BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

Andrea Bobbio Anno Accademico 1999-2000

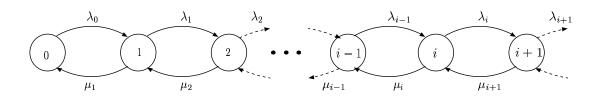
Notation for Queueing Systems

$1/\lambda$	mean time between arrivals	
$S = 1/\mu$	mean service time	
$ ho=\lambda/\mu$	traffic intensity	
N	Number of customers in the queue (including those in service)	
N_Q	Number of customers in the queue (excluding those in service)	
N_S	Number of customers in service	
R	Response time (including the service time)	
W	Waiting time $(= R - S)$	
U_0	Utilization factor	
T	Throughput (Expected number of jobs completed in a time unit)	

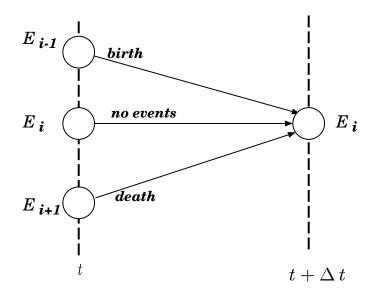
Birth-Death Processes

Let us identify by state i the condition of the system in which there are i objects. Given the system is in state i, new elements arrive at rate λ_i , and leave at rate μ_i .

The state space transition diagram is:



Let N(t) be the number of elements in the system at time t, and $E_i(t)$ be the event N(t) = i.



The figure shows the way in which the event $E_i(t + \Delta t)$ can be generated.

Birth-Death Processes

By the theorem of the total probability, we can write for i > 0:

$$Pr\{N(t + \Delta t) = i | N(t) = i - 1\} = \lambda_{i-1} \Delta t + O(\Delta t)$$

$$Pr\{N(t + \Delta t) = i | N(t) = i + 1\} = \mu_{i+1} \Delta t + O(\Delta t)$$

$$Pr\{N(t + \Delta t) = i | N(t) = i\} = 1 - \lambda_i \Delta t - \mu_i \Delta t + O(\Delta t)$$

Where:

$$\lim_{\Delta t \to 0} \frac{O(\Delta t)}{\Delta t} = 0$$

For i = 0, we can write:

$$Pr\{N(t + \Delta t) = 0 | N(t) = 1\} = \mu_1 \Delta t + O(\Delta t)$$
$$Pr\{N(t + \Delta t) = 0 | N(t) = 0\} = 1 - \lambda_0 \Delta t + O(\Delta t)$$

Let us define: $P_i(t) = Pr\{N(t) = i\}$

Birth-Death Processes

According to the above relations we can write:

$$\begin{cases}
P_0(t + \Delta t) = \mu_1 \Delta t P_1(t) + (1 - \lambda_0 \Delta t) P_0(t) & i = 0 \\
P_i(t + \Delta t) = \lambda_{i-1} \Delta t P_{i-1}(t) + \mu_{i+1} \Delta t P_{i+1}(t) \\
+ (1 - \lambda_i \Delta t - \mu_i \Delta t) P_i(t) & i > 0
\end{cases}$$

$$\begin{cases} \frac{P_0(t + \Delta t) - P_0(t)}{\Delta t} &= -\lambda_0 P_0(t) + \mu_1 P_1(t) & i = 0 \\ \frac{P_i(t + \Delta t) - P_i(t)}{\Delta t} &= -(\lambda_i + \mu_i) P_i(t) + \lambda_{i-1} P_{i-1}(t) + \mu_{i+1} P_{i+1}(t) & i > 0 \end{cases}$$

Taking the limit $\Delta t \rightarrow 0$, the following set of linear differential equations is derived:

$$\begin{cases} \frac{d P_0(t)}{d t} = -\lambda_0 P_0(t) + \mu_1 P_1(t) & i = 0\\ \frac{d P_i(t)}{d t} = -(\lambda_i + \mu_i) P_i(t) + \lambda_{i-1} P_{i-1}(t) + \mu_{i+1} P_{i+1}(t) & i > 0 \end{cases}$$
(1)

