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Notation for Queueing Systems

1/λ mean time between arrivals

S = 1/µ mean service time

ρ = λ/µ traffic intensity

N Number of customers in the queue

(including those in service)

NQ Number of customers in the queue

(excluding those in service)

NS Number of customers in service

R Response time (including the service time)

W Waiting time ( = R − S)

U0 Utilization factor

T Throughput (Expected number of jobs

completed in a time unit)
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Birth-Death Processes

Let us identify by state i the condition of the system in which

there are i objects. Given the system is in state i, new elements

arrive at rate λi, and leave at rate µi.

The state space transition diagram is:
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Let N(t) be the number of elements in the system at time t, and

Ei(t) be the event N(t) = i.

E

E

E

Ei

i-1

i+1

i

birth

no events

death
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The figure shows the way in which the event Ei(t + ∆ t) can be

generated.
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Birth-Death Processes

By the theorem of the total probability, we can write for i > 0:

Pr{N(t + ∆ t) = i |N(t) = i− 1} = λi−1 ∆ t + O(∆ t)

Pr{N(t + ∆ t) = i |N(t) = i + 1} = µi+1 ∆ t + O(∆ t)

Pr{N(t + ∆ t) = i |N(t) = i} = 1− λi ∆ t− µi ∆ t + O(∆ t)

Where:

lim
∆ t→0

O(∆ t)

∆ t
= 0

For i = 0, we can write:

Pr{N(t + ∆ t) = 0 |N(t) = 1} = µ1 ∆ t + O(∆ t)

Pr{N(t + ∆ t) = 0 |N(t) = 0} = 1 − λ0 ∆ t + O(∆ t)

Let us define: Pi(t) = Pr{N(t) = i}
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Birth-Death Processes

According to the above relations we can write:





P0(t + ∆ t) = µ1 ∆ t P1(t) + (1 − λ0 ∆ t) P0(t) i = 0

Pi(t + ∆ t) = λi−1 ∆ tPi−1(t) + µi+1 ∆ tPi+1(t)
+ (1− λi ∆ t− µi ∆ t) Pi(t) i > 0





P0(t + ∆ t) − P0(t)

∆ t
= −λ0 P0(t) + µ1 P1(t) i = 0

Pi(t + ∆ t)− Pi(t)

∆ t
= −(λi + µi)Pi(t) + λi−1Pi−1(t) + µi+1Pi+1(t) i > 0

Taking the limit ∆ t → 0, the following set of linear differential
equations is derived:




dP0(t)

d t
= −λ0 P0(t) + µ1 P1(t) i = 0

dPi(t)

d t
= −(λi + µi) Pi(t) + λi−1 Pi−1(t) + µi+1 Pi+1(t) i > 0

(1)

with initial conditions:





P0(0) = 1 i = 0

Pi(0) = 0 i > 0
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Transient Balance Equation

Transient continuity (balance) equation in state i.

The flow variation in state i equals the difference between the

ingoing flow minus the outgoing flow.
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variation of flow =
dPi(t)

d t

ingoing flow = λi−1 Pi−1(t) + µi+1 Pi+1(t) ; i ≥ 0

outgoing flow = (λi + µi) Pi(t)
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Matrix representation of B/D processes

Given the B/D process of the figure:
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we define a transition rate matrix Q and a state probability row

vector p(t) at time t:

Q =

0 1 2 3 · · · i− 1 i i + 1 · · ·
0 −λ0 λ0

1 µ1 −(λ1 + µ1) λ1

2 0 µ2 −(λ2 + µ2) λ2
...

...
...

...
...

...
...

...
...

...
i− 1

i µi −(λi + µi) λi

i + 1
...

p(t) = {p0 p1 p2 . . . pi . . .}

The solution equation of (1) can be written in matrix form:

dp(t)

d t
= pQ



Queueing Systems 8

Steady-state of B/D processes

For t → ∞, the B/D process may reach a steady-state (equilib-

rium) condition. Steady state means that the state probabilities

do not depend on the time any more.

