-based approaches (see e.g. [26]): they formalize
process goals, and then apply planning techniques to au-
tomatically “repair” process instances when the goals are
not met (it is worth noting that current planning methods
are unable to treat some complex situations);

• process-driven approaches (see e.g. [1]): they try to re-
strict possible variants to the process in advance, by using
e.g. graph grammars and graph reduction rules.

A common feature of these approaches is the need for a
typically hard and time–consuming knowledge acquisition
and formalization activity, which involves the cooperation
of a domain expert and of a knowledge engineer, in order
to define the rule base or the required process model and
goals. This task might be extremely difficult in practice, es-
pecially in those applications in which a strong domain the-
ory does not exist, or knowledge is rapidly changing, or the
expert is not often available. Moreover, applying the formal-
ized knowledge in concrete cases during runtime might raise
some issues, due to unexpected peculiarities of the situation
at hand, which cannot be completely captured by a domain
model or rule base. Finally, some kinds of changes simply
cannot be preplanned at all: most of the existing systems just
deal with these situations by allowing an interaction with the
end user through the system (graphical) interface, without
any kind of reasoning support.

As observed in the Introduction, CBR seems to be a very
well suited reasoning methodology for supporting also to-
tally unexpected changes at the process instance level, since
it strongly relies on operative and unformalized knowledge.

Actually, the CBR methodology has already been ex-
ploited in the BPM domain. The system in [27], for instance,
uses generalized workflow templates (i.e. a kind of proto-
types) as well as concrete cases of previously defined work-
flows, in order to help the user in authoring her model. How-
ever, this contribution deals with process schema modeling
from scratch, and not with process instance changing.

The first proposal towards the use of CBR in BPM specif-
ically for exception handling is represented by the work by
Luo [28], which adopts a rule–based system for managing
dynamic changes in business processes, but couples it with
a case–based retrieval facility, able to support the end user
in handling unforeseen situations. With respect to our con-
tribution, here the use of CBR is much simpler and more
limited, basically because CBR is not the main reasoning
methodology in Luo’s work.

CBR for handling exceptions in BPM is more extensively
resorted to by Weber [19]. Weber captures exceptions by

http://www.iso.org/iso/home.htm

Prototype-based management of business process exception cases 289

means of a conversational CBR approach, in which features
elicitation partially depends on the interaction between the
user and the system, and many features are in the textual
form. On the other hand, we have been able to define the
case structure in advance, thus relying on a more classical
CBR approach. Weber’s system periodically evaluates the
case base content, in order to identify dependencies among
cases: for instance, it is able to reveal if, when a certain
change c1 is applied, a second change c2 is always applied
as well. Such a facility can be seen as a means to support
the process engineer for an informed revision of the process
schema, after several exceptions have been collected. We
have not treated this aspect explicitly; however, since we
store atomic changes as cases (as Weber does), and we al-
low the user to reconstruct the whole set of changes that took
place within a single exception date, we could easily high-
light the same kind of relations; the implementation of this
feature is foreseen as a future work.

Minor [29] has developed another pure CBR system for
agile workflow support, which enables process revision. In
the system, cases represent a process revision, as a pair
of two workflows: the original one, and the modified one.
These examples of alterations can be retrieved to support
new changes, in similar situations. Very interestingly, Minor
distinguishes between changes in tasks and changes in the
activity flow, and defines two different metrics for dealing
with them. This aspect, which was also considered by Cic-
carese [30] in the medical field, will be a topic for our future
research as well.

However, neither Weber nor Minor, in the works cited
above, describe an automatic procedure for maintaining the
case base, as we do with prototypes. On the other hand, in
our opinion case base maintenance is extremely important
in the BPM domain, since the case base can rapidly grow,
and thus needs to be organized, in order to speed up re-
trieval, and to avoid redundancies. As observed, prototypes
hierarchically organize the case base content, can make re-
trieval faster, and can also support long-term revisions of
the process, an issue which is only partially afforded in [19].
By allowing the extraction of more generalized (and yet un-
structured) knowledge from ground cases, prototypes reveal
frequent similarities, that can be relied upon for schema revi-
sion. On the other hand, they allow not to disregard peculiar
details—left in the ground cases features—which would be
lost in rule/model-based reasoning systems. To our knowl-
edge, the use of prototypes thus represents the most interest-
ing and original contribution of our approach.