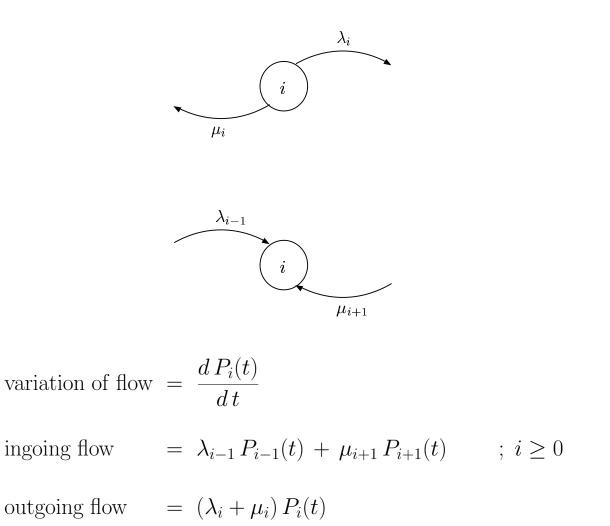
with initial conditions:

$$P_0(0) = 1$$
 $i = 0$
 $P_i(0) = 0$ $i > 0$

Transient Balance Equation

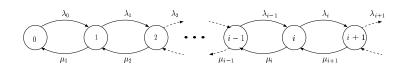
Transient continuity (balance) equation in state i.

The flow variation in state i equals the difference between the ingoing flow minus the outgoing flow.



Matrix representation of B/D processes

Given the B/D process of the figure:



we define a transition rate matrix \mathbf{Q} and a state probability row vector $\mathbf{p}(t)$ at time t:

$$\mathbf{p}(t) = \{ p_0 \ p_1 \ p_2 \ \dots \ p_i \ \dots \}$$

The solution equation of (1) can be written in matrix form:

$$\frac{d\,\mathbf{p}(t)}{d\,t} = \,\mathbf{p}\,\mathbf{Q}$$

Steady-state of B/D processes

For $t \to \infty$, the B/D process may reach a steady-state (equilibrium) condition. Steady state means that the state probabilities do not depend on the time any more.

If a steady-state solution exists, it is characterized by:

$$\lim_{t \to \infty} \frac{d P_i(t)}{d t} = 0 \qquad (i = 0, 1, 2, \ldots)$$

Let us denote: $P_i = \lim_{t \to \infty} P_i(t)$. The steady state equations become:

$$\begin{cases} 0 = -\lambda_0 P_0 + \mu_1 P_1 & i = 0 \\ 0 = -(\lambda_i + \mu_i) P_i + \lambda_{i-1} P_{i-1} + \mu_{i+1} P_{i+1} & i > 0 \end{cases}$$

that can be rewritten as balance equations (ingoing flow equals outgoing flow) as:

$$\begin{cases} \lambda_0 P_0 &= \mu_1 P_1 & i = 0\\ (\lambda_i + \mu_i) P_i &= \lambda_{i-1} P_{i-1} + \mu_{i+1} P_{i+1} & i > 0 \end{cases}$$

Steady-state of B/D processes

The steady-state equation can be written as:

$$\begin{cases} \lambda_0 P_0 - \mu_1 P_1 &= 0\\ \lambda_1 P_1 - \mu_2 P_2 &= \lambda_0 P_0 - \mu_1 P_1 &= 0\\ \dots & \dots & \\ \lambda_i P_i - \mu_{i+1} P_{i+1} &= \lambda_{i-1} P_{i-1} - \mu_i P_i &= 0\\ \dots & \dots & \\ \dots & \dots & \\ \end{cases}$$

From the above, the *i*-th term becomes:

$$\lambda_{i-1} P_{i-1} = \mu_i P_i \implies P_i = \frac{\lambda_{i-1}}{\mu_i} P_{i-1} \qquad (i \ge 1)$$

$$P_{i} = \frac{\lambda_{i-1}}{\mu_{i}} \frac{\lambda_{i-2}}{\mu_{i-1}} P_{i-2} = \frac{\lambda_{0} \lambda_{1} \dots \lambda_{i-1}}{\mu_{1} \mu_{2} \dots \mu_{i}} P_{0} = P_{0} \prod_{j=0}^{i-1} \frac{\lambda_{j}}{\mu_{j+1}}$$

The following normalization condition must hold:

$$\sum_{i\geq 0} P_i = 1$$

Hence:

$$P_0 = \frac{1}{1 + \sum_{i \ge 1} \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}}}$$

The steady state distribution exists, with $P_i > 0$, if the series $\sum_{i\geq 1} \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}}$ converges.

