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1. Introduction

Clinical guidelines (GLs) can be defined as a means for
specifying the ‘‘best’’ clinical procedures and for standardizing
them. The adoption of GLs, by supporting physicians in their
decision making and diagnosing activities, may provide crucial
advantages, both in individual-based health care, and in the overall
service offered by a health care organization. In particular, it has
been shown [1] that GLs can improve the quality of patient care,
reduce variations in quality of care, and reduce costs.

These observations justify the increasing number of GLs which
have been defined in the last decade, covering a large spectrum of
diseases and medical procedures. However, the effort in defining
and disseminating GLs has not always been coupled by a parallel
effort in guaranteeing their ‘‘quality’’ [2]: despite the fact that GLs
are issued by recognized experts’ committees, they might be
ambiguous or incomplete [3], or even inconsistent.

The need for GL quality verification is thus clearly emerging. As
we will show in this paper, computer-based approaches can

provide crucial advantages in this context. The research commu-
nity in Artificial Intelligence (AI) in medicine and in medical
decision making, which is very active in the definition of
computerized systems and projects for managing GLs (see e.g.
the systems Asbru [4], EON [5], GEM [6], GLARE [7–8], GLIF [9],
GUIDE [10], PROforma [11], and the collections [12–14]), has
recently started to consider this issue.

Nevertheless, the verification capabilities available in the
conventional computerized GL management systems in the
literature are usually rather limited and only recently this
limitation has led to the development of proposals for guideline
automatic verification. Let us first analyse the limitations of
conventional computerized GL management systems. In many
cases, such systems do associate only very specific and ad hoc
inferential mechanisms to the knowledge represented in the
guideline. For instance, Asbru [15] and GLARE [16] adopt temporal-
reasoning algorithms for temporal consistency checking, useful
both for GL acquisition, and for simulation purposes. In GLARE,
costs and resources required by the various GL actions can be
collected, and the ‘‘admissible’’ paths in the GL (e.g. paths not
exceeding a prefixed cost) can be identified on the basis of this
result. Several systems [17] apply some controls for checking the
well-formedness of the acquired GL, e.g. as regards name and range
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checking of the actions of a GL and of its attributes (which must
match specific standards), or as regards the adherence to several
logical design criteria, such as the fact that alternative arcs may
only stem from decisions.

However, two major drawbacks of the conventional approach
can be outlined as follows (for a more detailed discussion see
Section 2.2):

(i) every class of properties to be checked, for every GL (possibly
with the exceptions of purely syntactical properties), requires
the definition of an ad hoc verification software module. The
analysis of an additional class of properties thus requires an
additional effort by the programmers who are in charge of
verification;

(ii) the verification process is not conceived as a flexible and
incremental one: all properties to be verified must be known a
priori, in order to let the verification software modules be
developed before the verification process starts. Additional
relevant classes of properties suggested by the already
obtained results cannot be easily taken into account (due to
the issue discussed in point (i)).

More generality and flexibility are therefore needed in guideline
property verification. Generality is one of the main achievements of
the theorem provers and model checkers developed within the
automatic verification community [18]. Therefore, integration
between the ‘‘physician-oriented’’ way of coping with clinical
guidelines supported by the guideline management systems on
one side, and the generality of verification techniques, on the other
side, can provide fruitful results. Such an integration has started to be
explored only quite recently within the Medical Informatics
community. The adoption of theorem proving techniques has been
first proposed within the Protocure European project starting in 2003
[2,19]. As an alternative of the theorem proving methodology, the
adoption of model checking techniques has been first proposed few
years later in the Protocure project [20] and in our GLARE project [21–
23], mainly motivated by the simplicity and efficiency of model
checking techniques with respect to the theorem proving approach
[24]. In this paper we elaborate on the ideas first sketched in [21–23],
extending and systematizing such an initial proposal (as discussed in
Section 8, where we also explore in-depth the main differences
between our approach and Protocure’s one).

In particular, our paper focuses, on one side, on the knowledge
representation and methodological issues (which are typically the
main interest of AI researchers), and, on the other side, on usability
issues (which are more interesting from the medical point of view)
by analyzing which properties of the guidelines can be verified,
and when. More specifically, the paper main contributions are the
following:

(i) first, as a motivation for our approach, we propose an in-depth
analysis of when the verification capabilities we provide can
be used within the GL life-cycle, and a general overview of the
different types of properties that can be verified (i.e., what can
be verified);

(ii) second, we provide a general methodology to integrate
verification capabilities within a GL management system.
Specifically, we propose a modular approach in which a
computerized GL management system is loosely coupled with
a model-checker via a translator, which maps any GL
expressed in the formalism of the computerized GL manage-
ment system into the formalism of the model-checker. In such
a way, the advantages of adopting a GL management system
from one side, and a general-purpose model-checker on the
other side are retained and combined. In particular, once the
mapping has been defined, any class of properties that can be

formalized in the logic of the model-checker can be easily
verified, without requiring the definition of a new verification
software module from scratch. This obviously facilitates a
real interaction between the physician examining the GL and
the system itself. Thanks to its modularity, such an approach
can be easily implemented, since it does not require any
modification to either the computerized GL management
system or the model-checker;

(iii) third, we show how such a general approach can be
instantiated. Although our proposal is mostly application-
independent, as a proof of concept, we are currently
integrating within the system GLARE [7] a verification tool
which models a GL in Promela, the specification language of
the model-checker SPIN [25], and verifies the GL properties to
be checked by formalizing them as Linear time Temporal Logic
(LTL) formulas. In particular, one of the contributions of the
work relies in the analysis of how a GL can be represented in a
process-based language such as Promela;

(iv) fourth, we refine the discussion about the different types of
properties proposed in item (i), showing how they can be
expressed using LTL. We also propose an application to the
verification of the guideline about ischemic stroke as a
concrete example.

The paper is organized as follows. In Section 2, we introduce our
general goals and methodological choices. In Section 3 we summarize
the main features characterizing GLARE, which will be needed to
present our verification approach, and in Section 4, we briefly
introduce the model-checker SPIN. In Section 5, we specifically
present our implementation of model checking for verification in
GLARE. In Section 6, we show several properties than can be checked
during the GL life-cycle, classified as in Section 2. Section 7 contains a
more extensive verification example, conducted on a real world GL.
Section 8 is devoted to comparisons with related work. Finally,
Section 9 contains our concluding remarks and future research
directions.

2. General goals and methodology

In this section, we first show the advantages of adopting
property verification throughout the computerized GL life-
cycle, and then introduce our methodological approach to GL
verification.

2.1. Using verification throughout the computerized GL life-cycle

It is important to recognize that, in the computerized GL life-
cycle, different phases can be distinguished, and different actors
play an important role. Specifically, we single out three main
phases (namely (1) design and acquisition, (2) contextualization,
and (3) execution), and we highlight how verification can be
fruitfully exploited in each phase. As a result of such an analysis,
different classes of properties are identified. Such classes will be
further on elaborated, discussed and exemplified in Section 6.

2.1.1. Design and acquisition

GLs are usually defined by a national or international
committee of specialists, and can be acquired into a compu-
ter-based system, usually through a cooperation between some
specialists and some knowledge engineers. In such a phase,
verification through model checking is useful in order to take
into account at least two different classes of properties, namely
structural properties and medical validity properties. In
particular:

(i) Structural properties concern the existence of the appropriate
clinical requirements. These properties regard the actions,
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conditions and paths of actions in the GL considered ‘‘per se’’,
without any reference to the specific context of execution and
to the specific patients on which the GL will be applied, and are
relevant in order to ensure the appropriate management of any
patients.

(ii) Medical validity properties concern both the exclusion of
dangerous treatments and the inclusion of the most appro-
priate treatments for the considered class of patients. These
properties are relevant in order to ensure best practice.

Both classes of properties are verified during the acquisition phase, in
which both medical experts and knowledge engineers are usually
involved. Specifically, medical experts can identify the structural and
validity properties that are relevant for the GL under consideration,
and knowledge engineers can formulate and run the corresponding
verifications, reporting the results to the experts. In case the checks
show that a desired property does not hold, the domain experts
should identify the appropriate corrections to the GL, which will be
modified accordingly, in cooperation with the knowledge engineers.

2.1.2. Contextualization

Once a GL has been defined and acquired (e.g., by a national or
international committee), it has to be applied to several different
local structures (e.g., hospitals). Unfortunately, in several cases, the
original GL is too ‘‘general’’ to be applied on any specific
environment. For instance, depending on the local availability of
resources, certain actions of a general GL cannot be executed in
specific contexts (e.g., small hospitals). A phase of contextualiza-
tion is thus usually needed: when a new GL is introduced in a
hospital, the medical personnel can use (possibly in cooperation
with knowledge engineers) verification in order to identify which
resources the GL (or specific paths of the GL itself) requires.
Specifically:

(iii) Contextualization properties concern the resources needed for
the GL execution and can be checked to adapt the GL to locally
available resources.

The results of such verifications can be used for modifying the original
GL, or for improving the hospital resources, in order to conform the
hospital to the GL requirements (to grant the best practice). In the last
case, the intervention of administrator personnel is also necessary.

2.1.3. Execution

Finally, the acquired and contextualized GLs are used in clinical
practice. In such a case, a specific user-physician selects and
applies a specific GL to a specific patient. Verification is a crucial
support also in such a phase:

(iv) Properties concerning the application of a GL to a specific patient

allow to check which are the best actions (as indicated in the
GL) to be executed on the patient at hand, on the basis of the
patient’s status and symptoms; they also allow to check
whether the GL (or some specific path of it) contains the
specific actions which the user-physician expects to be
necessary for the patient at hand.

In other words, during the execution phase, verification can be mostly
used by physicians in order to check the applicability of the GL to the
specific patient at hand (instead of checking, e.g., the ‘‘abstract’’
consistency and correctness of the GL itself). In this case, verification
can be performed directly by user-physicians (since, unlikely in the
other two phases, knowledge engineers are not involved at execution
time). Of course, we are well aware that the direct use of a temporal
logic (LTL in our approach, CTL in Protocure’s one [20]) by a physician
might be problematic. However, the analysis of the ‘‘relevant’’
properties we address in Section 6 can be seen as a first step in the
direction of managing such an issue, since it can be helpful for

designing a user-friendly interface, allowing users (not expert in LTL)
to express at least the most ‘‘relevant’’ queries in a more natural way
(for instance, by providing them with a menu listing a pre-compiled
set of patterns). The development of such an (graphical) interface is a
major goal of our future work, as discussed in Section 9.

