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Abstract

The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a

functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity

and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures).

This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid

systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model

can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have

converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison

among the modeling power of well known tools can be carried out.

Our approach is illustrated by means of a ‘real world’ hybrid system: the temperature control system of a co-generative plant.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper investigates a unifying view between formal

methods and stochastic methods for hybrid systems by

proposing an analysis methodology based on Fluid Petri

Nets (FPNs) [1,16,14]. The case study, that is used to

illustrate the methodology, is a discrete state controller that

operates according to the variation of suitable continuous

quantities (temperature, heat consumption).

Model parameters are usually affected by uncertainty. A

common way to account for parameter uncertainty is to

assign to the parameters a range of variation (between a

minimum and a maximum value), without any specification

on the actual value in a specific realization (nondetermin-

ism). Hybrid automata [3] and model checking tools [8]

operate along this line. If a weight can be assigned to the

parameter uncertainty through a probability distribution, the

nondeterministic model is replaced by a stochastic

model: the FPN formalism [16,11] has been proposed to

include stochastic specifications. Recently, probabilistic

model checkers of Markovian models have also been

implemented [4,20].

This paper intends to show that a FPN model of a hybrid

system can be used as an input model both for functional

analysis as well as for stochastic analysis. In particular, this

paper shows that the a FPN model can be translated into a

hybrid automaton model [2,24], a discrete model [5], or,

finally, a discrete/probabilistic model [20].

FPN’s are an extension of Petri nets able to model

systems with the coexistence of discrete and continuous

state variables [1,16,14]. The main characteristics of FPN is

that the primitives (places, transitions and arcs) are

partitioned in two groups: discrete primitives that handle

discrete tokens (as in standard Petri nets) and continuous (or

fluid) primitives that handle continuous quantities (referred

to as fluid). Hence, in a single formalism, both discrete and

continuous variables can be accommodated and their mutual

interaction represented.

Even if Petri nets and model checking rely on very

different conceptual and methodological bases (one coming

from the world of performance analysis and the other from

the world of formal methods), we attempt to gain cross

fertilizations from the two areas. The main goal of this paper
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is to investigate the possibility of defining a methodology

which allows us to apply a common FPN model both for

formal specification and verification via model checking

and for performance analysis.

We describe our approach and show its usefulness by

using a meaningful ‘real world’ application. We take the

control system for the temperature of the primary and

secondary circuits of the heat exchange section of the

ICARO co-generative plant [4] in operation at ENEA CR

Casaccia as our example. The plant is composed of two

sections: the gas turbine that produces electrical power and

the heat exchange section that extracts heat from the turbine

gases.

The comparative analysis documented in this paper using

the case study, allows us to draw some preliminary

conclusions about the modeling power of the tools and

techniques we utilize and their analytical tractability.

The paper is organized as follow. Section 2 describes

the case study. Section 3 introduces the main elements of

the FPN formalism, provides a FPN model for the case

study and show some results obtained with the simulator

described in Ref. [10]. Section 4 introduces the concept of

hybrid automata, provides the conversion of the FPN

model into a hybrid automaton and analyzes the resulting

hybrid automaton by means of the tool HyTech [18].

Section 5 shows how the same FPN model can be

translated into a discrete model suitable for the model

checker NuSMV [23] and provides some experimental

results. Section 6 translates the FPN model into a DTMC

model suitable for the probabilistic model checker PRISM

[22]. Section 7 concludes the paper with some preliminary

considerations about the modeling and analysis features of

the different tools.

2. Temperature control system

The ICARO co-generative plant comprises two sec-

tions: the electrical power generation and the heat

extraction from the turbine exhaust gases. The exhaust

gases can be conveyed to a re-heating chamber to heat the

water of a primary circuit and then, through a heat

exchanger, to heat the water of a secondary circuit that,

actually, is the heating circuit of the ENEA Research

Center. If the thermal energy required by the end user is

higher than the thermal energy of the exhaust gases, fresh

methane gas can be fired in the re-heating chamber where

the combustion occurs. The block diagram of the

temperature control of the primary and secondary circuits

is depicted in Fig. 1. The control of the thermal energy

used to heat the primary circuit is performed by regulating

both the flow rate of the exhaust gases through the

diverter D and the flow rate of the fresh methane gas

through the valve V. T1 is the temperature of the primary

circuit, T2 is the temperature of the secondary circuit, and

u is the thermal request by the end user.

The controller has two distinct regimes (two discrete

states) represented by the position 1 or 2 of the switch W in

Fig. 1. Position 1 is the normal operational condition,

position 2 is the safety condition. In position 1, the control

is based on a proportional-integrative measure (performed

by block PI 1) of the error of temperature T2 with respect to

a (constant) set point temperature Ts: Conversely, in

position 2, the control is based on a proportional-

integrative measure (performed by block PI2) of the error

of temperature T1 with respect to a (constant) set point

temperature Ts: Normally, the switch W is in position 1 and

the control is performed on T2 to maintain constant the

temperature to the end user. Switching from position 1 to

position 2 occurs for safety reasons, when the value of T2 is

higher than a critical value defined as the set point Ts

augmented by a hysteresis value Th and the control is

locked to the temperature of the primary circuit T1; until T1

becomes lower than the set point Ts:

The exit of the proportional-integrative block (either PI 1

or PI2, depending on the position of the switch W) is the

variable y which represents the request of thermal energy.

When y is lower than a split point value Ys the control just

acts on the diverter D (flow of the exhaust gases), when the

diverter is completely open, and the request for thermal

energy y is greater than Ys; the control also acts on the flow

rate of the fresh methane gas by opening the valve V.

The heating request is computed by the function f ðyÞ

represented in Fig. 2. Since the temperature T2 is used when

W is in position 1, and the temperature T1 is used in state 2,

the function f ðyÞ depends on y2 when W ¼ 1 and on y1

when W ¼ 2: The function f ðyÞ is defined as the sum of two

nondeterministic components, namely: g1ðyÞ which

Fig. 1. Temperature control of the primary and secondary circuits of the

ICARO plant.