Standard notation for queueing systems

The standard notation to identify the main elements that define the structure of a queueing system is the following (due to Kendall):

A/B/c/d/e

where:

- A Is the distribution of the interarrival times;
- ${\cal B}$ Is the distribution of the service times;
- c Is the number of servers;
- d Is the storage capacity of the system (number of servers plus the storage capacity of the buffer);
- e Is the number of sources that provide clients.

The usual assumption for the interarrival and service time distributions ${\cal A}$ and ${\cal B}$ is:

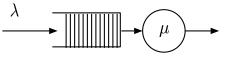
M Markovian (or exponential);

 ${\cal G}$ General.

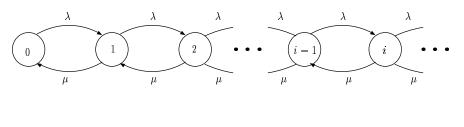
M/M/1

The M/M/1 queueing system is a B/D process characterized by having the arrival rates λ and the service rates μ independent of the state.

The usual picture for the M/M/1 is:



The state space of the M/M/1 is:



 $\lambda_i = \lambda \quad \text{for} \quad i \ge 0 \qquad ; \qquad \mu_i = \mu \quad \text{for} \quad i \ge 1$

By applying the general equilibrium results of a B/D process:

$$P_i = \frac{\lambda}{\mu} P_{i-1} \implies P_i = \left(\frac{\lambda}{\mu}\right)^i P_0$$

By applying the normalization condition:

$$\sum_{i=0}^{\infty} P_i = 1 \implies P_0 = \frac{1}{1 + \sum_{j=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^i}$$
(2)

Let us introduce a new parameter called the *traffic intensity*:

$$\rho = \frac{\lambda}{\mu}$$

Steady state solution of a M/M/1

The denominator of (2) is the geometric series:

$$1 + \rho + \rho^2 + \ldots + \rho^i + \ldots = \sum_{i=0}^{\infty} \rho^i$$
 (3)

If $\rho < 1$, the series (3) converges to the value

$$\sum_{i=0}^{\infty} \rho^i = \frac{1}{1-\rho}$$

Hence, if $\rho < 1$ a steady state solution exists, and the M/M/1 is asymptotically stable.

If $\rho < 1$, the state probabilities depend on λ and μ only through the traffic intensity ρ , and are given by:

$$P_0 = 1 - \rho$$

$$P_1 = (1 - \rho) \rho$$

$$\dots$$

$$P_i = (1 - \rho) \rho^i$$

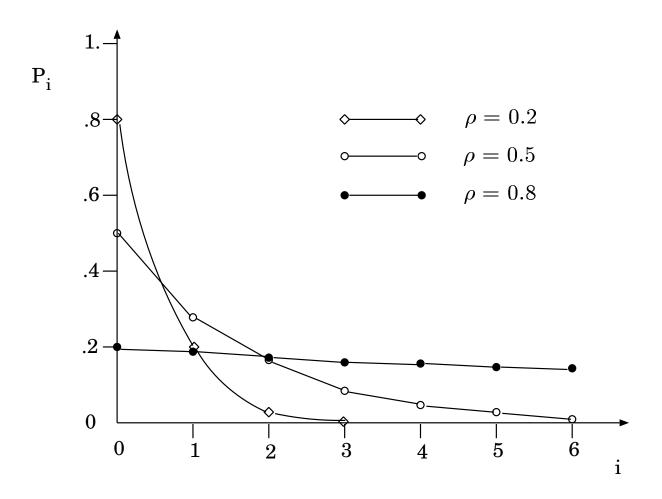
$$\dots$$

Since the state probabilities are known, the system is completely specified, and various measures can be computed.