It is also worth stressing that the distinction we have
highlighted in this section regards the (time of) use of the
verification facilities. Of course, the same (or similar) properties
can be verified at different stages during the GL life-cycle. For
example, the very same property checking the suitability of a (part
of a) GL to cope with patients showing a given set of symptoms can
be used both (i) during the acquisition phase, to check the
eligibility of the given GL to treat a given class of patients, and (ii)
during the execution phase, to check the applicability of the GL to
treat the specific patient at hand. Moreover, different physicians
may also want to verify conflicting properties on the same GL,
motivated by different reasons, at different stages of the GL life-
cycle.

2.2. Methodology: loosely coupling computerized GL management

systems and model checkers

Most computerized GL management systems developed by the
Medical Informatics community provide physician-oriented form-
alisms to represent medical knowledge, as well as user-friendly
specialized facilities to acquire and consult GL, and to execute
them on specific patients. Usually, such facilities are enriched with
user-friendly interfaces, to allow systems to be used also by
physicians non-expert in computer systems. However, as dis-
cussed in the introductory section, computerized GL management
systems usually do not provide general-purpose facilities to
express and verify properties about the GLs being acquired.

On the other hand, most model checkers developed by the
automatic verification community are general-purpose engines
which, taken in input any formula in a given logical formalism, and
a formal description of the model (in the formal language provided
by the model-checker), verify whether the input formula holds or
not in the given model. Although, in principle, clinical GLs could be
directly modelled using the language of a model-checker, this is
practically unfeasible, since languages provided by model checkers
are general-purpose, complex, and therefore quite far from being
suited to represent GLs in the form in which physicians want to
manage them.

One of the main goals of our approach is therefore that of
preserving the physician-oriented environments provided by
computerized GL management systems, improving them with
the general-purpose facilities provided by model checkers.

The general approach we propose is to exploit the capabilities
of a model-checker by loosely integrating it with a computerized
GL management system. Such a loose integration can be provided
by defining a module for the automatic translation of any GL
which is represented in the computerized GL management system
format into the corresponding GL represented into the model-
checker input language format. Of course, the translator is
language-specific (for instance, a specific translator is needed
to translate GLARE GLs into SPIN’s language Promela; a different
one would be needed if Asbru GLs were taken into account), and
‘‘one-way’’ (in the sense that translating from the model-checker
language into the one of the GL management system has no
practical usefulness in this context). Given such a module,
physicians can operate using the GL management system to
acquire and execute GLs, and take advantage of the model-checker
in order to verify any property (that can be expressed in the
model-checker property language) on any of the system GLs. The
overall process is shown in Fig. 1. Given a computerized GL
management system, several guidelines (GL1, . . ., GLn in Fig. 1) can
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be acquired. The translator module can be applied in order to
automatically translate such guidelines into the formalism used
by the model-checker to represent the domain (so that GL1

0, . . .,
GLn

0 can be obtained, as shown in Fig. 1). This is the initial
situation, starting from which different users may check (for
different purposes—see Section 6) different types of properties
about the GL (e.g., P1, . . ., Pk in Fig. 1). To check a new property P on
a guideline GL the user has just to express P into the model-
checker property language, and to invoke the model-checker on P
and GL0 (i.e., the representation of GL in the language of the model-
checker). For instance, in Fig. 1, the property P1 is verified
concerning the guideline GL1. The output for the user will be a
positive answer (if the property P1 holds in the guideline GL1) or a
counter-example (if P1 does not hold). It is important to stress that
the properties need not to be defined a priori: the user can directly
express a new property and ask the model-checker to verify it.

Such a methodology can be contrasted with the one currently
used by many computerized GL management systems in the
literature, which is schematized in Fig. 2. In conventional
approaches, a specific ‘‘ad hoc’’ software module is used in order
to check a class of properties about GLs (possibly with the
exception of purely syntactical properties). Instead of expressing
the property to be checked and invoking the model-checker (as
shown in Fig. 2), in this case the user directly invokes the
specialized module which has been devised in order to verify the
property s/he is interested in (for instance, in Fig. 2, the ‘‘P1

module’’ has been invoked in order to check the property P1 on the
guideline GL1). Notice that, in such a case, the properties to be
checked must be fixed a priori, and an ad hoc module must have
been implemented for each one of them.

The general methodology we propose in Fig. 1 is much more
general and advantageous, since:

(i) it does not require the development of many different
software modules (one for each class of properties): the
translator (e.g., from GLARE to Promela) is built once and for
all, and after that any property (expressible in the model-
checker property language) can be checked on any GL. This
approach is less costly than the ‘‘ad hoc’’ approach. Suppose
that a new class of properties has to be verified on a given GL.
In the ‘‘ad hoc’’ approach, programmers must be involved, in
order to implement the proper software module. Only after the
algorithm is available, the user can use it in order to check the
desired property on the given GL. On the other hand, in our
approach, no intervention of programmers is needed: the user
(knowledge engineer and/or physician) can directly express

the new property in the language of the model-checker, and
invoke it to do the automatic checking;

(ii) it is more flexible. Specifically, in the ‘‘ad hoc’’ approaches,
designers are called to foresee ‘‘a priori’’ which are the classes
of properties to be checked, in order to let programmers
produce the proper software modules. Only the properties for
which algorithms have been devised and implemented can be
checked by users. On the other hand, in our approach, the set of
properties to be verified has not to be defined a priori: users
can directly check any property (provided that it can be
expressed in the language of the model-checker);

(iii) it supports flexible and incremental sessions of verification.
This is a direct consequence of issues (i) and (ii) above. In
certain cases (e.g., in the phase of acquisition of a new GL), the
incremental verification of its properties may be very
important. For instance, during design/acquisition, the experts
building a GL may want to verify the eligibility conditions of
the GL being built, i.e., to check what is the typology of patients
that the GL is able to deal with. Such a check can be usually
performed through a sequence of different checks, each one
depending on the results of the previous ones, and aiming at
properly defining and restricting the class of eligible patients.
Since each check depends on the result of previous ones, all
approaches based on a pre-defined menu of properties are
usually damned to fail (since there is usually no way of
identifying a priori all the properties to be checked in such an
interactive session of work). On the other hand, incremental
sessions of work are fully supported by our approach, since the
only restriction we impose is that the properties need to be
expressible in the model-checker language.

In the rest of the paper we will describe a specific instantiation of the
general architecture introduced in this section, by reporting our
integration of GLARE with SPIN. In particular, we will focus on the
representation of GLARE GLs in Promela (SPIN input language) and we
will show how Promela constructs can be suitably exploited in order
to model GL executions. Finally, we will discuss some details of the
automatic translation process we have devised. Such a translation, on
the basis of the general principles highlighted in this section, converts
any GL represented in GLARE formalism into the corresponding
Promela program. However, we insist on the generality of our
methodology, which can be applied also to other computerized GL
management systems and model checkers.

3. Computerized clinical guidelines: the GLARE approach

In this section, we briefly summarize the main features of
GLARE, which will be needed to present our verification approach.
GLARE is a domain-independent prototypical system for acquiring,
representing and executing GLs. GLARE has been built within a 10-
year project with Azienda Ospedaliera San Giovanni Battista in
Turin, and which has been successfully tested in different domains,
including ischemic stroke, bladder cancer, reflux esophagitis, and
heart failure [7,16].

Despite in this section we refer to the characteristics of our
system, it is worth noting that GLARE shares many choices with
several different approaches to computerized GL management

Figure 1. Our loosely coupled approach to deal with GL verification using a model-checker.

Figure 2. Using ‘‘ad hoc’’ algorithms to deal with GL verification.
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systems [17]. In particular, the basic philosophy underlying the
architectural design of the systems described in the literature is
based on the assumption that knowledge in the GLs is independent
of its use (e.g., decision support, evaluation etc.), so that it is
convenient to distinguish between the problem of acquiring and
representing GLs and the problem of ‘‘using’’ them (e.g., ‘‘execut-
ing’’ acquired GLs on specific patients). In accordance with this
approach, in GLARE we have defined two clearly distinguished
modules, one for acquisition and one for execution.

Moreover, the GL representation primitives adopted by the
systems described in the literature may differ for several details,
but if we look at them at a more abstract level, we can identify a
few skeletal concepts, which have been embedded in GLARE as
well. The GLARE formalism, in particular, does not add many
additional representation primitives to these fundamental skeletal
concepts, but, as well as PROforma [11], it is based on an essential –
and simple – set of constructs, meant to balance as much as
possible the trade-off between expressiveness and complexity.

Section 3.1 will address GLARE architectural choices, while
Section 3.2 will introduce the representation primitives.

3.1. System architecture

GLARE’s acquisition module, as well as the acquisition modules
of several other systems, embeds:

(i) a graphical interface, which supports primitives for drawing
the control information in the GLs, and for acquiring the
internal properties of the objects (see Section 3.2);

(ii) facilities for browsing the GLs.

GLARE also implements various forms of automatic consistency
checking (e.g. temporal consistency checking via the proposal of
advanced AI techniques [16]).

The GLs managed by the acquisition module are stored in a
database.

On the other hand, the execution module executes an acquired
GL for a specific patient, taking into account the patient’s data,
automatically retrieved from the Electronic Patient Record. The
tool interacts with the physician via a user-friendly graphical
interface as well. In particular, GLARE also adopts advanced
simulation, temporal-reasoning and decision-theory techniques in
order to assist physicians in their decision-making activities
[16,26].

A distinguishing feature of GLARE’s architecture is the
introduction of an intermediate XML layer between the acquisi-
tion/execution (interface) modules, and the databases (where GLs
and patients’ data are physically stored). XML acts as an interlingua
between the highest layer and the DBMS layer: the acquisition and
execution modules actually interact only with the XML layer,
through which they obtain the knowledge stored into the DMBS.
The use of XML as an interlingua allows us to express GLs in a
format with characteristics of legibility, and to publish them on the
Web, making easier their dissemination. On the other hand, the
DBMS layer grants a homogeneous management of the data, by
integrating the GL representation with the pre-existent hospital
information system in the same physical DBMS. GLARE architec-
ture is depicted in Fig. 3 (where the parts in the dashed box
represent the extensions needed to implement our model
checking-based approach, and will be described in Section 5).