If a steady-state solution exists, it is characterized by:

lim
t→∞

dPi(t)

d t
= 0 (i = 0, 1, 2, . . .)

Let us denote: Pi = lim
t→∞Pi(t). The steady state equations

become:





0 = −λ0 P0 + µ1 P1 i = 0

0 = −(λi + µi) Pi + λi−1 Pi−1 + µi+1 Pi+1 i > 0

that can be rewritten as balance equations (ingoing flow equals

outgoing flow) as:





λ0 P0 = µ1 P1 i = 0

(λi + µi) Pi = λi−1 Pi−1 + µi+1 Pi+1 i > 0
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Steady-state of B/D processes

The steady-state equation can be written as:





λ0 P0 − µ1 P1 = 0

λ1 P1 − µ2 P2 = λ0 P0 − µ1 P1 = 0

. . . . . .

λi Pi − µi+1 Pi+1 = λi−1 Pi−1 − µi Pi = 0

. . . . . .

From the above, the i-th term becomes:

λi−1 Pi−1 = µi Pi =⇒ Pi =
λi−1

µi
Pi−1 (i ≥ 1)

Pi =
λi−1

µi

λi−2

µi−1
Pi−2 =

λ0 λ1 . . . λi−1

µ1 µ2 . . . µi
P0 = P0

i−1∏

j=0

λj

µj+1

The following normalization condition must hold:

∑

i≥0
Pi = 1

Hence:

P0 =
1

1 +
∑

i≥1

i−1∏

j=0

λj

µj+1

The steady state distribution exists, with Pi > 0, if the series
∑

i≥1

i−1∏

j=0

λj

µj+1
converges.
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Standard notation for queueing systems

The standard notation to identify the main elements that de-

fine the structure of a queueing system is the following (due to

Kendall):

A/B/c/d/e

where:

A Is the distribution of the interarrival times;

B Is the distribution of the service times;

c Is the number of servers;

d Is the storage capacity of the system (number of servers plus

the storage capacity of the buffer);

e Is the number of sources that provide clients.

The usual assumption for the interarrival and service time distri-

butions A and B is:

M Markovian (or exponential);

G General.
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M/M/1

The M/M/1 queueing system is a B/D process characterized by

having the arrival rates λ and the service rates µ independent of

the state.

The usual picture for the M/M/1 is:
�
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The state space of the M/M/1 is:
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λi = λ for i ≥ 0 ; µi = µ for i ≥ 1

By applying the general equilibrium results of a B/D process:

Pi =
λ

µ
Pi−1 =⇒ Pi =


λ

µ




i

P0

By applying the normalization condition:

∞∑
i=0

Pi = 1 =⇒ P0 =
1

1 +
∞∑

j=1


λ

µ




i (2)

Let us introduce a new parameter called the traffic intensity:

ρ =
λ

µ
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Steady state solution of a M/M/1

The denominator of (2) is the geometric series:

1 + ρ + ρ2 + . . . + ρi + . . . =
∞∑
i=0

ρi (3)

If ρ < 1, the series (3) converges to the value

∞∑
i=0

ρi =
1

1 − ρ

Hence, if ρ < 1 a steady state solution exists, and the M/M/1 is

asymptotically stable.

If ρ < 1, the state probabilities depend on λ and µ only through

the traffic intensity ρ, and are given by:

P0 = 1− ρ

P1 = (1− ρ) ρ

. . . . . .

Pi = (1− ρ) ρi

. . . . . .

Since the state probabilities are known, the system is completely

specified, and various measures can be computed.
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M/M/1: Probability vs ρ

The state probability Pi as a function of i and for various values

of ρ is depicted in the figure:

Pi = (1 − ρ) ρi
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Expected number of customers in a M/M/1

Server utilization factor (probability the server is busy):

U0 =
∞∑
i=1

Pi = 1 − P0 = ρ

Expected number of customers E[N ]

Let N be the number of customers in the queue, including the one

in service: the expected number of customers E[N ] is given by:

E[N ] =
∞∑
i=0

i · Pi

= 0 · P0 + 1 · ρ · P0 + 2 · ρ2 · P0 + 3 · ρ3 · P0 + . . .