Fig. 2. The heating request function f ðxÞ:
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represents the state of the valve V, and g2ðyÞ which

represents the state of the diverter D. The nondeterminism

is introduced by the parameters amin;amax that give the

minimal and maximal heat induced by the fresh methane

gas, and bmin;bmax that define the minimal and maximal

heat induced by the exhaust gases.

Finally, the heat exchange between the primary and the

secondary circuit is approximated by the linear function

gðT1 2 T2Þ; proportional (through a constant g) to the

temperature difference.

3. Fluid petri nets

FPN are an extension of standard Petri Nets [21], where,

beyond the places that contain a discrete number of tokens, a

new kind of place is added that contains a continuous

quantity (fluid). Hence, this extension is suitable for

modeling and analyzing hybrid systems. Two main

formalisms have been developed in the area of FPN: the

Continuous or Hybrid Petri net (HPN) formalism [1], and

the Fluid Stochastic Petri net (FSPN) formalism [16,14]. A

complete presentation of FPN is beyond the scope of the

present paper. An extensive discussion of FPN in perform-

ance analysis can be found in Ref. [11].

Discrete places are drawn according to the standard

notation and contain a discrete amount of tokens that are

moved along discrete arcs. Fluid places are drawn by two

concentric circles and contain a real variable (the fluid

level). The fluid flows along fluid arcs (drawn by a double

line to suggest a pipe) according to an instantaneous flow

rate. The discrete part of the FPN regulates the flow of the

fluid through the continuous part, and the enabling

conditions of a transition depend only on the discrete part.

3.1. S-FPN analysis techniques

Stochastic FPN (S-FPN) are FPN where transitions have

associated a random firing time [10]. The dynamic evolution

of a S-FPN in time is described by a set of partial differential

equations, with a partial differential equation for each fluid

place considered. Two kinds of solution approaches are

available to solve the equations that characterize the

stochastic process of a S-FPN: numerical techniques (see

[16,14,11]) and simulation (see [7,13]). Numerical tech-

niques achieve very detailed results at the expense of very

high computational cost. The equations become almost

impossible to solve for models with more than two or three

fluid places. Simulation techniques compute average

measures instead. They do not suffer from the limitations

imposed by the numerical techniques, but accuracy is often

very hard to control.

3.2. A FPN description of the system

The case study of Fig. 1 is represented as an FPN model

in Fig. 3. The FPN contains two discrete places: P1 which is

marked when the switch W is in state 1, and P2 which is

marked when the switch W is in state 2. Fluid place Primary

(whose fluid level is denoted by T1) represents the

temperature of the primary circuit, and fluid place

Secondary (whose fluid level is denoted by T2) represents

the temperature of the secondary.

The fluid arcs labeled with gðT1 2 T2Þ represent the heat

exchange between the primary and the secondary circuit.

The system jumps from state 1 to state 2 due to the firing of

immediate transition Sw12: This transition has associated a

guard T2 . Ts þ Th that makes the transition fire (inducing

a change of state) as soon as the temperature T2 exceeds the

setpoint Ts augmented by an hysteresis value Th: The jump

from state 2 to state 1 is modeled by the immediate

transition Sw21; whose firing is controlled by the guard

T1 , Ts that makes the transition fire when the temperature

T1 goes below the setpoint Ts: In order to simplify the figure,

we have connected the fluid arcs directly to the immediate

transitions. The meaning of this unusual feature is that fluid

flows across the arcs as long as the immediate transitions are

enabled regardless of the value of the guards.

The outward fluid arc from place Secondary, represents

the end user demand whose range of variation is denoted by

½u1; u2�: Fluid place CTR2; whose marking is denoted by y1;

models the exit of the proportional-integrator PI1. This is

achieved by connecting to place CTR2 an input fluid arc

with a constant fluid rate equal to the setpoint Ts and an

Fig. 3. FPN model of the temperature controller.
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output fluid arc characterized by a variable flow rate equal to

T2: In a similar way, the exit of the proportional-integrator

PI2 is modeled by fluid place CTR1 (whose marking is

denoted by y2). The fluid arcs that connect transition Sw12

and Sw21 to fluid place primary represent the heating up of

the primary circuit.

3.3. Results from S-FPN simulator

In nonstochastic settings, the firing times for the

transitions in the net can be given either by a constant

value or by an interval with nondeterministic choice. Instead,

in the stochastic setting, the firing times are random variables

and are defined by assigning a firing intensity to the timed

transitions. The firing intensity may be constant (firing times

exponentially distributed) or may depend on the marking.

Nondeterministic flow rates require a more sophisticated

approach. We represent a stochastically varying flow rate

with a continuous time Markov chain that modulates the

flow rate. In the considered example, in order to model a

stochastically varying user demand (between a minimum

value u1 and a maximum value u2) we use the simple two

state Markov chain of Fig. 4. Places D1 and D2 model the

two states of the Markov chain. When place D1 is marked,

the user demand is u1; when place D2 is marked, the user

demand is u2: The mean sojourn time of the Markov chain in

states D1 and D2 is equal to one time unit. Tuning the

transition probabilities between states D1 and D2 or adding

more states, allows us to accommodate any stochastic

behavior of the user demand.

The system dynamics has been evaluated using a S-FPN

simulator [13]. Figs. 5 and 6 show the distribution of the

temperatures T1 and T2 of the primary and secondary circuit,

respectively, as the function of time. The distributions at

some particular time instants are presented in Fig. 7. In

particular time t ¼ 5 shows the distributions during the

heating up stage, time t ¼ 33 shows the distributions near

the maximum mean temperature, and t ¼ s:s: represents the

distributions in steady state. The other parameter values are

set according to the same values that will be presented in

Section 5.

Fig. 4. S-FPN model of the temperature controller.