3.2. GLARE representation language

In GLARE, a clinical GL can be represented as a hierarchical
graph, where nodes are the actions to be executed, and arcs are the
control relations linking them.

In GLARE, we distinguish between atomic and composite actions
(plans), where atomic actions represent simple steps in a GL, and
plans represent actions which can be defined in terms of their
components via the has-part relation.

Four different types of atomic actions can be identified:

- work actions (depicted as circles in Fig. 4), i.e. actions that
describe a procedure which must be executed at a given point of
the GL;

- decision actions (depicted as diamonds in Fig. 4), used to model
the selection among different alternatives. We have introduced a
distinction between:
� diagnostic decisions, used to make explicit the identification of

the disease the patient is suffering from, among a set of possible
diseases, compatible with her findings. A diagnostic decision is
represented as an open set of triples hdiagnosis, parameter,
scorei (where, in turn, a parameter is a triple hdata, attribute,
valuei), plus a threshold to be compared with the different
diagnoses’ scores;
� therapeutic decisions, used to represent the choice between

paths in a GL, where each path represents a particular
therapeutic process. The choice can be made by evaluating a
fixed set of parameters (effectiveness, cost, side effects,
compliance and duration);

- query actions (depicted as parallelograms in Fig. 4), i.e. requests of
information (typically patient’s parameters), that can be
obtained from the outside world (physicians, databases, patient’s
visits or interviews). The GL execution cannot go on until this
information has been obtained;

- conclusions (depicted as triangles in Fig. 4), which explicitly
identify the output of a decision action.

Actions in a GL are connected through control relations. Control
relations establish which actions can be executed next, and in what
order. In particular, the sequence relation explicitly establishes
what is the following action to be executed; the alternative relation
describes which alternative paths stem from a decision action, and
the repetition relation, states that an action has to be repeated
several times. In detail, given a repeated action, the number of its
repetitions can be fixed a priori, or, alternatively, it can be asserted
that the action must be repeated until a certain exit condition

becomes true (in this case, the number of repetitions is only known
at runtime, during execution). In particular, advanced AI techni-
ques are required to deal with temporal reasoning in repeated
actions.

3.3. A running example: the ischemic stroke guideline

As an example, in Fig. 4, we present the flow-chart for the
swallowing test contained in the ischemic stroke GL, visualized
through the GLARE graphical interface. This guideline about
ischemic stroke was made in the ASO S. Giovanni Battista of Turin
(one of the largest hospitals in Italy) by a multi-disciplinary group

Figure 3. Architecture of the GLARE system: the dashed box includes the

verification part, oval nodes represent computation modules, and rectangles

represent data.
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(33 physicians) on the basis of the Italian guidelines for stroke
prevention and management (http://www.spread.it/SpreadEng/
EnglHome.htm URL last accessed on 22/05/2009). The final version
(edited in 2002) is 82 pages long, and was used in the Ministerial
project TRiPSS-II (‘‘Sperimentazione di strumenti per l’implemen-
tazione di linee-guida’’), coordinated by the CeVEAS (Modena) with
the participation of the ASL 12 (Biella), ASL 4 (Turin), Mauriziano
Hospital (Turin), San Giovanni Battista Hospital (Turin). The paper
guideline has been acquired in a computer format using GLARE by
a multi-disciplinary team consisting of both expert physicians and
knowledge engineers. The computerized guideline focuses on the
skeleton procedures, and consists of 319 nodes (actions).

In particular, in the ischemic stroke GL, if the patient complains
dysphasia, s/he is submitted to a first swallowing test. If this is
negative, a second test is performed and evaluated. If one of the
tests if positive, the patient is submitted to the evaluation of a
speech-language pathologist. If this evaluation confirms abnorm-
alities, videofluorography is performed and evaluated. In case
abnormalities are confirmed, nutritional support is applied
(parenteral and/or enteral-tube nutrition). If the evaluation of
the speech-language pathologist or the result of videofluorography
is negative, prudent oral feeding and re-evaluation are performed.

The ischemic stroke GL will be referred to as a running example
in the rest of the paper.

4. SPIN and LTL: a model checking approach to verification

In this section, we introduce model checking approaches to
verification and, more precisely, we shortly describe the LTL
model-checker SPIN [25] that has been used in the verification of
GLs in GLARE.

4.1. Model checking: the general principles

In the model checking approach [18], given a model describing
all the possible evolutions of a system and a specification
expressed in a temporal logic [27], the model is checked to see
whether it satisfies the specification.

The model is usually given in a special-purpose language, which
depends on the model-checker, by defining a finite state machine.
A finite state machine is, in essence, a directed graph, whose nodes
(vertices) represent the states of the system, and whose edges
represent the transitions from state to state. Transitions typically
correspond to the execution of actions changing the state, or to the
occurrence of external events changing the state. As we will see in
the following, in our application of model checking to the
verification of GLs, the model of the system is built from the GL
as well as from the agents interacting with it, and it describes all
the possible evolutions of the state of the world in accordance with
the GL requirements. Each state of the system defines the patient’s
parameters (such as laboratory test values, and symptoms), and
the state transitions correspond to the executions of actions
changing the state of the world (work actions, query actions, etc.—
see Section 3.2).

Given the model of the system, the possible executions (runs) of
the system can be obtained by considering, for each state, all the
possible actions which can be executed in that state and in all the
resulting successor states. All the system runs that can be obtained
from a given initial state can be represented as a tree, as shown in
Fig. 5. We have labeled each state with the propositions true at that
state, and each transition with the action causing the transition.
For instance, in state s1 (in which p and q are true and r is false),
two actions can be executed: action a1, which makes p false,
leading to state s2, and action a2, which makes r true, leading to
state s3. In general, the system runs are infinite sequences of states
(and transitions), although here we will be mainly concerned with
finite executions, that is, with finite prefixes of runs. An example of
a run in Fig. 5 is the infinite sequence s1 s2 s4 s4 s4 . . ., where in the
figure we have omitted to represent the infinite repetition of
occurrences of the state s4. Similarly, we assume that all the other
runs in Fig. 5 are infinite, by regarding the leaf states in the tree to
be repeated infinitely many times.

Observe that, in general, the initial state is not unique, as a
parameter (for example, fever temperature) may be undetermined
in the initial situation and this can require keeping into
consideration all the different possible values for that parameter,

Figure 4. The swallowing test of the ischemic stroke GL visualized through the GLARE graphical interface.
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thus considering a different initial state for each value (for
instance, high-fever, low-fever, normal-fever etc.).

Once a model of the system (i.e., in our application, of the GL
and of its executing environment) has been defined, properties of
the system itself can be verified, by reasoning on its possible runs.
Such properties are specifications that the system is expected to
satisfy. Here, we are interested in verifying that the GL satisfies
desired properties and it does not satisfy undesired ones. Before
discussing the matter of verification in further detail, let us shortly
describe the model-checker SPIN.

4.2. Model checking in SPIN

Our model checking approach to the verification of GLs makes
use of the Linear time Temporal Logic (LTL) model-checker SPIN
[25]. In SPIN the specification of the model is given in the input
language Promela (that will be shortly described below), and the
specification to be checked is a formula of LTL.

Promela allows a high level model of a distributed system to be
defined by modelling each process in an extended pseudo C code,
including synchronization primitives and message exchange
primitives. Promela provides the usual if-then-else and iteration
constructs of imperative languages, but it also allows for goto
statement (allowing jumps to labels), for the non-deterministic
choice construct, as well as for the parallel execution of processes.
Processes may share global variables and they also may exchange
messages through asynchronous communication channels.

SPIN translates each Promela process into a finite automaton,
and the global behaviour of the system is obtained by computing
an asynchronous interleaving product of automata. The resulting
automaton represents the global state space of the system (the
model containing all the possible executions – runs – of the GL) and
can be built on-the-fly during the verification process.

The correctness claims, that have to be checked on the model of
the system, are specified as temporal logic formulas in LTL.

In Section 4.3, we shortly describe how LTL formulas are
defined, and how they are checked in a model. Readers who are
familiar with LTL can completely skip the rest of this section.

4.3. LTL formulas

LTL formulas are built from the usual connectives AND (&&), OR
(jj), NOT (!), implication (-i) and bi-implication (h-i) of classical
propositional logic, as well as from the temporal operators always
([]), eventually (hi) and strong until (U). In the following, for sake of

readability, we will use the standard notation^,_,:,!,$, &, ^, U
for the connectives, rather than SPIN notation given above.

An LTL formula is evaluated in a linear model which is defined
as a pair (s,V), where s is a sequence of worlds (each world
representing a state of the system), and V is a valuation function
assigning to each world s in s a propositional valuation V(s), i.e.,
assigning a (true or false) value to each proposition in each world.
An example of a linear model is given by the run s = s1 s2 s4 . . . in
Fig. 5, where the valuation function is given by the propositions
labeling each world.

A temporal formula is evaluated at a world s of a model (s,V).
The valuation of the classical connectives is defined as usual, while
the valuation of the temporal connectives is defined in the
following way. Let s be the sequence s0 s1 s2 . . .:

(i) A formula &a is true in a world sk of s if a is true in all the
worlds sh of s, for all h > k.

(ii) A formula ^a is true in a world sk of s if there is a world sh of
s, with h > k, such that a is true in sh.

(iii) A formula b U a is true in a world sk of s if there is a world sh of
s, with h > k, such that a is true in sh, and b is true in all the
worlds si, with k � i < h.

Intuitively, given a model (s,V), the formula &a is true in a world sk

when a is true in all the worlds following sk in s. The formula ^a is
true in a world sk when there is a world sh reachable from sk in which
a is true. The formula b U a is true in a world sk when there is a world
sh reachable from sk in which a is true, and b is true in all the worlds
of s from sk to sh. For simplicity of exposition, in the following, we will
omit examples involving the until operator.

Given a property (specification) as an LTL formula, SPIN verifies
if the property is true on all the executions of the system. Namely,
each run of the system is regarded as a linear temporal model and
the truth of the property is verified on it, from the initial state.

Let us consider, for instance, the run s1 = s1 s2 s4 . . . in Fig. 5.
The formula &:r is true on the run s1 in the initial world s1. In
fact,:r is true in all the worlds reachable from s1, namely s2 and s4.
If we consider run s2 = s1 s2 s5 . . ., &:r is not true on this run in s1,
as there is a reachable state s5 in which :r is false. The formula
^:q is also true on the run s1 in the initial world s1, as there is a
state s4 reachable from s1 in which q is false (:q is true). Instead,
the formula ^:q is false on the run s3 = s1 s3 s6 . . ., as there is no
reachable state from s1 on which q is false.