M/M/1: Probability vs ρ

The state probability P_i as a function of i and for various values of ρ is depicted in the figure:

 $P_i = (1 - \rho) \rho^i$



Expected number of customers in a M/M/1

Server *utilization factor* (probability the server is busy):

$$U_0 = \sum_{i=1}^{\infty} P_i = 1 - P_0 = \rho$$

Expected number of customers E[N]

Let N be the number of customers in the queue, including the one in service: the expected number of customers E[N] is given by:

$$E[N] = \sum_{i=0}^{\infty} i \cdot P_i$$

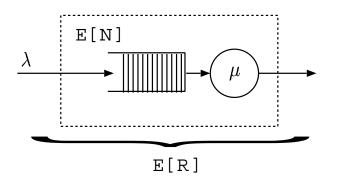
= $0 \cdot P_0 + 1 \cdot \rho \cdot P_0 + 2 \cdot \rho^2 \cdot P_0 + 3 \cdot \rho^3 \cdot P_0 + \dots$
= $P_0 \sum_{i=0}^{\infty} i \cdot \rho^i = (1-\rho) \sum_{i=0}^{\infty} i \cdot \rho^i = \frac{\rho}{1-\rho}$

The above proof is based on the sum of the modified geometric series:

$$\sum_{i=0}^{\infty} i \cdot \rho^{i} = \rho \frac{\partial}{\partial \rho} \sum_{i=0}^{\infty} \rho^{i} = \rho \frac{\partial}{\partial \rho} \frac{1}{1-\rho}$$
$$= \frac{\rho}{(1-\rho)^{2}}$$

M/M/1: Little's formula

The Little's formula states that the expected number of customers in the queue E[N] is equal to the arrival rate λ times the expected time spent in the system (the expected *response time*) E[R].



 $E[N] \,=\, \lambda \cdot E[R]$

The expected response time for a M/M/1 queue is obtained by applying Little's formula:

$$E[R] = \lambda^{-1} E[N] = \frac{1}{\lambda} \frac{\rho}{1-\rho} = \frac{1/\mu}{1-\rho}$$

From the above formula, the expected response time E[R] can be interpreted as the ratio between the mean service time $(1/\mu)$ and the probability of the sever to be idle $(1 - \rho)$.

M/M/1: Performance measures

Expected waiting time

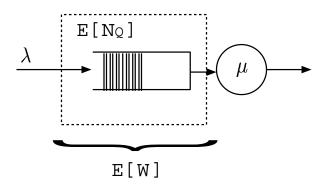
Let us define the waiting time W = R - S as the time a customer waits in the queue before service, where R is the response time and S the service time.

The expected waiting time E[W] is given by:

$$E[W] = E[R] - E[S] = \frac{1}{\mu(1-\rho)} - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}$$

Expected number of customers in the line

The expected number of customers in the line (awaiting for service) is obtained by applying Little's rule to the queue only:



$$E[N_Q] = \lambda \cdot E[W] = \frac{\rho^2}{1-\rho}$$

Number of customers in service

The expected number of customers in service is:

$$E[N_S] = E[N] - E[N_Q] = \rho$$

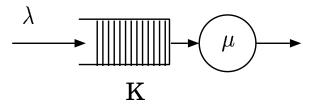
From the Little's rule applied to the server, only:

$$E[N_S] = \lambda \cdot E[S] = \frac{\lambda}{\mu} = \rho$$

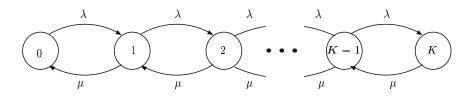
Summary of results for the M/M/1

λ			arrival rate
μ			service rate
ρ	=	λ/μ	traffic intensity
E[N]	—	$\frac{\rho}{1-\rho}$	Expected number of customers in the queue (including those in service)
E[R]	=	$\frac{1/\mu}{1-\rho}$	Expected response time
E[S]	=	$\frac{1}{\mu}$	Expected service time
E[W]	=	$\frac{E[R]-E[S]}{\mu(1-\rho)}$	Expected waiting time
$E[N_Q]$	=	$\frac{\lambda \cdot E[W]}{\frac{\rho^2}{1-\rho}}$	Expected number of waiting customers
$E[N_S]$		$E[N] - E[N_Q]$ $\lambda E[S] = \rho$	Expected number of customers in service

M/M/1/K: finite storage



The storage capacity of the system is K (one customer in service and K - 1 customers in the waiting line) and the exceeding customers are refused.