Fig. 5. Distribution of temperature T1 as function of time. Fig. 7. Temperature distribution at some time instants and in steady state.

Fig. 6. Distribution of temperature T2 as function of time.
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Other interesting measures can be computed using S-

FPN by adding some elements to the model. For example,

the probability of reaching a bound which may bring the

system to an unsafe condition can be evaluated by adding

two places and a transition with a guard. When the guard

level is reached a token is transferred from the input to the

output place.

With reference to the present case study, we can define a

critical temperature threshold value Tc (for example

Tc ¼ 137 8C). The attainment of the critical condition is

modeled in Fig. 4 by adding two places Pf and Pt and one

immediate transition test controlled by a guard (T1 , Tc or

T2 , Tc). As soon as the critical condition becomes true, the

transition test is enabled and moves one token from place Pf

to place Pt: The probability of the critical condition versus

time can be computed, using S-FPN transient analysis, as

the probability of having place Pt marked. Fig. 8 shows

various distributions of the probability of reaching the

critical state at a given time instant, by varying the

maximum user demand u2: As we can see, the system

never reaches the critical state if the maximum user demand

is u2 # 5: For 5:5 # u2 # 13 there is a nonnull probability

of reaching the critical state and for u2 $ 16 the probability

of reaching the critical state tends to 1 as time increases. The

higher the maximum user demand, the sooner the critical

state is reached.

Fig. 9 represents the steady state probability of reaching

the critical state, as a function of the maximum user

demand.

4. Hybrid automata

A hybrid automaton [3] is a finite state machine whose

nodes (called control modes or locations) contain real

valued variables with a definition of their first derivatives

and possible bounds on their values. The edges represent

discrete events and are labeled with guarded assignments on

the real variables.

Given a hybrid automaton and a legal formula on its

variables (essentially a legal formula is a Boolean

combination of linear constraints), the model checking

problem asks to compute a region that satisfies the formula,

or to find at least one counterexamples that contradicts the

formula.

4.1. From FPN to hybrid automata

In order to use a FPN model in a model checking

environment, the FPN formalism should be converted into a

hybrid automaton. A general conversion algorithm could be

envisaged following Refs. [2,24], and is based on the

conversion rules summarized in Table 1.

The application of the conversion algorithm to the case

study FPN of Fig. 3 provides the hybrid automaton [3] of

Fig. 10.

According to Table 1, the hybrid automaton has two

locations P1 and P2 (corresponding to the two discrete

markings of the FPN) and the following set of real variables

T1; T2; y1 and y2 (corresponding to the fluid variables of the

FPN). Each continuous variable has a derivative equal to the

flow rate of the corresponding fluid place in that state.

Transitions from location P1 to P2 and from P2 to P1 are

labeled with the guards of the immediate transitions that

cause the state change. State P1 has also associated the

bound (invariant condition) T2 # Ts þ Th and P2 the bound

T1 $ Ts to reflect the same bounds posed on those fluid

places.

Fig. 8. Distribution of time to critical state for various user maximum

demand.
Fig. 9. Steady state fault probability as function of the maximum user

demand.

Table 1

Conversion rules from FPN to HA

Fluid Petri Net Hybrid automaton

Discrete states ) Locations

Fluid variables ) Continuous variables

Fluid flow rates ) Derivatives versus time

Guards ) Bounds
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4.2. From hybrid automata to HyTech

HyTech [18,3,15] is a model checker for Linear Hybrid

Automata (LHA), i.e. for hybrid automata which only use

a restricted form of linear differential equations to define the

dynamics of the continuous state variables. It is, thus, quite

natural to attempt to analyze the hybrid automaton of Fig. 10

using HyTech. Unfortunately, the automaton in Fig. 10

Fig. 10. Hybrid Automata obtained from the FPN of Fig. 3.

Fig. 11. A glimpse of the beginning of our HyTech model.
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cannot be directly translated into a HyTech model. In fact,

the specification of the derivatives of the continuous

variables in HyTech is restricted to be in the form of a

constant nondeterministic range (a constant lower and upper

bound). In the automaton of Fig. 10 the time derivatives for

T1 and T2 are not constant, but are expressed as functions of

the continuous variables themselves. Thus, some manipu-

lation is required.

The above problem is common when modeling with

HyTech. The standard solution is to split each continuous

Fig. 12. A glimpse of the final part (analysis commands) for our HyTech model.

Fig. 13. HyTech answer when the user demand is between u1 ¼ 2 and u2 ¼ 3:
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variable into intervals in which the time derivatives can be

bound using constants. Of course, this approach leads to

many locations, since the smaller the intervals the better the

approximation: increasing the number of intervals entails an

increase in the number of locations. Thus a reasonable

compromise must be found.

Because of its size, writing a HyTech model by hand using

the above technique is out of question for our case study.

Fig. 14. HyTech answer when the load is between u1 ¼ 2 and u2 ¼ 4:
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Thus, we wrote a shell script that generates our HyTech

model using the approach outlined above together with a

rescaling of the continuous values in order to have small

numbers thereby avoiding HyTech arithmetical overflows.

The resulting HyTech program has about 150 locations.

In Fig. 11 we show the initial part of the HyTech

specifications for our model and in Fig. 12 the final part

containing the analysis commands (i.e. the properties that

we want to check by means of HyTech). Our specification

requires that temperatures T1 and T2 be always within

assigned bounds for an assigned range of user demand

½u1; u2�: In Fig. 12 we ask HyTech to check if it is possible to

reach a state that violates this specification.

Depending on the range of variation of the end user

demand ½u1; u2�; the required specification may or may

not be satisfied. Fig. 13 shows the HyTech answer when

the specification is satisfied (user demand ½u1; u2� in

the range [2,3]). Fig. 14 shows the error trace returned by

HyTech when our specification is not satisfied (user demand

½u1; u2� in the range [2,4]).