The formula

&ð :p!ð:q_ : rÞÞ; (1)

(meaning that, in all the reachable states, if p is false, then either q
or r is false) is true on run s1 (in the initial state s1). Such a formula
is also true on the runs s2 = s1 s2 s5 . . . and s4 = s1 s3 s7 . . ., while it
is not true on s3 = s1 s3 s6 . . ., as in state s6 p is false, but neither q
nor r is false. Hence, if SPIN were asked to check whether formula
(1) is true on all the runs of the system, the answer would be NO
and run s3 would be returned as a counter-example to the
property (see below).

The property

&ð :q^ : r! :pÞÞ; (2)

instead, is true on all the four runs, and SPIN would answers YES to
the request of verifying formula (2) in all possible runs.

The property

^ð :q^ :pÞ; (3)

(eventually a state can be reached in which both p and q are false),
is true on runs s1 and s2 but not on s3 and s4. Instead, the
property ^ (:q_:p) is true on all the runs.

Figure 5. Executions of the system from the initial state s1 = {p,q,:r}.
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Consider the system has a further run s5 (not represented in
Fig. 5), with s5 = s8, s3, s3,. . .., where s8 = {p, :q, :r}. Property ^
(:q_:p) is not true on s5. However, property

p^q!^ð :q_ :pÞ; (4)

(if p and q hold in the initial state, then eventually either q or p will
be false) holds on all the five runs (including run s5, on which (4)
holds trivially, as the antecedent of the implication (p^q) is false in
its initial state s8).

In general the temporal modalities can be arbitrarily nested
within formulas. For instance, we can write a property

&ðp^q!^ð :q_ :pÞÞ; (5)

meaning that, for all the reachable states, if p^q is true, then:q_:p
will eventually be true. Although this property holds on all the runs
in Fig. 5, it does not hold on run s5. In fact, there is a reachable state
s3 of s5 in which p^q is true, but from s3 there is no reachable state
in which :q_:p holds.

To verify that a formula holds on all the runs of the system, SPIN
converts the negation of the temporal formula into a Büchi
automaton and computes its synchronous product with the system
global state space. If the language of the resulting Büchi automaton
is empty then the property is true on all the possible execution of
the system, otherwise the verifier provides a counter-example for
the property (an execution path on which the property is false).

Besides verifying that a formula holds on all the runs of the
system, SPIN also allows to check if there is a run of the system on
which a given formula a is true. This is done by negating the formula
a, and then verifying whether the formula:a holds on all the runs of
the system. If not, the resulting counter-example for :a is a run on
which a is true. In the following, we will be interested in both kinds
of verifications: the verification that a property holds on all the runs,
and the verification that there is a run satisfying the property.

5. Integrating GLARE with SPIN

As a proof of concept, we have applied the general methodology
described in Section 2 in order to couple GLARE with the model-
checker SPIN.

As shown in Fig. 3 and explained in Section 3.1, in GLARE we
provide a three-level representation of GLs: in an internal system
format (i.e. in the GLARE representation language, at the
acquisition and execution modules level), in XML, and in the
DBMS. Given its readability and its generality, we have chosen the
XML-format representation as the basis of the translation. In other
words, our translator takes in input a GLARE GL, expressed in the
XML format, and transforms it into the corresponding GL in the
Promela language.

Analogously, the patient data (taken from the XML format) are
also translated into the Promela language.

In this section, we briefly describe the general principles we
adopt to convert a GL in the GLARE formalism into the
corresponding agent-based program in the Promela language.
First, we describe how a GL in the GLARE formalism is mapped to a
set of interacting processes (called agents henceforth), i.e. to a set of
Promela processes and to a set of proper synchronization
primitives and message exchange primitives, and in particular
we show the pseudo-code corresponding to a query action. Then,
we shortly describe our translator module.

5.1. Guidelines as agents

Obviously, the basic object we need to represent in the Promela
formalism for the purpose of verification is the GL itself. As already
observed, a GL can be seen as a set of actions, to be executed in the

order specified by a set of control flow primitives. As detailed
below, we have mapped each construct (action or control flow
primitive) in the GL (see Section 3.2) to a Promela statement or to a
Promela piece of code.

However, GL execution is a complex phenomenon that cannot
be modelled just by representing the GL per se.

In the following, we propose a possible, more realistic way of
capturing the dynamics of the GL and of its execution environment,
based on the idea of modelling a set of processes, whose interaction
models the GL execution itself. Actually, the identification of the
involved processes and of the characteristics of their interaction
represents an additional, original contribution of this paper, which
is mostly independent of GLARE’s approach.

One of the required processes – which we will call agents – is of
course the GL itself. The other agents represent the (human or not)
components interacting with the GL at execution time.

In particular, the Database agent has to be represented. Actually,
patient’s characteristics need to be specified, and, rather naturally,
we characterize a patient by relying on her data, which are
typically maintained in the clinical database. The Database agent
thus provides data on demand, and is able to store new data values.

Updated data values are sometimes obtained from additional
sources (e.g. from the hospital laboratory service). We have
generically modelled such sources and services by means of a
further agent, called Outside world.

Last but not the least, GL execution is performed by a physician;
therefore, the physician’s behavior needs to be modelled as an
agent as well. In particular, we have identified two main tasks that
the Physician agent is expected to cover when applying a GL to a
specific patient. Obviously, it is required to make decisions, i.e. it
has to select exactly one diagnosis or therapy, among a set of
alternative ones. Moreover, it has to evaluate data recency and
reliability: if a data value, extracted from the database, is judged as
unreliable or not up-to-date (i.e. too old), the Physician agent has
to rise the problem, thus triggering the generation of a newer data
value from the outside world.

In summary, the model of the distributed system we propose to
simulate GL execution can be described by the interaction among
the following agents, interpreted as Promela processes:

(i) the Guideline agent, which models the overall behavior of the
GL;

(ii) the Database agent, which models the behavior of the patient
database, allowing for data insertion and retrieval;

(iii) the Outside agent, which represents the outside world and
provides up to date values for patient data (together with the
time of their measurement) when they are not already
available in the database or are evaluated as being not reliable
by the physician. It also stores data in the database, and
simulates the execution of work actions by reporting their
success or failure;

(iv) the Physician agent, which interacts with the GL by evaluating
the patient data, choosing among the different alternative
feasible paths as a physician would do, and judging data
reliability. Observe that we model the Physician agent as a
non-deterministic process, since it is not possible to know a
priori all the possible choices of physicians in all the possible
situations. We therefore model the uncertainty about the
choice of physicians using non-determinism: from the point of
view of the simulation, choices are taken randomly by the
Physician agent.

Details about each agent’s representation are provided below.
Observe that such a general interpretation and representation of

the GL execution environment as a distributed system does not
depend on the adoption of GLARE and of its representation language,
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but is very general indeed, and is mostly adaptable to other
approaches to GL modelling and verification. Also note that such
an interpretation, if properly extended, would be even more useful to
describe the execution of complex hospital workflow processes,
which heavily rely on the communication among interacting agents:
workflow processes will be the object of our research in the future.

(i) Guideline agent: In order to model the Guideline agent, we had to
map each construct in the GL (see Section 3.2) to a Promela
statement or to a Promela piece of code. As regards control
relations, in particular, sequence is mapped using the goto
statement towards the next action in the GL. Observe that each
action has a label (Et in the example below) that identifies its
address; this label is used as the action name and as the target of
goto statements. The alternative relation is also mapped using the
instruction goto, but in this case its target (i.e. the next action to be
executed) is not determined in a static way, but is chosen on the
basis of Physician agent’s answer. The repetition relation is
modelled by the repetition construct (do statement) in Promela.

As regards GL atomic actions, let us first take into account our
representation of query actions in Promela pseudo-code:

In the pseudo-code above, for each datum, the Guideline agent
sends a request message to the Database agent (i.e. LGtoDB!
datum.D, datum.A) and waits for the answer message (LGfromDB?
datum.D,datum.A, datum.V, datum.T). Observe that the datum is a
quadruple hD, A, V, Ti, where D is the category to which it belongs
(e.g. liver examination), A is the attribute of interest (e.g. volume
of the liver), V is the value assumed by the attribute in the given
case, and T is the time at which the measurement was taken. Then
it checks whether the datum is missing (datum.V == MISSING); if
the datum is not stored in the patient database, it sends a request
message to the Outside agent (LGtoOUTSIDE! datum.D, datum.A)
in order to obtain such a value, and waits for its answer message
(LGfromOUTSIDE? datum.D, datum.A, datum.V, datum.T). Other-
wise if the datum is found, it sends a request message to ask the
Physician agent to evaluate whether the datum is still reliable
(LGtoPH_data! datum.D,datum.A,datum.V,datum.T;), or it is too
old. Notice that, in GLARE, every datum has an associated
timestamp (e.g., datum.T). It then waits for the answer of the
physician (LGfromPH_data? datum.D,datum.A,valid). If the

datum is not valid, the Guideline agent sends a request message
to the Outside agent in order to provide up to date values for this
datum.

Notice that the above translation provides as an output, among
the other things, a set of variables (one variable for each requested
datum), which will be used in order to store the values of the
requested data in the GL. These variables can be further on referred
to in the LTL properties to be verified.

The variable cost_of_done, on the other hand, stores the cost of
the GL actions and is updated when a new value of the datum is
acquired (in case the datum is missing and/or is not reliable). The
variable done records the last executed action and is updated when
a new action is performed with the label of such an action.

The statement goto NextEt is used to jump to the next
statement. As mentioned above, GLARE sequence construct is
translated by making use of goto statements.

In the following, we provide a short and qualitative description
of the translation of the other types of actions in GLARE.

A decision action is translated into a Promela piece of code in
which, for each alternative, the Guideline agent evaluates the
support conditions on the basis of patient’s parameters and sends
the support values to the Physician agent; then, it waits for the

Physician agent to send the answer message that points out the
next action to be performed.

A work action is managed similarly. First of all, it is checked
whether the required resources are available. If not, the action
fails, otherwise the action can be executed and the process
modelling the work action asks the Outside agent to ‘‘execute’’ the
action and waits for its answer. If the Outside agent answers that
the action has been ‘‘executed’’ correctly, the execution of
Guideline agent continues as follows: in case of acyclic work
actions, there is a jump to the next action in the guideline; in case
of cyclic actions, a test evaluates whether a new iteration has to be
executed. If a failure is reported (e.g. a resource is not available or
the Outside agent answers that the action has failed for other
reasons), the Physician agent is asked to choose among the
available ‘‘backtracking’’ points, i.e., points in the GL from which
the execution can continue.