5 Conclusions

Exceptions provide great opportunities for a BPM system,
to learn, correct itself and evolve. In this paper, we have

described an approach for handling exceptions in BPM
systems, based on the CBR methodology. The choice of
CBR allows to automatically acquire and increase operative
knowledge, without requiring a hard and time consuming
formalization of knowledge itself, as it is needed by other
methodologies, such as rule-based or model-based reason-
ing. Moreover, we resort to prototypes for case base mainte-
nance. Prototypes allow the extraction of more generalized
(and yet unformalized) knowledge from ground cases, and
enable to organize the case base, thus making retrieval faster,
and avoiding redundancies. Additionally, by retrieving pro-
totypes, the process engineer can discover and analyse fre-
quent modification, thus being supported in a long-term re-
vision of the process schema.

From a technical viewpoint, some enhancements are
foreseen as a future work. In particular, at the moment we
don’t take into account the textual exception motivations
introduced by end users, neither in the retrieval nor in the
maintenance phase. An effort to take advantage from this
free text feature would be very relevant, as suggested by the
results of our evaluation study, since users’ motivations may
help in better distinguishing between potentially ambiguous
situations. Textual CBR is an emerging research area (see
e.g. [31]), which is making available a set of suitable tech-
niques for textual features representation and retrieval, that
could be fruitfully exploited in our application.

Always according to the evaluation results, we will study
how to make the graphical interface even more user friendly,
in order to be easily adopted by all end users.

Moreover, we plan to develop a facility to automatically
extract dependencies among cases belonging to the same ex-
ceptional situation, along the lines described in [19].

We will also study how to distinguish between changes
in the process tasks and changes in the activity flow, as in
[29].

Finally, we will continue our evaluation at Interporto di
Rivalta Scrivia S.p.A. More data about the usefulness of the
tool for long-term process schema revision, in particular,
will be collected and analysed during the future evaluation
activity. We also plan to make available a new release of
the software, including the enhancements discussed above,
as soon as possible. Extensions and adaptations in order to
adopt the tool in different business contexts are also fore-
seen.

Acknowledgements The author is grateful to the personnel of In-
terporto di Rivalta Scrivia S.p.A. who is taking part in the evaluation
activity, and in particular to Dr. Giacomo Mongini.

References

1. Heimann P, Joeris G, Krapp C, Westfechtel B (1996) Dynamite:
dynamic task nets for software process management. In: Pro-
ceedings international conference of software engineering, Berlin,
pp 331–341

290 S. Montani

2. Rinderle S, Reichtert M, Dadam P (2004) Correctness criteria for
dynamic changes in workflow systems—a survey. Data Knowl
Eng 50:9–34

3. Aamodt A, Plaza E (1994) Case-based reasoning: foundational is-
sues, methodological variations and systems approaches. AI Com-
mun 7:39–59

4. Surma J, Vanhoof K (1995) Integration rules and cases for the
classification task. In: Veloso M, Aamodt A (eds) Proceedings of
the 1st international conference on case-based reasoning, Sesim-
bra, Portugal, October 1995. Lecture notes in computer science,
vol 1010. Springer, Berlin, pp 325–334

5. Branting LK, Porter BW (1991) Rules and precedents as com-
plementary warrants. In: Proceedings of the of 9th national con-
ference on artificial intelligence, Anaheim, CA, USA, July 1991.
AAAI Press, Menlo Park

6. Bichindaritz I, Kansu E, Sullivan K (1998) Case-based reasoning
in care-partner: Gathering evidence for evidence-based medical
practice. In: Smyth B, Cunningham P (eds) Proceedings of the
4th European workshop on case-based reasoning, Dublin, Ireland,
September 1998. Lecture notes in computer science, vol 1488.
Springer, Berlin, pp 334–345

7. Gierl L, Stengel-Rutkowski S (1994) Integrating consultation and
semi-automatic knowledge acquisition in a prototype-based archi-
tecture: experiences with dysmorphic syndromes. Artif Intell Med
6:29–49

8. Kolodner JL (1993) Case-based reasoning. Morgan Kaufmann,
San Mateo

9. Watson I (1997) Applying case-based reasoning: techniques for
enterprise systems. Morgan Kaufmann, San Mateo

10. Zhu J, Yang Q (1999) Remembering to add: competence-
preserving case-addition policies for case base maintenance. In:
Proceedings of the international joint conference on artificial in-
telligence. Morgan Kaufmann, San Mateo

11. Smyth B, McKenna E (1999) Building compact competent case
bases. In: Lecture notes in computer science, vol 1650. Springer,
Berlin, pp 329–242