The above discussion shows that generating the HyTech

model for a nontrivial hybrid automaton requires a

considerable effort because of the restricted class of hybrid

automata accepted by HyTech. Moreover the HyTech model

can be automatically analyzed by HyTech only if it is of

moderate size. This suggests that for hybrid systems similar

to the one we studied HyTech can only be used to analyze

small (abstracted away) models of the system at hand.

5. Analysis of the FPN model via NuSMV

Discrete model checking is based on a finite state

machine model in which the variables and their derivatives

are discretized and in which the time increases with a

predefined time step. The parameters and their derivatives

can be assigned uncertainty ranges (e.g. a min and a max

value) with nondeterministic logic. The predicates to be

checked are specified using a Computational Tree Logic

(CTL) or a Real Time CTL (RTCTL) [8,9].

In order to show the generality of our approach and to

give an insight on the class of models that can be

automatically derived from the FPN description, we sketch,

in brief, how the FPN can be converted into a discrete model

to be checked using discrete model checking techniques and

we present some typical analyses and results that can be

obtained from the converted model. For the purpose of the

present paper, we have chosen the language NuSMV [23].

5.1. Converting a FPN into a NuSMV model

The algorithm to convert a FPN model into the NuSMV

language requires the following steps:

1. Definition of the variables. The discrete markings of the

FPN model are directly translated into a discrete variable

in NuSMV. All the continuous variables (fluid levels of

the FPN) and their rates of variation must be, instead,

suitably discretized (choosing a suitable discretization

interval). Variables are introduced in the NuSMV

specification using the keywords VAR.

2. The second step defines the FPN constants that are used

in the fluid rate functions or in the enabling conditions.

Moreover, the ranges of variation (min and max values)

for the continuous variables and for their rates must be

set. All these quantities (constants and bounds) must be

suitably discretized and rescaled according to the

discretization intervals chosen in step 1), above. The

constants and the bounds are listed under the keyword

DEFINE.

3. In order to analyze the behavior of the control system

versus time, a time step (in arbitrary units) is assumed

and the dynamic evolution of the system at the integer

multiples of the time step must be described.

The evolution of the model is stated under the keyword

TRANS and must be described marking by marking.

4. Finally, the fourth step consists in defining an initial state

from which the dynamic evolution of the model starts.

The initial state is described under the keyword INIT.

We now particularize the above general steps to the

present case study. The discrete part of the FPN model is

reflected in the variable marking; whose value is either 1 or

2. Furthermore, all the continuous variables (fluid levels of

the FPN) and their range of variation must be discretized.

Four fluid variables are defined in the FPN of Fig. 3,

namely: y1; y2 and T1; T2: In the NuSMV description, the

variables representing the fluid levels y1; y2; T1 and T2 are

denoted by y1, y2, T1, and T2. The fluid levels y1 and y2;

of fluid places CTR1 and CTR2; respectively, are discretized

with a step interval 1/30, so that y1 and y2 range in the

interval 0:30 (Fig. 15). The normalization constant for y1

and y2 is denoted by dy and represents how fast the system

reacts to the temperature difference with respect to the

setpoint. The fluid levels T1 and T2 of fluid places Primary

and Secondary, respectively, are bounded between T‘ ¼

138 and Tu ¼ 145 and the discretization step chosen for

these variables is 0.1. With these assumptions, the

temperature variables in NuSMV are scaled with respect

to the lower bound T‘ so that T1 and T2 range in the interval

0:70. A value T1ð2Þ ¼ i; 0 # i # 70 implies that T1ð2Þ ¼
T‘ þ i p 0:1:

The second part under the keyword DEFINE gives the

possible fluid changes in the different states of the model.

Both minimal and maximal fluid changes have to be

calculated, this is done by summing ingoing and outgoing

fluid rates and considering minimal and maximal values of

the appearing variables. For marking ¼ 1, these are

the following (similar definitions hold for marking ¼ 2):

† m1_y1 gives the (deterministic) fluid rate of place CTR1

in state 1;

M. Gribaudo et al. / Reliability Engineering and System Safety 81 (2003) 239–257 247



† m1_y2 gives the (deterministic) fluid rate of place CTR2

in state 1;

† m1_T1_min and m1_T1_max give the minimal and

maximal flow rate of fluid place Primary in state 1;

† m1_T2_min and m1_T2_max give the minimal and

maximal flow rate of fluid place Secondary in state 1;

In order to analyze the behavior of the control system

versus time, we assume a time step (in arbitrary unit) and

describe the dynamic evolution of the system at the integer

multiples of the time step. The evolution of the model is

stated under the keyword TRANS and must be described

marking by marking. Since in the present model we have

two markings (states), the evolution description is restricted

to four expressions:

† possible changes of the variables inside state

marking ¼ 1;

† possible changes of the variables inside state

marking ¼ 2;

† jump from marking ¼ 1 to marking ¼ 2;

† jump from marking ¼ 2 to marking ¼ 1.

Finally, the initial state of the model is described under

the Keywords INIT. An excerpt of the NuSMV specifica-

tions for the case study at hand is provided in Figs. 15

and 16. The complete specification is in Ref. [17].

5.2. NuSMV results

NuSMV is a model checking tool that also contains a

simulation engine that allows us to explore the dynamics of

the system. To increase the readability of our results, we

report the variables in their true units (and not in the rescaled

units used by NuSMV). Figs. 17 and 18 depict the evolution

of the temperatures (T1 and T2) and of y1 and y2,

Fig. 15. A glimpse of our NuSMV model.
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respectively, for the same simulation trace, starting from the

initial state [y1 ¼ 0, y2 ¼ 0, T1 ¼ 138, T2 ¼ 138].