A conclusion action simply consists in a Promela piece of code
that prints a message, since it represents the explicit output of a
decision process.
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Finally, a plan consists of a Promela piece of code that checks
whether the required resources (preconditions) are available. If so,
it jumps to the first action of the plan. Otherwise the plan fails.
Observe that the actions in the plan are executed according to the
order defined in the GL and that, after the execution of the last
action of the plan, there is a jump to the label of the next action in
the guideline, in case the plan is acyclic, or a jump to a statement
which checks whether a new iteration of the plan is needed, in case
the plan is cyclic.

In the following, we describe the other four agents (for the sake
of brevity, the Promela code is not shown).

(ii) Database agent: The Database agent models the behavior of the
patient database. It waits for a message of data retrieval/
insertion. If it receives a request message asking to retrieve a
clinical datum for a specific patient, it sends the value to the
Guideline agent. Observe that if the datum is not stored in the
patient’s database, the Database agent answers that the datum
is missing (i.e. datum.V is set to the value MISSING). If it
receives a request message asking to insert a value for a datum,
it performs the insertion of this information into the clinical
database.

(iii) Outside agent: The Outside agent waits for a message from the
Guideline agent. It can receive two types of requests: provide
an up to date datum or execute a work action. If it receives a
request message asking to provide up to date values for a
datum, it provides in a non-deterministic way the new value
(i.e., it randomly chooses a value between the possible ones),
asks the Database agent the insertion of this datum, and
reports this datum to the Guideline agent. If it receives a
request message asking to execute a work action, it performs
this action and reports about its success or failure to the
Guideline agent.

(iv) Physician agent: The Physician agent waits for a message from
the Guideline agent. As already observed, it provides the
requested information in a non-deterministic way (i.e. its
choice is a random one) and sends a message containing this
information to the Guideline agent.

Note that Database agent, Outside agent, and Physician agent spend

their time waiting for a request from another agent, and then
processing such a request.

Let us point out that the above mapping to a Promela
specification has been adopted considering only qualitative
constraints on the temporal ordering of actions (instead of more
complex temporal constraints, such as the fact than an action must
be performed during another one, or must finish at least 1 h before
the end of another one; see [16] for more details about temporal
constraints in GLARE). More precisely, in our Promela specifica-
tions, the actions can be executed either sequentially or
concurrently, and no additional temporal constraint between
actions is considered.

The timestamps associated with data in GLARE (describing the
time at which the measurement of each datum is taken) are not
required for evaluation of constraints in the Promela specification.

In fact, they are only used by the Physician who has to decide if the
data are still reliable or not. As we model the Physician as a non-
deterministic process answering the requests from the guideline,
we do not need to have time values available during the
computation and hence to represent them in the model: the
Physician non-deterministically recognizes a datum as being valid
or not. Therefore, we only need to represent the fact that the
timestamps are exchanged between the guidelines and other
agents while we do not need an explicit representation of time
values. This simplification, which is made possible by the fact that
GLARE’s temporal constraints between actions are not considered,
highly reduces the complexity of the model.

5.2. The translator

As explained above, we have defined a translator which takes a
set of XML documents representing any GLARE GL and auto-
matically transforms them into the corresponding GL in the
language Promela.

A GL in GLARE is a hierarchical graph, in which it is possible to
have composite actions (i.e. plans), which can be defined in terms of
their components via the has-part relation (see Section 3.2). In the
XML document such a structure is maintained. Thus, the translator
works as a top-down parser, according to the pseudo-code below:

In particular, the translator takes in input a graph defined as a
couple hN,Ei (where N is the set of nodes and E is the set of edges),
which is the XML document representing the GL, and the
vocabulary V, which contains the medical data information. To
make the translation, the parser visits the graph twice. The first
time it makes a preprocessing (i.e. it calls the preprocessing
function) in order to obtain the data concerning the requests of
information of query actions, according to the pseudo-code below
(i.e. such data are stored in x):

The preprocessing function visits in-depth the graph G. This
preliminary step is needed due to the fact that the model-
checker needs that all possible variable values are known.
Indeed, such values are defined in the vocabulary V. Therefore,
for each parameter (e.g., fever), the list of its possible values is
collected from the medical vocabulary (e.g., absent, low,
medium, high). Observe that in hparameter, list of the possible

valuesi the second element list of the possible values is always
finite, since continuous values are always discretized in the
vocabulary.

In the second step, the parser visits the graph for the
second time, through the function generateAgentsCode,
in order to build the agents shown in Section 5.1, which
model the GL behavior, according to the pseudo-code
below:
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During this second step, the parser first visits each node of
the graph, and for each node in the set N it generates the
Promela code that corresponds to the node’s intended behavior.
Observe that, since each type of node has a different behavior in
the GL, the parser discriminates between the different types in
order to generate the correct code. For instance, consider the
case of the query action: the parser generates the code for the
Guideline agent, which will interact with the Physician agent,
the Database agent, and the Outside agent, since all these
four agents are involved in implementing the query action
execution in practice (see Section 5.1 for the explanation of
interaction between these agents) and for the Promela pseudo-
code for the Guideline Agent concerning the translation of a
query action).

Then, the parser visits each edge of the graph and completes
the Guideline agent code. In particular, it creates the code
connection in the Guideline agent between the Promela piece of
code that describes each action and the piece of code that
describes the next action, according to the control flow. Observe
that each piece of Promela code corresponding to an action (see
Section 5.1) is identified by a label (i.e. Et in the example in
Section 5.1) and the code ends with a goto statement that allows
to reach the next action (i.e. goto NextEt in the example in
Section 5.1). Thus the parser instantiates the value of the label
NextEt.

Observe that, if we want to evaluate some properties on the
execution of a GL for a specific patient (i.e. the properties are
dependent of the patient’s data), the translation process needs to
take into account the patient’s data. The patient’s data, taken from
the corresponding XML document, are then introduced into the
Promela code. Having a patient data document means that the GL is
instantiated on a specific patient and that some clinical data of this
patient are known. Thus, the translator takes these data from the
XML document and sets the values of the corresponding variables
in the Promela document. Of course some data might be missing, or
their value could change during the GL execution (e.g. a datum can
be evaluated as not being reliable by the Physician agent). In the
case we want to evaluate properties that are independent from the
patient’s data, the patient’s data are not needed and they are not
given to the translator. In such a case, the value of the variables
corresponding to the patient’s data is not instantiated, and the
model-checker tests the properties on all the possible values of the
variables.

As a final remark, notice that the translator allows any GL
representation in GLARE to be mapped into the corresponding
Promela code. We think that the adoption of a high-level process-
based language like Promela makes this translation relatively easy
and natural, as shown in the brief description above. We believe
that the simplicity of the translator gives a measure that the
representation of the guideline in GLARE and in Promela is not so
far from each other.

6. GL properties

In the previous sections, we have discussed the advantages of
adopting model checking techniques in the verification of GL
properties, and we have described a loosely coupled approach to
combine the SPIN model-checker with GLARE. In Section 2 we have
sketched the different phases in the GL life-cycle, identifying in the
meanwhile different classes of properties that can be checked in
each phase. Until now, however, we have relied on the readers’
intuition as regards what are the properties to be checked. As a
matter of fact, temporal logics such as LTL allow one to express a
wide range of formulas. Such an expressiveness and generality
motivates a deeper analysis of what kinds of properties,
expressible in LTL, are useful in the GL context.

We divide the properties on the basis of the GL life-cycle phases
we pointed out in Section 2.1. It is worth stressing that, in the
paper, we do not focus only on the properties to be checked in the
acquisition phase to grant the consistency of GLs (as done for
instance in Protocure). We also take into consideration properties
that can be useful in the other stages of the GL life-cycle, including
GL execution on specific patients (e.g., checking the existence of
paths which use – or do not use – a given resource, or a given
treatment, or perform – or do not perform – a given action). Of
course, we do not claim we are exhaustive: we regard such an
analysis as a first step to identify ‘‘relevant’’ or ‘‘frequently-used’’
patterns of properties, with the final goal of providing (in our
future work) a user-friendly interface for them. This analysis is, in
our opinion, one of the core contributions of this paper, and is
presented in the rest of this section.

Although in many examples the reference GL we considered is
the ischemic stroke GL (with specific reference to the GL developed
by Azienda Ospedaliera S. Giovanni Battista, in Turin, and acquired
in GLARE—see Section 3), we also take some examples from other
GLs. In order to characterize the expressiveness of LTL with respect
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to GL property verification, we have distinguished the properties
on the basis of the ‘‘pattern of operators’’ they use. In particular, as
described in section 4, given a property a (expressed by an LTL
formula), we can either check if it holds on all the executions of the
guideline, or if there is a run on which it holds. For the sake of
exposition, we describe the properties to be verified by distin-
guishing two components:

(1) a quantifier on ‘‘runs’’: 8, stating that we verify if the property
holds on all the runs, and 9, stating that we look for one run
satisfying the property

(2) an LTL formula (as described in Section 4.3).

Therefore, in the following, we formulate properties to be checked as
pairs

hrun_quantifier, LTL_formulai

For the sake of clarity and simplicity, in the first examples below
we describe properties that can be expressed by simple LTL
formulas containing only one temporal operator (of course, more
complex examples can be built using more than one temporal
operator and some examples will be shown in Sections 6.5 and 6.6).
Each property is prefixed with the combination of hquantifier,
temporal_operatorsi, where the temporal operators are those
occurring nested in the query, and is followed by the indication (in
parenthesis) of the GL it refers to.

6.1. Structural properties

As discussed in Section 2.1, structural properties concern the
existence of the appropriate clinical requirements, and are relevant
in order to ensure the appropriate management of any patient.

Here and in the following, we assume that the SPIN variable
‘‘done’’ is set, in each state, to the action performed in such a state.1

Class: 8 &

Example: Verify that neurological deficit is always present
(ischemic stroke GL)

Property 6.1.1: h8run, &(neurological deficit = present)i
Comment: The property is true if neurological deficit is always
present, in all the states of all possible runs.

Relevance: The ischemic stroke GL is not applicable to a patient
with no neurological deficit.