The general B/D process can be particularized as follows:

$$\lambda_i = \begin{cases} \lambda & i < K \\ & & \\ 0 & i \ge K \end{cases} ; \qquad \mu_i = \mu$$

The state probabilities satisfy

$$\begin{cases} P_i = P_0 \prod_{j=0}^{i-1} \frac{\lambda}{\mu} = P_0 \cdot \rho^i & i \le K \\ P_i = 0 & i > K \end{cases}$$

From the normalization condition:

$$P_0 = \frac{1}{1 + \sum_{j=1}^{K} \rho^j} = \frac{1}{1 + \frac{\rho(1 - \rho^K)}{1 - \rho}} = \frac{1 - \rho}{1 - \rho^{K+1}}$$

M/M/1/K: finite storage

The M/M/1/K queue is stable for any positive value of the *traffic* intensity ρ .

The state probabilities are:

$$\left\{ \begin{array}{rl} P_i &=& \displaystyle \frac{(1-\rho)\,\rho^i}{1-\rho^{K+1}} \qquad \quad i \leq K \\ P_i &= 0 \qquad \qquad \quad i > K \end{array} \right.$$

For $\rho \to 1$ the above formula is undefined. We find the limit resorting to De l'Hospital rule:

$$\lim_{\rho \to 1} P_i = \lim_{\rho \to 1} \frac{(1-\rho)\rho^i}{1-\rho^{K+1}}$$
$$= \lim_{\rho \to 1} \frac{-\rho^i + i(1-\rho)\rho^{i-1}}{-(K+1)\rho^K} = \frac{1}{K+1}$$

Let us define the *rejection probability* as the probability of an arriving customer to find the queue full and to be rejected.

Since the queue is full when in state K, the *rejection probability* is:

$$P_K = \frac{(1-\rho)\,\rho^K}{1-\rho^{K+1}}$$

M/M/1/K: finite storage

Expected number of customers E[N]

$$E[N] = \sum_{i=0}^{K} i \cdot P_i = \sum_{i=0}^{K} i \cdot \frac{(1-\rho)\rho^i}{1-\rho^{K+1}}$$
$$= \frac{1-\rho}{1-\rho^{K+1}} \sum_{i=0}^{K} i \cdot \rho^i$$
$$= \frac{\rho}{1-\rho^{K+1}} \frac{1-(K+1)\rho^K + K\rho^{K+1}}{(1-\rho)}$$
(4)

The above formula (4) is based on the following finite series sum:

$$\sum_{i=0}^{K} i \cdot \rho^{i} = \rho \frac{\partial}{\partial \rho} \sum_{i=1}^{K} \rho^{i} = \rho \frac{\partial}{\partial \rho} \frac{\rho (1 - \rho^{K})}{1 - \rho}$$
$$= \rho \frac{1 - (K+1)\rho^{K} + K\rho^{K+1}}{(1 - \rho)^{2}}$$

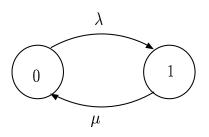
From formula (4), it follows:

$$\lim_{\rho \to 0} E[N] = 0 \quad ; \quad \lim_{\rho \to \infty} E[N] = K \quad ; \quad \lim_{\rho \to 1} E[N] = \frac{K}{2}$$

where the last limit $(\rho \rightarrow 1)$ is obtained by applying twice the De l'Hospital rule.

M/M/1/1: no waiting line

The queue does not have a waiting line and the arriving customer enters service only if the server is idle.