The design specification for the temperatures of the

system (given as invariant condition or bounds) are: ð139 #

T1 # 144 and 139 # T2 # 141Þ: If the invariant does not

hold, i.e. the temperatures exceed the bounds, NuSMV

produces a counterexample as in Table 2. Table 2 shows

a case with [gamma ¼ 2, dy ¼ 10, Ts ¼ 140]. Both

temperatures start initially from 141 and decrease because

of the heat consumption of the user. As T2 (T1) reaches Ts,

y1 (y2) starts to increase. However, the reaction is not fast

enough to avoid the undesirable condition and the secondary

temperature T2 crosses the lower bound. Modifying the

design parameters may avoid to incur in this situation

Fig. 16. A glimpse of our NuSMV model (continued from Fig. 15).

Fig. 17. Change of temperature given by a simulation trace. Fig. 18. Change of y1 and y2 given by a simulation trace.

M. Gribaudo et al. / Reliability Engineering and System Safety 81 (2003) 239–257 249



(f.i. setting [gamma ¼ 2, dy ¼ 1/10, Ts ¼ 139.8], i.e.

speeding up the reaction of the system, and reducing the

setpoint temperature).

Using RTCTL [9] expression, one can check the

trajectory on which the system proceeds. For example,

starting from the lowest possible temperatures

(T1 ¼ T2 ¼ 138) the formula

AF (AG (T1 . ¼ 139 & T1 , ¼ 144 &

T2 . ¼ 139 & T2 , ¼ 141)

is true if the system gets back to stable state for sure and

remains there forever. Setting [gamma ¼ 2, dy ¼ 1/10,

sp ¼ 18], the formula evaluates to true. The same

formula, with the same settings evaluates to true as well,

if the system starts from the upper bound of the

temperatures.

Knowing the timing behavior of the system, one can use

NuSMV to compute the minimal or maximal time needed to

get a given set of states from an initial condition. For

example, the commands

COMPUTE MIN [y1 ¼ 0 & y2 ¼ 0 & T1 ¼ 145 &
T2 ¼ 145, AG (T1 . ¼ 139 & T1 , ¼ 144
T2 . ¼ 139 & T2 , ¼ 141)]
COMPUTE MAX [y1 ¼ 0 & y2 ¼ 0 & T1 ¼ 145 &
T2 ¼ 145, AG (T1 . ¼ 139 & T1 , ¼ 144
T2 . ¼ 139 & T2 , ¼ 141)]

give the length of the minimal and maximal paths that

lead from the initial condition [y1 ¼ 0, y2 ¼ 0,
T1 ¼ 145, T2 ¼ 145] of high temperatures (out of the

required range) to temperatures inside the required range in

such a way that the system does not leave this range in the

future. The above command with parameters

[gamma ¼ 2, dy ¼ 1/10, sp ¼ 18] results in min 2

path ¼ 21 and Max 2 path ¼ 64:

6. Probabilistic model checking

In this section, we move from a nondeterministic setting

to a probabilistic one and show some typical results that can

be obtained from a probabilistic model checker. In

particular, rather than using a nondeterministic model for

the user demand u (as we did in Sections 4.2 and 5) here we

use a probabilistic model (as we did in Section 3.3. This

allows us to exploit the statistical knowledge about the user

demand dynamics. As a result the response of the model

checker is no more in Boolean form (true or false), but

rather the possible evolution paths are weighted with

probabilities. Requirements can thus be weighted with

probabilities too. For example instead of requiring that the

secondary temperature T2 be always below, say, 141C; we

may require that T2 # 141C with an assigned (high)

probability.

6.1. Model checking using PRISM

PRISM [20,19,22] is a probabilistic model checker. It

allows modeling and analysis of systems exhibiting

probabilistic behavior. Essentially PRISM requires two

input files: a description of the system to be analyzed

and a set of properties to be checked.

The system to be analyzed is defined using a simple

state-based language. From this description, PRISM

constructs a probabilistic model, namely: a DTMC, a

Markov Decision Process (MDP) or a Continuous-Time

Markov Chain (CTMC). Here our attention is focused on

DTMC’s.

For example, given a DTMC M and an initial state I

for M PRISM can compute, for each state x of M; the

probability that an infinite sequence of transitions (a path)

reaches x from I: To carry out its computation PRISM uses

numerical methods (based on sparse matrices), Ordered

Binary Decision Diagram (OBDD) [6] based methods as

well as a hybrid approach based on a combination of

numerical methods and OBDDs. Numerical methods tend

to be faster than OBDD based methods, however

numerical methods consume more memory. Thus, OBDD

based methods become necessary for large systems. For

middle size systems a hybrid approach usually works

better.

One may think that the model used for NuSMV can be

translated easily to a PRISM model. However the arithmetic

support of PRISM is weaker than that of NuSMV, e.g. the

division operation is not available within PRISM. This

forced us to change considerably our NuSMV model before

feeding it to PRISM.

As a matter of fact we followed the same approach used

in Section 4.2 to build a HyTech model. We discretize each

state variable and precompute the next state value for that

Table 2

Counter example

Step 1 2 · · · 6 7 8 9 10 11 12 13 14

State 1 1 1 1 1 1 1 1 1 1 1

T1 141 141 140.4 140.3 140.1 140 139.8 139.7 139.5 139.4 139.2

T2 141 140.7 140.1 139.9 139.8 139.6 139.5 139.3 139.2 139 138.9

y1 0 0 0 0 1/30 2/30 3/30 4/30 5/30 6/30 8/30

y2 0 0 0 0 0 0 1/30 2/30 3/30 4/30 5/30
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variable using the equations of the hybrid automata in

Fig. 10. This prevents us using the division operator which

is not available in PRISM.

Of course the smaller the discretization step the better the

approximation. For the temperature we used a discretization

step of 0.5 C. This is quite rough, however making the

discretization step smaller leads to a model file too big for

PRISM. As for HyTech, we wrote a shell script generating a

PRISM model along the above lines.