Class: 9 &

Example: Verify that the GL contains a run not including
any surgical intervention (cholelithiasis GL)

Property 6.1.2: h9run, &(done 6¼ surgery)i
Comment: The property evaluates to true if there is at least a run
in which surgery is never performed.

Relevance: The most frequent treatment of gallstones is the
expectant management (asymptomatic gallstones).

Class: 8 ^

Example: Verify that any run contains antibiotic treatment
(community acquired pneumonia GL)

Property 6.1.3: h8run, ^ (done = antibiotic_treatment)i
Comment: The property evaluates to true if all possible runs
contain a state in which an antibiotic treatment is administered.

Relevance: The antibiotic treatment is mandatory in the case of
community acquired pneumonia.

Class: 9 ^

Example: Verify that the GL contains a run including
thrombolysis (ischemic stroke GL)

Property 6.1.4: h9run, ^(done = thrombolysis)i
Comment: The property evaluates to true if there is at least a run in
which thrombolysis is executed.

Relevance: It is important to perform a thrombolysis in case the
patient is eligible and in the hospital is present a stroke unit.

In the following, we mention some more complex formulas,
involving some nesting of temporal operators.
Class: 8 &&

Example: Verify that cholecystectomy is not repeated
(cholelithiasis GL)

Property 6.1.5: h8run, & (done = cholecystectomy ! &
(done 6¼ cholecystectomy))i

Comment: Once removed, an organ cannot be removed again.

Relevance: The surgical treatment of gallstones in a
cholecystectomized patient cannot consist of a new
cholecystectomy.

6.2. Medical validity properties

As discussed in Section 2.1, medical validity properties concern
both the exclusion of dangerous treatments and the inclusion of the
most appropriate treatments for the considered class of patients, and
are relevant in order to ensure best practice. In the following
examples, predicates must be introduced in order to model the
patients’ data. Consistently with the formalism used in the clinical
records in GLARE (as well as in several hospital information systems),
we represent patient clinical data as triples hdata, attribute, valuei.
Specifically, in the following temporal properties, we adopt the
notation: ‘‘data_attribute = value’’. Notice, however, that the results
in this paper are completely independent of such a notational choice.
Class: 8 &

Example: Verify that whenever hepatic encephalopathy is
present, diuretics are not administered
(as cites GL)

Property 6.2.1: h8run, liver_state = encephalopathy!&(done 6¼
diuretics_administration)i

Comment: Diuretics are contraindicated in hepatic
encephalopathy.

Relevance: Diuretics can worsen the liver perfusion and
precipitate the encephalopathy or worsen its severity.

Class: 9 &

Example: Verify that there is a run in which the
acetylsalicilic acid (ASA) is not used
(ischemic stroke GL)

Property 6.2.2: h9run, &done 6¼ ASAi
Comment: This is the condition for applying the GL in the case
the patient is allergic to ASA.

Relevance: The ASA allergy is potentially life threatening.

Class: 8 ^

1 It is worth noting that, in the formulation of the properties in this section,

for the sake of clarity we have assumed that properties are checked considering

the reference GL being specified. Therefore, we do not explicitly model the

context (GL) in which the properties are verified. For instance, the third property

implicitly assumes that ‘community acquired pneumonia’ holds. Removing the

above assumption is trivial: the property could be more exhaustively expressed

as: h8run, community_acquired_pneumonia = yes! (^ (done = antibiotic_

treatment))i.
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Example: Verify that if vital signs are altered, the patient
is sent to intensive care unit (ischemic stroke
GL)

Property 6.2.3: h8run, vital_signs_value = altered!^
(done = sent_to_intensive_care_unit)i

Comment: Monitoring and treatment in an intensive care unit is
preferable in this case.

Relevance: The admission of the patient with altered vital signs
in an intensive care unit is mandatory.

Class: 9 ^

Example: Verify that, in the presence of ureteral lithiasis,
there is at least one state in which endoscopic
removal is considered (urinary stones LG)

Property 6.2.4: h9run, ureteral_lithiasis _state = present!^
(done = endoscopic_removal)i

Comment: Alternative treatments (e.g., surgery) are possible,
but more invasive.

Relevance: The endoscopic removal of urinary stones, whenever
possible, is preferable.

6.3. Contextualization properties

As discussed in Section 2.1, contextualization properties lead
from (general) GLs to hospital-specific GLs, mainly as concerns the
presence/absence of instrumentation. These properties are rele-
vant to adapt the general guidelines to the specific environment
(hospital).
Class: 8 &

Example: Verify that each action costs less than x (any GL)

Property 6.3.1: h8run, &cost_of_done hxi
Comment: In this example, we assume that, in each state,
the SPIN variable cost_of_done represents the maximum allowed
cost of the action performed.

Relevance: Cost reduction is one of the most important aspects
of health care policy.

Class: 9 &

Example: Verify that there is a run in which the CT
scanner is not used (ischemic stroke GL)

Property 6.3.2: h9run, &done 6¼ TCi
Comment: If this condition holds, the GL (or, at least a part of it)
can be applied also in hospitals where the case the CT scanner
is not available.

Relevance: The CT scanner is very important in some cases but
not always accessible.

Class: 8 ^

Example: Verify that if the CT scanner is not available,
patient transfer to another hospital is considered
to perform the test (ischemic stroke GL)

Property 6.3.3: h8run, CT_scanner = absent!^done =
patient_transferi

Comment: The suspect of ischemic stroke should always be
confirmed by CT.

Relevance: The CT scan is almost always diagnostic of the
ischemic event and influences the subsequent decisions.

Class: 9 ^

Example: Verify whether MR is used in the GL (ischemic
stroke GL)

Property 6.3.4: h9run, ^done = MR_imagingi
Comment: This property should be verified since, in the case MR
imaging is considered, its execution must be possible.

Relevance: The MR imaging, when available, is the most diagnostic
test in some cases of ischemic stroke.

6.4. Properties about the application of a GL to a specific patient

As discussed in Section 2.1, these properties are relevant to
ensure a patient-centred approach, considering the peculiarity of
each patient.

The formulas in this subsection are quite close to the ones in
Section 6.2 since, in both cases, the status of patient needs to be
modelled. However, in Section 6.2 the formulas regard ‘‘classes’’
of patients, and are aimed to check the eligibility of the given GL
to treat such classes, while here we consider the applicability of
the given GL to a specific patient. As a main consequence, while
the formulas in Section 6.2 refer to conditions on the status of
the available resources in the initial state, here we take into
account the clinical conditions of a single patient (fever, pain,
infections, etc), which may change during the guideline
execution, and, in general, we are interested in the values at
different times. For instance, in the property 6.4.1, the first
temporal operator in ‘‘&(abdominal_pain_value = acute! . . .)’’
is used in order to model that we are interested not only in the
first state of the execution of the GL, but also in all the states in
which, during the execution, acute abdominal pain arises. This is
the main reason for which properties in this section are
‘‘prefixed’’ with an additional & temporal operator.

Of course, the properties below might also be checked
considering the specific status of the execution of the given GL
on the patient at hand. Technically speaking such an effect can be
achieved in our approach by modelling (part of) the past execution
in the property to be checked.

Class: 8 &&

Example: Verify that, after a cerebral hemorrhagic
event, no anticoagulant drug is administered
(ischemic stroke GL)

Property 6.4.1: h8run, & (cerebral_hemorrhagic_event
= present!& (done 6¼ anticoagulant_drug_
administration))i

Comment: In the natural evolution of an ischemic stroke,
intra-cranial bleeding may be life-threatening

Relevance: The intra-cranial hemorrhage is an absolute
contraindication to anticoagulant drug administration.

Class: 9 &&

Example: Verify that, if an infection arises, there is a
treatment not based on penicillin

(community
acquired
pneumonia GL)

Property 6.4.2: h9run, &(infection_value = present!&(done
6¼ penicillin_administration))i

Comment: Notice that, e.g., penicillin treatment cannot be
administered to allergic patients.

Relevance: Antibiotic treatment is based on different drugs
which should be adapted to the patient’s different conditions.

Class: 8& ^
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Example: Verify that, if hyperpyrexia appears,
hemoculture is performed (FUO GL)

Property 6.4.3: h8run, &(hyperpyrexia_value = present!^
(done = hemoculture))i

Comment: In each run, hemoculture must be performed, if
hyperpyrexia appears.

Relevance: Hemoculture is very important in the diagnostic
process of the FUO because it can positively influence the
antibiotic choice.

Class: 9 & ^

Example: Verify that there is a treatment in which
growth factors are administered, when
leukopenia appears (lymphoma treatment
GL)

Property 6.4.4: h9run, &(leukopenia_value = present!^
(done = growth_factors_administration))i

Comment: The growth factors administration can positively
reduce the duration of the leukopenia and the risk of infections.

Relevance: If leukopenia is not severe, there are also
alternative treatments to the administration of growth factors
(e.g., expectant treatment and monitoring). That is why we
check the existence of one run in which (in a given status)
growth factors are administered, without forcing that they
are administered in all runs (in contrast with the verification
above).

6.5. ‘‘Complex’’ properties

In the above subsections, for the sake of clarity, we focused our
attention on properties that can be expressed quite synthetically,
mostly using just one temporal operator (besides the quantifier
about runs). Of course, LTL has no restriction on the number of such
operators, so that arbitrarily complex formulas can be used to
express properties of a GL ‘‘per se’’ or properties about eligibility,
contextualization, or application to specific patients (and the logic
also allows one to verify properties that are a ‘‘mixture’’ of the
above mentioned cases).

In the following, we just propose two additional examples,
demonstrating how paths of actions and/or sequences of
patient’s states can be used in the verification. We refer to
the part of the GL about ischemic stroke we described in Section
3.3, Fig. 4.

Class: 9^^^

Example: Verify whether the GL can apply to patients
having given features (monitored at subse-
quent states; ischemic stroke GL)

Property 6.5.1: h9run, ^(dysphagia_value = present ^ ^
(swallowing_test1_value = positive ^ ^
(speech_language_evaluation = positive ^ ^
(videofluorography_value = positive)))

Comment: This sequential approach is recommended in evalu-
ating dysphagia.

Relevance: A complete evaluation of dysphagia should include all
the above aspects sequentially.