12. Leake DB, Smyth B, Wilson DC, Yang Q (eds) (2001) Special
issue on maintaining case based reasoning systems. Comput Intell
17(2):193–398

13. Maximini K, Maximini R, Bergmann R (2003) An investigation
of generalized cases. In: Ashley KD, Bridge D (eds) Proceedings
of the 5th international conference on case base reasoning (IC-
CBR’03), Trondheim, Norway, June 2003. Lecture notes in artifi-
cial intelligence, vol 2689. Springer, Berlin, pp 261–275

14. Riesbeck CK, Schank RC (1989) Inside case-based reasoning.
Lawrence Erlbaum Associates, Hillsdale

15. Bergmann R, Wilke W (1996) On the role of abstraction in case-
based reasoning. In: Lecture notes in artificial intelligence, vol
1186. Springer, Berlin, pp 28–43

16. Bareiss E, Porter B, Wier C (1988) Protos: an exemplar-based
learning apprentice. Int J Man-Mach Stud 20:549–561

17. Reinartz T, Iglezakis I, Roth-Berghofer T (2001) On quality mea-
sures for case-base maintenance. Comput Intell 17:214–234

18. Casati F, Ceri S, Pernici B, Pozzi G (1998) Workflow evolutions.
Data Knowl Eng 24:211–238

19. Weber B, Reichert M, Wild W (2006) Case-based maintenance
for CCBR-based process evolution. In: Roth-Berghofer T, Goker
M, Altay Guvenir H (eds) Proceedings of the European conference
on case based reasoning (ECCBR) 2006. Lecture notes in artificial
intelligence, vol 4106. Springer, Berlin, pp 106–120

20. Schmidt R, Gierl L (2001) Case-based reasoning for antibiotics
therapy advice: an investigation of retrieval algorithms and proto-
types. Artif Intell Med 23:171–186

21. Lieber J (2002) Strong, fuzzy and smooth hierarchical classifica-
tion for case-based problem solving. In: van Harmelen F (ed) Pro-
ceedings of the 15th European conference on artificial intelligence
(ECAI-02), Lyon, France. IOS Press, Amsterdam, pp 81–85

22. Wilson DR, Martinez TR (1997) Improved heterogeneous dis-
tance functions. J Artif Intell Res 6:1–34

23. Sadiq S, Marjanovic O, Orlowska M (2000) Managing change and
time in dynamic workflow processes. Int. J. Coop. Inf. Syst. 9:93–
116

24. VanderAalst W, Basten T (2002) Inheritance of workflows: an ap-
proach to tackling problems related to change. Theor Comput Sci
270:125–203

25. Dittrich KR, Gatziu S, Geppert A (1995) The active database man-
agement system manifesto: a rulebase of adbms features. In: Lec-
ture notes in computer science, vol 985. Springer, Berlin, pp 3–20

26. Beckstein C, Klausner J (1999) A planning framework for work-
flow management. In: Proceedings of the workshop on intelligent
workflow and process management, Stockholm

27. Madhusudan T, Zhao JL, Marshall B (2004) A case-based reason-
ing framework for workflow model management. Data Knowl Eng
50:87–115

28. Luo Z, Sheth A, Kochut K, Miller J (2000) Exception handling in
workflow systems. Appl Intell 13:125–147

29. Minor M, Tartakovski A, Schmalen D, Bergmann R (2008) Agile
workflow technology and case-based change reuse for long-term
processes. Int J Intell Inf Technol 4(1):80–98

30. Ciccarese P, Caffi E, Boiocchi L, Halevy A, Quaglini S, Kumar A,
Stefanelli M (2003) The newguide project: guidelines, informa-
tion sharing and learning from exceptions. In: Proceedings of the
artificial intelligence in medicine Europe (AIME) 2003. Springer,
Berlin, pp 163–167

31. Wiratunga N, Lamontagne L (2006) In: Workshop on textual case
based reasoning: reasoning with text, European conference on
case based reasoning (ECCBR), Oludeniz

	Prototype-based management of business process exception cases
	Abstract
	Introduction
	Case-based reasoning
	Case-based reasoning for business process exception management
	Process schema and case representation
	Case base maintenance
	Case retrieval
	Evaluation results
	A real world application
	The pilot study
	Routine adoption of the tool at Interporto: measurable outcomes
	Impact of the retrieval facility
	Impact of the case base maintenance and schema revision suggestion facility

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