Figs. 19–21 give a glimpse of the PRISM model derived

from the NuSMV model by allowing probabilistic changes

in the user demand. Fig. 19 shows constants and variable

declarations. The state variables are the same used for the

HyTech model in Section 4.2 (or for the NuSMV model in

Section 5 plus some book-keeping variables (namely:

delay, sck and counter). Fig. 19 also shows the

modeling in PRISM of the switching rules (marking rules)

between the two locations (P1 and P2) of the hybrid

automaton of Fig. 10. Variable sck in Fig. 19 is used to

schedule our model activities. When sck ¼ 0, state

variables T1, T2, y1, y2 are updated (system dynamics).

When sck ¼ 10, we compute the next marking (i.e.

variable marking is updated). When sck ¼ 15, the user

demand is updated.

The rather coarse grain of the PRISM model forced us to

adjust the constants used in the NuSMV model. The

verification strategy must also be changed. In fact in the

PRISM model we must stick to values of the user demand u

in the range [1,3]. Going to the range [1,4] would lead to a

too big model file.

Thus rather than analyzing the system behavior with

respect to variations in the user demand range, here we

study the system behavior with respect to variations of the

user demand dynamics. Intuitively, if the user demands

changes too quickly (with respect to the model parameters)

system specifications will not be satisfied since the

controller will not be able to restore the standard operating

conditions and errors will add up.

Fig. 20 shows our PRISM modeling for the user demand

dynamics. Indeed, apart from the necessary changes due to a

different language semantics, this is the original part in the

probabilistic modeling w.r.t. the nondeterministic modeling

used with HyTech (Section 4.2) and NuSMV (Section 5).

We model the user demand with a variable u that can take

values in the set {1; 2; 3}: Moreover we constrain the

dynamics of u by requiring that u must stay at the reference

value (u ¼ 2) long enough (such time is measured by the

variable delay in Fig. 20). Moreover we require that,

within our time horizon, the number of changes of u values

be bounded. The number of changes of the user demand u

are counted by the variable counter in Fig. 20.

When u is allowed to change its value (rule uchange in

Fig. 20) u does so with the following probabilities:

Probðu ¼ 1Þ ¼ Probðu ¼ 3Þ ¼ 0:3 and Probðu ¼ 2Þ ¼ 0:4:

That is the user demand u is a discrete random variable with

finite support between u ¼ 1 and u ¼ 3 and with mass given

Fig. 19. A glimpse of our PRISM model. Declarations and marking rules.
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by the relation:

½Pðu ¼ 1Þ ¼ 0:3; Pðu ¼ 2Þ ¼ 0:4; Pðu ¼ 3Þ ¼ 0:3�:

Under normal operation the user demand stays at its

reference value long enough (namely, DELAY time units

in our model). DELAY is the time needed by the controller to

restore standard operating conditions after a user demand

change. We verified that the controller needs at most 9 time

units to restore standard operating conditions after a user

demand change. Thus it is enough to choose a value of at

least 9 for the constant DELAY. We relax the above

requirement by allowing that the user demand u may change

Fig. 20. A glimpse of our PRISM model (continued from Fig. 19). Probabilistic selection of user demand.

Fig. 21. A glimpse of our PRISM model (continued from Fig. 20). System dynamics.
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its value before DELAY time units are elapsed, with

probability r: This is done in the rule rho in Fig. 20.

Fig. 21 gives a glimpse of the PRISM model for the

system dynamics. This is obtained by discretizing all the

differential equations in the hybrid automata of Fig. 10.

Fig. 22 gives the specifications we passed to PRISM.

Again we require that temperatures be within given bounds,

only with high probability in this case. In Fig. 22 this is done

by asking that the probability of reaching a state violating a

requirement is below a given probability threshold.

For each of the requirements w in Fig. 22 we used the

PRISM option -verbose to compute the probability of w

holding in the initial state.

The results are summarized in Table 3. The first row of

Table 3 gives the probability r that the user demand u

changes its value (rule rho in Fig. 20) before the controller

restores the standard operating conditions. The rows from

the second to the fifth give the probability of reaching a state

satisfying the error condition shown in the first column

(from the initial state) as a function of r:

Moreover PRISM output certifies that the specifications

in Fig. 22 hold in any state. This means that from any state

(not just from the initial state) the probability of reaching a

state violating a requirement is less than 0.3. As to be

expected, from Table 3, it is clear how an increase in the

probability r of a change in the user demand (u) entails an

increase in the probability of violating some of the

requirements for T2: The requirements for T1 instead do

not appear to depend from r:

7. Discussion and conclusion

Using a real world hybrid system as a case study we

presented an approach to integrate FPNs and model

checking via hybrid automata and discrete as well as

probabilistic models. Such integration turned out to be

conceptually useful but raised a series of questions and

problems that we want to elucidate and discuss in the

present section. The goal of this discussion is not to compare

the real power of the different tools used in this study, but is

limited to the experience gained within our specific

application. Moreover, this discussion can be the base for

future research work in the area of the integration of models

and tools for performance, reliability and safety analysis.

7.1. Modeling language

Central to the present study is the search for a unifying

modeling language. We think that FPN offers a convenient

tool from this point of view, since they have the flexibility

and generality to cope with hybrid, deterministic and

stochastic systems. This statement is supported by the

consideration that all the models used in this paper could be

derived rather directly from the FPN model.

FPN can be solved analytically if some restrictions are

met [11]. In the present study, a simulative approach has

been adopted. Automatic conversion of FPN into hybrid

automata has been the object of recent research [24], and

more general structures can be envisaged. However, as

Fig. 22. The properties we passed to PRISM for verification (i.e. PRISM.pctl file).

Table 3

Probabilities of requirement violation as a function of the probability r that the user demand u changes its value. The first row gives r: Rows from second to

fifth give the probability of reaching a state satisfying the error condition shown in the first column

r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ðT1 # 139Þ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ðT1 $ 141Þ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ðT2 # 139Þ 0.0 0.171 0.195 0.201 0.205 0.21 0.216 0.223 0.232 0.244

ðT2 $ 141Þ 0.0 0.171 0.195 0.201 0.205 0.21 0.216 0.223 0.232 0.244

M. Gribaudo et al. / Reliability Engineering and System Safety 81 (2003) 239–257 253



the present case study has shown, the resulting hybrid

automaton may be not in linear form and hence may not be

directly analyzed using the HyTech tool. To use HyTech on

such models some manipulation may be necessary. This, in

turn, may lead to a too big state space (state explosion).