Class: 8&^^^^

Example: Verifying whether the GL always prescribes the
above sequence of actions for patients with
dysphagia (ischemic stroke GL)

Property 6.5.2: h8run, &(dysphagia_value = present!^
(done = swallowing_test1 ^ swallowing_test_
value = positive
!^(done = speech_language_test ^
speech_language_evaluation = positive
!^(done = videofluorography ^
videofluorography_value = positive
!^(done = artificial_nutrition)))))

Comment: A correct treatment (artificial nutrition) is mandatory
in confirmed dysphagia.

Relevance: To perform a correct artificial nutrition all the above
diagnostic aspects of dysphagia must be evaluated.

6.6. Incremental property checking

We have mentioned above that, thanks to its flexibility, our
approach also supports incremental and interactive verification of
GLs. Instead of expressing complex ‘‘monolithic’’ properties such as
the ones in Section 6.5, our approach also supports an incremental
verification process, in which each part of the GL can be tested For
example, in the following we list the sequence of ‘‘elementary’’
checks which can be incrementally and interactively verified.

h8run, &(dysphagia_value = present!^
(done = swallowing_test1))i
h8run,
&(swallowing_test_value = positive!^
(done = speech_language_test))i
h8run, &(speech_language_evaluation = positive!^(done =
videofluorography))i
h8run, &(videofluorography_value = positive!^(done =
nutritional_support))i

In the following example, the result of a test influences the
definition of the next test to be performed). Such flexibility is a
peculiar advantage of the methodology we propose, and cannot be
(at least in general) achieved in conventional approaches, in which
the types of verifications need to be specified a priori (since a
specific algorithm for each type of specification need to be
devised).

A physician may ask whether, given a patient with fever, the
ischemic stroke guideline suggest the execution of a blood
culture.

h9 run, (fever_value = present!^ (done = blood_culture))i

If the result of the check is positive, then the physician may
further check whether, in the above context, the guideline suggests
a culture-based antibiotic treatment.

h9 run, (fever_value = present!^ (done = culture-based_
antibiotic_treatment))i

Otherwise, if the result of the check about blood culture is
negative, the physician may check whether the guideline suggests
an empirical antibiotic therapy to cope with fever.

h9 run, (fever_value = present!^
(done = empirical_antibiotic_therapy))i

7. Verifying the ischemic stroke guideline

In this section, we exemplify the adoption of our approach to GL
verification, considering the GL about ischemic stroke sketched in
Section 3.3.
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As discussed in Section 3.3, such a GL was issued by the hospital
S. Giovanni Battista of Turin as an adaptation of a national GL, and
was later acquired using GLARE. During the acquisition phase,
several structural and medical validity properties have been
checked using our approach. A few of such checks have allowed us
to discover inconsistencies in the GL. The verification of one of such
checks is reported in the following, as an example.

Example 1(a).

‘‘if an anticoagulant treatment has been excluded at some point
of the guideline, later on the guideline does not prescribe an
anticoagulant treatment any more’’

corresponding, in the high-level formalism we have used in
Section 6, to the formula.

Example 1(b).

8run,&(done = anticoagulant_treatment_excluded!&:
(done = anticoagulant_treatment)).

The above temporal formula has to be verified on all runs. This is
directly supported by SPIN, which however, accepts as input only
propositional formulas (that is, formulas in which variable
occurrences are not allowed) together with a binding of atomic
propositions to conditions on variables. The property

Example 1(c).

& (p!&: q)

is then entered through the interface, together with the
bindings ‘‘p = (done = anticoagulant_treatment_excluded)’’ and
‘‘q = (done = anticoagulant_treatment)’’.

SPIN automatically translates the input above into the
corresponding automata, and verifies the property on all runs.
In this example, the property was not true. As a consequence, SPIN
reported as output a counter-example. The output directly
generated by SPIN is quite complex (Fig. 6)

Example 1(d) presents a small part of the output generated by
SPIN, which describes the Physician agent sending a message to the
Guideline agent about the reliability of a patient’s datum, and the
Guideline agent working according to his answer (for more details
about query action execution see Section 5.1).

In each line of Example 1(d) we find the number of the process
corresponding to the agent, which is automatically generated by
SPIN (e.g. proc 3 in line 1 of Example 1(d)), its name (Physician in
line 1 of Example 1(d)), the line of the Promela code being executed
(line 232 in line 1 of Example 1(d)), the file given as an input to SPIN
(pan_in in line 1 of Example 1(d)), the number of the automaton
state which the model-checker is visiting (state 6 in line 1 of
Example 1(d)), and finally the Promela code being executed

(LGfromPH_data!datum.D,datum.A,valid in line 1 of Example
1(d)).

In particular, in Example 1(d), in first line the Physician agent
sends a message to the Guideline agent, in the second line the
Guideline agent receives the message itself, in the third line the
Guideline agent tests the value of the valid variable; in the fourth
line, since the execution of such a query action is finished, the
variable done is set to numeric code of such an action, and in the
fifth line, through the statement goto, the Guideline agent jumps
to the next action.

Although the output generated by SPIN might not be easy to
understand, by a simple preprocessing phase, we can:

(i) select only the parts of the counter-example concerning
assignments to the variable ‘‘done’’;

(ii) bind the numeric identifiers at the right-end of assignments to
the name of the corresponding action in the GL (using a symbol
table).

Thanks to this preprocessing phase, the output we report to
end-users is not the one generated by SPIN as in Example 1(d), but
is the path of actions in the GL which provides a counter-example
to the property. Such actions are listed resorting to their names, as
they were acquired in GLARE. Example 1(d) is thus converted as in
Example 1(e) (where we present only the relevant part of the
counter-example; observe that the complete counter-example is a
path in the GL composed by almost 100 actions) (Fig. 7).

We think it is worth stressing that, although all the property
check is performed by SPIN (thus using GL expressed in Promela,
and properties expressed in LTL), the output is nevertheless easily
interpretable by end-users, since it is directly related to the GLARE
representation of the GL. As an easy extension, we plan to adopt
GLARE’s interface in order to graphically show to the end-user the
path leading to the counter-example, thus making the output even
more user-friendly. On the other hand, the problem of proposing a
more user-friendly interface to express input properties requires
substantial studies, as sketched in the section about future works.

As a consequence of the failure of the above check, the GL has
been first modified by a team of domain experts, and such
modifications have been applied also on the acquired GL, using
GLARE acquisition interface.

On the other hand, in the ischemic stroke GL example, the
contextualization phase was skipped, since the GL was directly used
in the hospital issuing it. However, contextualization would be
important in case other hospitals would adopt such a guideline. For
instance, a small hospital, in which the CT scanner is not available,
could check whether there is at least a run in which CT scanner is
not used (see Section 6.3).

Figure 6. A part of the output generated by SPIN.

Figure 7. The relevant part of the GL path corresponding to the counter-example provided by SPIN.
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Last but not the least, our verification approach has been used
during the execution of the GL on specific patients (as an
experiment, since currently the GLARE approach is not fully
integrated within the hospital workflow). During the execution of a
GL on a specific patient, a physician can use verification in order to
check the applicability of the GL to the specific patient at hand. In
particular, physicians can use verification in order to acquire new
pieces of information to support their decisions (e.g., to check
whether the GL contains one or more paths of actions which are
eligible for the specific patient, and/or to discriminate between
them).

For instance, during the execution of the ischemic stroke GL on a
patient with atrial fibrillation in the ischemic stroke long-term
prevention, the physician can choose between two different
therapies: the anticoagulant therapy and the antiplatelet treat-
ment. This choice is based on compliance and comorbidities of the
patient. In general, the anticoagulant therapy is preferred, but the
patient must be compliant to the treatment. For instance, in an
elderly patient with some cognitive deficits the anticoagulant
treatment is potentially at risk, so that antiplatelet drug treatment
may be recommended. Additionally, in all cases, the allergies of the
patient have to be taken into account. For instance, if the
antiplatelet therapy is chosen, but the patient is allergic to
acetilsalicilic acid (ASA) or previous gastroenteric ASA side effects
have occurred, alternative drugs (for example ticlopidine, clopi-
dogrel) should be used.

As a specific example, let us suppose to have an elderly patient
with minor cognitive deficits, who is allergic to ASA. The physician,
having to choose between the anticoagulant therapy and the
antiplatelet treatment, may be inclined to select the latter therapy,
and may use our verification approach as a support for her/his
decision, to check whether there is at least a path in the GL
stemming from the choice of the antiplatelet treatment in which
no ASA administration is recommended.

In the high-level formalism we have used in Section 6, this
property corresponds to the following formula:

h9run, &(done = antiplatelet_choice!
&(done 6¼ ASA_administration)) ^
^(done = antiplatelet_choice)i

SPIN does not directly support the above verification. To check if
there is a run satisfying the LTL formula above, we give as input to
SPIN the negation of the formula:

: ð&ðdone ¼ antiplatelet choice!&ðdone 6¼ASA administrationÞÞ
^^ðdone ¼ antiplatelet choiceÞÞ

whose truth is verified on all the runs of the guideline. If the
formula (10) is not true on all runs of the guideline, SPIN provides a
counter-example, namely, a run on which, when the antiplatelet
treatment is chosen, no ASA administration is recommended.

8. Related work

The relevance of GLs in medical practice has been progressively
increasing in time, leading to an evolution of the methodology for
guideline definition. Historically, early guidelines were predomi-
nantly derived from unsystematically compiled opinions of
experts based on clinical trials and mechanistic approaches
(consensus-based medicine). Later on, evidence-based medicine
(EBM) has become an essential component in the preparation of
GL; the EBM attempts to provide a logical and convenient
framework from which the quality and relevance of clinical
studies (ideally randomized controlled trials) may be assessed in
an unbiased manner. However, in many parts of the world,

medicine is practiced in a context that is far (as concerns available
resources, patterns of disease and cultural attitudes to health) from
the environment in which GL in North America and Europe is
developed. For example, a guideline developed in these countries
on the basis of the latest and best evidence will be irrelevant in the
developing world. Moreover, the clinician must translate all
available evidence to the management of an individual patient and
this stage requires that the evidence-based approach to be filtered
through the opinion of doctors and journal editors (consensus-
based medicine). In short, the development of useful GL today
requires an integration of evidence with expert opinion and clinical
expertise, as well as patients’ values and preferences.

Our approach to computerized GL management stands also on
the above reflections and, of course, GL verification takes into
account, as very important elements, both the GL adherence to the
best available evidence (deriving from meta-analysis of rando-
mized, controlled clinical trials) and the possibility of GL
contextualization.