= P0

∞∑
i=0

i · ρi = (1− ρ)
∞∑
i=0

i · ρi =
ρ

1− ρ

The above proof is based on the sum of the modified geometric

series:

∞∑
i=0

i · ρi = ρ
∂

∂ ρ

∞∑
i=0

ρi = ρ
∂

∂ ρ

1

1− ρ

=
ρ

(1− ρ)2
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M/M/1: Little’s formula

The Little’s formula states that the expected number of customers

in the queue E[N ] is equal to the arrival rate λ times the expected

time spent in the system (the expected response time) E[R].

� � {E[N]

E[R]

E[N ] = λ · E[R]

The expected response time for a M/M/1 queue is obtained by

applying Little’s formula:

E[R] = λ−1 E[N ] =
1

λ

ρ

1− ρ
=

1/µ

1− ρ

From the above formula, the expected response time E[R] can be

interpreted as the ratio between the mean service time (1/µ) and

the probability of the sever to be idle (1− ρ).
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M/M/1: Performance measures

Expected waiting time

Let us define the waiting time W = R−S as the time a customer

waits in the queue before service, where R is the response time

and S the service time.

The expected waiting time E[W ] is given by:

E[W ] = E[R] − E[S] =
1

µ (1− ρ)
− 1

µ
=

ρ

µ (1− ρ)

Expected number of customers in the line

The expected number of customers in the line (awaiting for ser-

vice) is obtained by applying Little’s rule to the queue only:

� �

{
E[NQ]

E[W]

E[NQ] = λ · E[W ] =
ρ2

1− ρ

Number of customers in service

The expected number of customers in service is:

E[NS] = E[N ] − E[NQ] = ρ

From the Little’s rule applied to the server, only:

E[NS] = λ · E[S] =
λ

µ
= ρ
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Summary of results for the M/M/1

λ arrival rate

µ service rate

ρ = λ/µ traffic intensity

E[N ] =
ρ

1− ρ
Expected number of customers in the queue

(including those in service)

E[R] =
1/µ

1− ρ
Expected response time

E[S] =
1

µ
Expected service time

E[W ] = E[R]− E[S]

=
ρ

µ(1− ρ)
Expected waiting time

E[NQ] = λ · E[W ]

=
ρ2

1− ρ
Expected number of waiting customers

E[NS] = E[N ]− E[NQ]

= λ E[S] = ρ Expected number of customers in service
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M/M/1/K: finite storage

�

�

K

The storage capacity of the system is K (one customer in ser-

vice and K − 1 customers in the waiting line) and the exceeding

customers are refused.
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The general B/D process can be particularized as follows:

λi =





λ i < K

; µi = µ

0 i ≥ K

The state probabilities satisfy




Pi = P0

i−1∏

j=0

λ

µ
= P0 · ρi i ≤ K

Pi = 0 i > K

From the normalization condition:

P0 =
1

1 +
K∑

j=1
ρj

=
1

1 +
ρ(1− ρK)

1− ρ

=
1− ρ

1− ρK+1
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M/M/1/K: finite storage

The M/M/1/K queue is stable for any positive value of the traffic

intensity ρ.

The state probabilities are:





Pi =
(1− ρ) ρi

1− ρK+1
i ≤ K

Pi = 0 i > K

For ρ → 1 the above formula is undefined. We find the limit

resorting to De l’Hospital rule:

lim
ρ→1

Pi = lim
ρ→1

(1− ρ) ρi

1− ρK+1

= lim
ρ→1

−ρi + i (1− ρ) ρi−1

−(K + 1) ρK
=

1

K + 1

Let us define the rejection probability as the probability of an

arriving customer to find the queue full and to be rejected.