The derivation of discrete models (NuSMV-like) from

FPN seems the most natural passage. However, when

discretizing continuous variables, care should be given in

the adopted grid points. An additional problem in NuSMV is

the need of rescaling the parameters. Combination of Petri

nets with formal methods has been the object of previous

research [5].

The PRISM model checkers allows analysis of Discrete

Markov Chains. However its modeling language has little

support for arithmetic (e.g. the division operator is not

present). This is not a big problem when analyzing protocols

(the usual PRISM target systems), however this may force

heavy manipulation of the model when working with hybrid

systems.

7.2. Probabilistic vs nondeterministic

This dilemma was the main reason of this research work.

In probabilistic models the timing of events, and the

uncertainty in the knowledge of the model parameters is

represented by means of random variables. Typical fields of

application are performance evaluation and dependability

analysis, and the obtainable measures are mean values and

distributions.

In nondeterministic models the timing of events is

represented by constant values or nondeterministic ranges.

Typical fields of application are real time and time critical

systems and safety critical systems. The obtainable

measures are reachability properties via CTL and model

checking.

Probabilistic model checking mixes the two paradigms

allowing to define reachability properties in terms of

probability of occurrence.

A complete characterization of a hybrid system for the

control of safety critical application requires both perform-

ance (probabilistic) and reachability properties to be

analyzed. Indeed, it is exactly this need that motivates our

work here.

7.3. Simulation vs exhaustive exploration

A reachability analysis via Model Checking computes

exactly all reachable states of a finite state system

(Exhaustive Exploration). This is equivalent to run all

possible simulations for that system. Of course, because of

the huge state space, running all possible simulations is

impossible. Model checkers achieve this result by using

suitable algorithms and data structures.

For example when a model checker like NuSMV in

Section 5 says that when the user demand u is in the range

[1,3] requirements are never violated it means that there is

no system evolution that can possibly lead to a requirement

violation. On the other hand if in a simulation run

requirements are not violated we cannot conclude that

there is no system evolution that can lead to a requirement

violation.

However, one must always keep in mind that the

computational complexity of model checking is far greater

than that of simulation. Thus model checking is to be used

only when simulation does not suffice.

In summary, if we are interested in typical behaviors or

to errors occurring with a high enough probability, than we

may want to use simulation. On the other hand to look for

low probability errors or to gain a very high confidence in

the system correctness w.r.t. given requirements (as needed

for safety critical system) we may want to use model

checking. Usually one uses simulation first. When no more

errors are found by simulation then model checking may be

used to get rid of the remaining hard to find errors.

7.4. Automatic analysis of probabilistic models

Automatic analysis of probabilistic models can be carried

out either using a S-FPN solution package, or using a

probabilistic model checker like PRISM (Section 6).

S-FPN solution is based on the computation of the

transient or steady state probability distribution of the

underlying stochastic process. From that solution, various

performance indexes can be derived. These indexes may

represent some performance measure, like a throughput, or

some other characteristic of the system, like a mean

temperature.

Very detailed information can be derived from the

solution of the underlying stochastic process. However, as

outlined in Section 3.1, in order to compute this solution, a

very complex system of partial differential equations must

be solved. For this reason automatic analysis of S-FPN is

only possible for very small models.

Given a discrete Markov chain M and an initial state I

for M, PRISM can compute, for each state x of M, the

probability that an infinite walk from I reaches x: PRISM

uses numerical as well as OBDD based techniques to carry

out its analysis. In some cases such techniques can also be

used for the numerical solution of S-FPN, like in [12].

Usually PRISM can handle larger models that those

tractable with S-FPN. Note however that with S-FPN we are

considering hybrid models whereas PRISM only handles

finite state models (namely, DTMCs).

7.5. Continuous vs discrete

In discrete models the state space is discrete and can be

exhaustively searched for. The dynamic evolution of the

system in time can be represented as a sequence of

transitions among discrete states. The dynamics of the

system under analysis can be arbitrary, however the

applicability of the method is limited by the possibly huge
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amount of memory needed to store the whole state space

(state explosion).

Hybrid models contain discrete as well as continuous

variables in the same model, and have a greater modeling

power. Typical examples are discrete controllers that

control continuous variables (as the case study in this

paper). The available analysis tools for hybrid systems (e.g.

HyTech) are limited to linear hybrid automata, and this may

pose severe restrictions when dealing with real cases. In

fact, the possibility of modeling continuous variables may

be lost since we may need to resort to a stepwise (discrete)

linearization to handle nonlinear dynamics.

7.6. Scalability and complexity

The scalability and the complexity of the proposed

approaches mainly depend on the hybrid automata solution

component. The process of translating a FPN to Hybrid

System is exponential in the dimension of the FPN: it

requires the creation of its reachability graph which is done

through a depth-first visit of its state space. This step is

clearly exponential in the dimension of the model (see for

example [11]). After the model has been translated, the

complexity of the analysis depends on the complexity of

the algorithms used by the Model Checker to analyze the

obtained hybrid systems.

Although model checking worst case complexity is

exponential in the size of the input, model checkers

performs reasonably well in many practical cases. However,

depending on the system at hand, one model checker may

perform better than another. This is because each model

checker is optimized for a certain class of systems.

In our case HyTech and PRISM had a much harder time

than NuSMV to complete our verification task. This forced

us to considerably scale down the models we used for

HyTech and PRISM. We should note however that HyTech

handles continuous time models (whereas NuSMV only

handles discrete time models) and PRISM handles prob-

abilistic models (whereas NuSMV only handles nondeter-

ministic models).