From the M/M/1/K case, we get:

$$\begin{cases} P_0 = \frac{1}{1+\rho} = \frac{\mu}{\lambda+\mu} \\ P_1 = \frac{\rho}{1+\rho} = \frac{\lambda}{\lambda+\mu} \end{cases}$$

$\rm M/M/m$ - Queueing system with $\rm m\ servers$

The queue has one arrival line and m identical servers with service rate μ . The structure of the queue and its state space are represented in the figures:



The general B/D process can be particularized as follows:

$$\lambda_i = \lambda \qquad i \ge 0 \qquad ; \qquad \mu_i = \begin{cases} i \mu & 0 < i < m \\ m \mu & i \ge m \end{cases}$$

The state probabilities satisfy:

$$\begin{cases} P_i = P_0 \prod_{j=0}^{i-1} \frac{\lambda}{(j+1)\mu} = P_0 \cdot \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!} & i < m \\ P_i = P_0 \prod_{j=0}^{m-1} \frac{\lambda}{(j+1)\mu} \cdot \prod_{k=m}^{i-1} \frac{\lambda}{m\mu} = P_0 \left(\frac{\lambda}{\mu}\right)^i \frac{1}{m! m^{i-m}} & i \ge m \end{cases}$$

$\rm M/M/m$ - Queueing system with $\rm m\ servers$

Let us define the traffic intensity as $\rho = \frac{\lambda}{m \mu}$.

The stability condition requires $\rho < 1$.

By rewriting the state probabilities in terms of the traffic intensity, we obtain:

$$P_i = \begin{cases} P_0 \frac{(m \rho)^i}{i!} & i < m \\ \\ P_0 \frac{\rho^i m^m}{m!} & i \ge m \end{cases}$$

From the normalization condition, we obtain:

$$P_0 = \left\{ \sum_{i=0}^{m-1} \frac{(m\,\rho)^i}{i\,!} + \sum_{i=m}^{\infty} \frac{\rho^i \, m^m}{m!} \right\}^{-1}$$
(5)

The second sum in (5) can be written as:

$$\sum_{i=m}^{\infty} \frac{\rho^{i} m^{m}}{m!} = \frac{\rho^{m} m^{m}}{m!} \sum_{k=0}^{\infty} \rho^{k} = \frac{(m \rho)^{m}}{m!} \frac{1}{1-\rho}$$

So that (5) becomes:

$$P_0 = \left\{ \sum_{i=0}^{m-1} \frac{(m\,\rho)^i}{i\,!} + \frac{(m\,\rho)^m}{m\,!} \frac{1}{1-\rho} \right\}^{-1}$$

$\rm M/M/m$ - Queueing system with $\rm m\ servers$

Expected number of customers in the queue:

$$E[N] = \sum_{i=0}^{\infty} i P_i = m \rho + \rho \frac{(m \rho)^m}{m!} \frac{P_0}{(1-\rho)^2}$$

Expected number of busy servers:

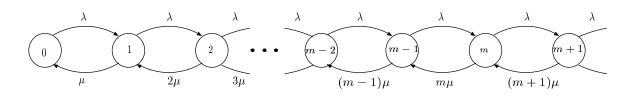
$$E[M] = \sum_{i=0}^{m-1} i P_i + m \sum_{i=m}^{\infty} P_i = m \rho = \frac{\lambda}{\mu}$$

Probability that an arriving customer should join the queue (equal to the probability that an arriving customer finds all the servers busy):

$$P_{[queue]} = \sum_{i=m}^{\infty} P_i = \frac{P_m}{1-\rho} = \frac{(m\,\rho)^m}{m\,!}\,\frac{P_0}{1-\rho}$$

$M/M/\infty$: infinite number of servers

The state space of the queue is represented in the figure:



The general B/D process can be particularized as follows:

$$\begin{cases} \lambda_i = \lambda & i \ge 0\\ \mu_i = i \mu & i \ge 0 \end{cases}$$

The state probabilities become:

$$P_i = P_0 \prod_{j=1}^{i-1} \frac{\lambda}{(j+1)\mu} = P_0 \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i$$

The normalization condition provides:

$$P_0 = \frac{1}{1 + \sum_{i=1}^{\infty} \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i} = e^{-\lambda/\mu}$$

Hence, the state probabilities assume the following form and are Poisson distributed:

$$P_i = e^{-\lambda/\mu} \frac{(\lambda/\mu)^i}{i!}$$

$$E[N] = \lambda/\mu$$
 ; $E[R] = \frac{E[N]}{\lambda} = \frac{1}{\mu}$