Since the queue is full when in state K, the rejection probability

is:

PK =
(1− ρ) ρK

1− ρK+1
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M/M/1/K: finite storage

Expected number of customers E[N ]

E[N ] =
K∑

i=0
i · Pi =

K∑

i=0
i · (1− ρ) ρi

1− ρK+1

=
1− ρ

1− ρK+1

K∑

i=0
i · ρi (4)

=
ρ

1− ρK+1

1− (K + 1) ρK + K ρK+1

(1− ρ)

The above formula (4) is based on the following finite series sum:

K∑

i=0
i · ρi = ρ

∂

∂ ρ

K∑

i=1
ρi = ρ

∂

∂ ρ

ρ (1− ρK)

1− ρ

= ρ
1− (K + 1) ρK + K ρK+1

(1− ρ)2

From formula (4), it follows:

lim
ρ→0

E[N ] = 0 ; lim
ρ→∞ E[N ] = K ; lim

ρ→1
E[N ] =

K

2

where the last limit (ρ → 1) is obtained by applying twice the De

l’Hospital rule.
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M/M/1/1: no waiting line

The queue does not have a waiting line and the arriving customer

enters service only if the server is idle.
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From the M/M/1/K case, we get:





P0 =
1

1 + ρ
=

µ

λ + µ

P1 =
ρ

1 + ρ
=

λ

λ + µ
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M/M/m - Queueing system with m servers

The queue has one arrival line and m identical servers with ser-

vice rate µ. The structure of the queue and its state space are

represented in the figures:
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The general B/D process can be particularized as follows:

λi = λ i ≥ 0 ; µi =





i µ 0 < i < m

mµ i ≥ m

The state probabilities satisfy:





Pi = P0

i−1∏

j=0

λ

(j + 1) µ
= P0 ·


λ

µ




i 1

i!
i < m

Pi = P0

m−1∏

j=0

λ

(j + 1) µ
· i−1∏

k=m

λ

mµ
= P0


λ

µ




i 1

m! mi−m
i ≥ m
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M/M/m - Queueing system with m servers

Let us define the traffic intensity as ρ =
λ

mµ
.

The stability condition requires ρ < 1.

By rewriting the state probabilities in terms of the traffic intensity,

we obtain:

Pi =





P0
(mρ)i

i !
i < m

P0
ρi mm

m!
i ≥ m

From the normalization condition, we obtain:

P0 =





m−1∑

i=0

(mρ)i

i !
+

∞∑
i=m

ρi mm

m!





−1

(5)

The second sum in (5) can be written as:

∞∑
i=m

ρi mm

m!
=

ρm mm

m !

∞∑
k=0

ρk =
(mρ)m

m !

1

1− ρ

So that (5) becomes:

P0 =





m−1∑

i=0

(mρ)i

i !
+

(mρ)m

m !

1

1− ρ





−1
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M/M/m - Queueing system with m servers

Expected number of customers in the queue:

E[N ] =
∞∑
i=0

i Pi = mρ + ρ
(mρ)m

m !

P0

(1− ρ)2

Expected number of busy servers:

E[M ] =
m−1∑

i=0
i Pi + m

∞∑
i=m

Pi = mρ =
λ

µ

Probability that an arriving customer should join the queue (equal

to the probability that an arriving customer finds all the servers

busy):

P[queue] =
∞∑

i=m
Pi =

Pm

1− ρ
=

(mρ)m

m !

P0

1− ρ
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M/M/∞: infinite number of servers

The state space of the queue is represented in the figure:
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The general B/D process can be particularized as follows:




λi = λ i ≥ 0

µi = i µ i ≥ 0

The state probabilities become:

Pi = P0

i−1∏

j=1

λ

(j + 1) µ
= P0

1

i !


λ

µ




i

The normalization condition provides:

P0 =
1

1 +
∞∑
i=1

1

i !


λ

µ




i = e−λ/µ

Hence, the state probabilities assume the following form and are

Poisson distributed:

Pi = e−λ/µ (λ/µ)i

i !

E[N ] = λ/µ ; E[R] =
E[N ]

λ
=

1

µ