Our work has started in the context of the Italian (two-years)
project MIUR-PRIN 2003 ‘‘Logic-based development and verifica-
tion of multi-agent systems’’ whose main objective was the
development of logical and computational formalisms for the
specification and verification of agents and their interactions. In
this context, the activity on GL verification through model checking
started as a case study [21]. Our work has then continued in the
Italian two-year project MIUR-PRIN 2005 ‘‘Specification and
verification of agent interaction protocols’’ which was specifically
devoted to protocols and guidelines verification. In that project,
two different proposals to guideline verification have been
pursued: the one based on a computational logic framework
[28], and the other one based on the use of model checking
techniques [22,23]. Our choice of using LTL model checking, rather
than CTL model checking, was mainly dictated by the fact that
some of the logical formalisms used in the project were extensions
of LTL, and that there is a consolidated on-the-fly LTL model-
checker, SPIN [25]. In particular, SPIN input language Promela is a
high-level language, well suited for the specification of asynchro-
nous protocols, in which processes communicate by sending
messages over channels. This was especially convenient/amenable
for capturing our view of the guideline as an agent (a process)
interacting with other agents (environment, physician, etc.). The
work we present in this paper is an extension of the work in
[22,23]. In both [22,23] we have proposed an architecture for
integrating GLARE with the model-checker SPIN, and shown few
examples of properties. In this paper, we have extended and
systematized such an initial work along several lines: (i) we have
generalized our methodology, which can be applied also to other
guideline management systems; (ii) we have described our
implementation, describing in detail both the representation of
guidelines using Promela processes and the translator; (iii) we
have proposed a systematic analysis of the different types of
properties that can be verified; (iv) we have proposed detailed
examples of how verification can be used, by whom, and when, and
we have also analysed which are the possible effects of proving
that a given desired property does not hold.

Considering the related approaches in the literature, to the best
of our knowledge automatic verification of clinical guidelines has
first been explored in [19], where a theorem proving approach is
proposed to deal with the problem of protocol verification. This
activity has been developed within the European projects
Protocure (started in 2001) and Protocure II (started in 2006).
Here, a medical protocol is modelled in the Asbru language as a
hierarchical plan and then it is mapped to a specification in KIV, an
interactive theorem prover for higher order logic. Properties are
expressed in a variant of Interval Temporal Logic. Later on [2], has
provided an evaluation of the feasibility of this approach based on
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the formalization and verification of the ‘‘jaundice’’ protocol and
the ‘‘diabetes mellitus’’ protocol.

In the Protocure II project, besides the central theme of
interactive verification of clinical guidelines with the theorem
prover KIV, model checking techniques have been explored
[20,29]. One of the motivations provided for this switch is that,
in contrast to interactive verification, model checking is fully
automatic. Moreover, in the Protocure project, they also noticed
that, according to the formal semantics of Asbru, hierarchical plans
that model the guideline are represented by state charts, namely,
hierarchical state transition systems, which are highly suitable for
model checking. The choice in Protocure II was for CTL model
checking and for the tool SMV [30]. The Asbru model is translated
into the input language of SMV model-checker by making use of a
suitable abstraction which eliminates time. The compiler takes the
algebraic specification of Asbru models in KIV as input and
generates an SMV document. CTL model checking is used in the
verification of a wide range of properties of guidelines modelled in
Asbru, namely structural and medical properties [31]. In particular,
in [20] properties of the jaundice protocol are formalized as ACTL
formulas (that is, CTL formulas only allowing universal path
quantifiers) [18].

The main difference between our approach and Protocure’s one is
that our approach is based on LTL temporal logic while Protocure’s
one is based on CTL temporal logic. The adoption of CTL (and ACTL) or
LTL model checking allows for the verification of different temporal
properties, as CTL and LTL are expressively incomparable (as well as
ACTL and LTL): there are CTL formulas which cannot be expressed in
LTL, as well as LTL formulas which cannot be expressed in CTL. For
instance, the verification of the last property of Section 6.4 requires
to check that the formula ^ (leukopenia_value = present ^ &
(done 6¼ growth_factors_administration)) holds on all runs of the
guideline. If there is a run on which this formula is not true, the
counter-example provided by SPIN is a run of the guideline on which
growth factors are administered whenever leukopenia is present, as
required by the last property of Section 6.4. The above LTL formula
cannot be expressed in CTL (or ACTL).

The debate between CTL and LTL has been recently revived by
Vardi [32], who observed that LTL has advantages over CTL from
the point of view of expressiveness, compositionality, property-
specific abstraction and uniformity. According to Vardi, ‘‘CTL
suffers from fundamental limitations as a specification language,
all stemming from the fact that CTL is a branching time formalism’’
which makes the language sometimes unintuitive and hard to use.
However, the debate about the relative merits of LTL and CTL is still
open, and it is not at all the goal of our paper to contribute to such a
debate. As a matter of fact, we believe that, in some sense, the two
ways of expressing properties may be complementary, so that
investigating the possibility of providing an integrated framework
for GL verification in which both LTL and CTL are supported may be
an interesting and fruitful issue for future research.

A further difference between our approach and Protocure one is
due to the availability in SPIN of a higher level input language, as
compared with the input language of SMV. The fact that Promela is
well suited for modelling guidelines as processes interacting with
their environment by exchanging messages over channels,
substantially simplifies the task of providing a translation of
GLARE guidelines into Promela code (which does not require
intermediate levels of representation), as well as that of inter-
preting the results of verification. As a difference, in Protocure, an
intermediate level of representation is used: the generation of an
SMV model is obtained by translating the state charts modelling
the behaviour of plans in Asbru formal semantics into a flat state
transition system. Concerning the typology of the properties to be
verified, as observed in [20] the model checking approach is well
suited for the verification of structural and simple medical

properties of the guideline, that normally do not require an
incremental verification strategy. However, as shown in Section
6.6, some simple form of incremental verification can be
performed, when the outcome of a verification step is used,
interactively, to select the property to be checked in the next step.

Even if semantics is not the main focus of this paper, it is
important to notice that, as a side effect of translating GLARE’s
guidelines into Promela, and adopting SPIN, we provide a formal
semantics for GLARE’s GLs, in the form of Büchi automata.
Although there is a wide agreement about the importance of
providing a clear semantic model for GLs, this issue has been faced
in several quite different ways within the medical informatics
community. In most cases, the semantics of guidelines has been
only implicitly provided via an execution engine, which provides
an interpretation of guidelines by executing them on specific
patients. Considering explicit representations, a formal opera-
tional semantics has been provided for PROforma [33] via the
definition of an abstract execution engine and of rules describing
how the different guideline operations change the state of such an
engine. On the other hand, in SAGE a mapping to standard
terminologies and models (such as the virtual medical record) is
advocated [34].

While the Asbru protocol representation language allows the
semantics of guidelines to be defined through Asbru formal
semantics [35], a logical semantics to guidelines has been provided
in [28]. There, a graphical notation to express medical guidelines is
introduced, which can be automatically translated to the logic-
based formalism provided by the SOCS computational logic
framework.

9. Conclusions and future work

GL verification is a demanding and difficult task, which can
benefit from the adoption of advanced AI techniques. In this paper,
we propose a general and flexible approach to such a task, based on
the integration of a computerized GL management system with an AI

model-checker. We first propose a general and system-independent
methodology, proposing a modular architecture in which a
translation module is used in order to loosely couple a computer-
ized GL management system with a model-checker (so that both
the system and the model-checker can be used as they are, without
any modification). As a proof of concept, we then instantiate it by
loosely coupling GLARE with the model-checker SPIN. Specifically,
this step has involved an in-depth analysis about how GLs can be
represented in the specification language Promela of the model-
checker SPIN. Finally, we have also analysed when verification can
be used within the GL life-cycle, and what types of properties can
be verified using our approach. The ongoing experimentation on
the guideline for ischemic stroke has shown that the automatic
verification of properties in the model checking approach is able to
discover inconsistencies in the guideline that had not been
detected in advance by hand; in particular, we have identified
an inconsistency related to the anticoagulant treatment admin-
istration, which is described in Section 7.

Concerning future work, we intend to extend the approach in
this paper along four main directions.

First, in the current approach, we have partly neglected the
treatment of temporal constraints between actions in the GLs.
Temporal constraints are usually an intrinsic part of clinical
guidelines, and, in GLARE, a lot of work has been done in order to
represent them and to check their consistency [16,36]. However,
here we have almost neglected temporal constraints in the
translation from GLARE into Promela, also due to the fact that
Promela does not provide any facility to cope with them. We plan
to investigate to what extent GLARE’s temporal constraints can be
accounted for in a model checking approach.

A. Bottrighi et al. / Artificial Intelligence in Medicine 48 (2010) 1–19 17



Author's personal copy

Second, although knowledge engineers do usually participate to
the acquisition phase, and may also cooperate in the contextua-
lization phase, it is not realistic to assume that they can take part to
the execution phase, when a user-physician applies a specific
(computerized) guideline to a specific patient. Although LTL
provides a very expressive formalism to represent the properties to
be checked, a direct use of LTL (through the interface provided by
the SPIN model-checker) may be quite difficult and challenging for
user-physicians. In order to make our approach easy-to-use also in
the execution phase as a future work, we envision the development
of a user-friendly interface in order to facilitate the introduction of
the properties to be verified. We believe that the analysis we have
conducted in Section 6 of this paper is an important preliminary
step to achieve such a goal. As a matter of fact, in Section 6 we have
identified a set of useful and frequently used patterns of LTL
queries. Given such a set, it is possible to define a user-friendly
(possibly graphical) interface helping users to enter them. For
instance, one might hide as much as possible to users the
complexity of LTL formulas by supporting input incrementally, and
through a set of queries useful to discriminate the quantifiers and
modal operators to be used.2 Of course, direct access to SPIN’s
interface to LTL must also be maintained, to allow users to express
also complex properties not fitting the patterns. These topics will
be object of major investigation in our future research activity. On
the other hand, notice that the problem of making the output
generated by the model-checker more readable to users is quite
easy, since it just involves a light extension of GLARE’s graphical
interface in order to visualize the output of model checking, i.e., the
pattern of actions for which a given property does not hold.

Third, we aim at developing a declarative and logical semantics
for guidelines based on temporal logic specification.

Fourth, in [37] it has been shown that model checking
techniques can also be fruitably exploited in order to provide
guidelines with advanced critiquing facilities. We plan to further
investigate such an issue in our future work.
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