The scalability of our technique is thus limited by two

different factors: the exponential complexity of the

translation process, and the (possibly exponential) complex-

ity of the Hybrid Automata analysis technique. At

Table 4

Comparison of the various analysis techniques

Tool Main features Best suited for

Simulation of S-FPN Can be used on any kind of system. Computationally very efficient both in

space and in time. On the other hand it only explores a randomly chosen

subset of the state space. Simulation is very useful to validate our model and

to find the most evident (i.e. statistically easy to find) errors. Errors that

occurs only in a small number of system evolutions may easily go

undetected in a simulation analysis.

Validation and testing of any model.

NuSMV Can only be used for finite state systems, thus if our system model is not

finite state we must discretize it. Space and time complexity can be

exponential in the size of the description of the system to be analyzed (state

explosion). However the all state space is explored. Thus all errors are

found. For each error E the tool returns a possible system evolution

(counter-example) leading to error E:

Verification (i.e. exhaustive exploration) of

moderate size finite state models.

Hy Tech Can only be used on hybrid systems where the continuous dynamics is

defined using constant bounds on time derivatives (linear hybrid automata).

When our model has a more complicated continuous dynamics, we must

approximate our model by splitting it into many submodels having constant

bounds on time derivatives. Space and time complexity can be exponential

in the size of the description of the system to be analyzed. The all state

space is explored, thus all errors are found. For each error E the tool returns

a possible system evolution (counter-example) leading to error E:

Verification (i.e. exhaustive exploration) of

small size linear hybrid automata.

PRISM Can be used on Discrete Time Markov Chain. Space and time complexity

can be exponential in the size of the description of the system to be

analyzed. PRISM performs an exact analysis of the input Markov chain.

E.g. given an initial state I; for each reachable state x PRISM Compute

exactly the probability of reaching state x from I with a walk of infinite

length.

Exact probabilistic analysis of moderate

size discrete time Markov chains.

Numerical solution of S-FPN Can be used on any kind of system. Space and time complexity is very high

since a system of partial differential equations is to be solved. For this

reason it can only be used on small models. On the other hand the results

produced are very detailed.

Exact analysis of small models,

e.g. detailed models of subsystems.
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the present time, these constraints limit the applicability of

the proposed technique only to very small (in term of FPN

description elements) models.

7.7. When and what

As in Section 7.3 the approach to be used depends on

our goals. Stochastic simulation of the performance

model is to be used if we are mainly interested in

average behaviors. Probabilistic model checking is to be

used if we are also interested in low probability events.

For example, this is the case for safety critical systems.

Numerical solution of the performance model is to be

used when we are interested in some complex perform-

ance index like the distribution of the time after which a

low probability event occurs.

For example we used simulation in Section 3.3 to obtain

distributions and average values, whereas we used PRISM

to compute the exact probability of given events (namely,

violation of requirements). We could have not applied

numerical solution of the FPN, because it would have been

too complex for any existing machine.

Essentially the various tools we used trade precision of

the analysis with model complexity. Thus depending on

the level of details to which we are interested in we will

use a tool or another. Basically we may go from an

approximate analysis (e.g. by simulation) of very complex

models to a highly detailed analysis of low complexity

models. Model complexity can be limited in several ways,

each of which generates a class of analysis tools. For

example, we may limit model complexity by restricting

ourselves to finite state systems (as in NuSMV and

PRISM). Model complexity can also be limited by

restricting the continuous dynamics of our system to

have, essentially, constant values for time derivatives (e.g.

as in HyTech).

Table 4 summarizes the main features and the main

intended application (column best suited for) of the tools

we used in our case study. From Table 4 it is quite clear

that all of the tools we examined are needed to cover the

full range of models occurring in the design and analysis

of a complex systems like the one (Section 2) considered

in this paper.

7.8. Future trends: heterogeneous models

We have compared several modeling paradigms on the

same case-study. The usability of a model can be classified

according to its modeling power (the ability of the technique

to allow an accurate and faithful representation of the

system) and its decision power (the ability of the technique

to be analytically tractable and to provide results with

reasonable space and time complexity). These two features

are in competition and a single modeling paradigm may not

be sufficient in any practical situation. Our research effort in

heterogeneous modeling is to explore the possibility of

combining stochastic and deterministic timing and discrete

and continuous (hybrid) variables in the same framework.

A modeling and analysis tool supporting these ideas is under

development [10,25].
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[5] Bobbio A, Horváth A. Petri nets with discrete phase timing: a

bridge between stochastic and functional analysis. In: Corradini F,

Vogler W, editors. Second International Workshop on Models for

Time-Critical Systems (MTCS 2001) Electronic Notes in Theoreti-

cal Computer Science, vol. ENTCS-52. Amsterdam: Elsevier

Science Publishers; 2002. URL: http://www.elsevier.nl/locate/

entcs/volume52.html.

[6] Bryant R. Graph-based algorithms for Boolean function manipulation.

IEEE Trans Comput 1986;C-35(8).

[7] Ciardo G, Nicol DM, Trivedi KS. Discrete-event simulation of fluid

stochastic Petri nets. IEEE Trans Software Engng 1999;2(25):

207–17.

[8] Clarke EM, Emerson EA, Sistla AP. Automatic verification of finite

state concurrent systems using temporal logic specifications: a

practical approach. ACM Trans Program Languages Syst 1986;8(2):

244–63.

[9] Emerson EA, Mok AK, Sistla AP, Srinivasan J. Quantitative temporal

reasoning. J Real Time Syst 1992;4:331–52.

[10] Gribaudo M. FSPNEdit: a fluid stochastic Petri net modeling and

analysis tool. Technical report, Tools of Aachen—International

Multiconfernce on Measurements Modelling and Evaluation of

computer Communication Systems—University of Dortmund, Ber-

icht No. 760/2001; 2001.

[11] Gribaudo M. Hybrid formalism for performance evaluation: theory

and applications. Technical report, PhD Thesis, Dipartimento di

Informatica, Università di Torino; 2001.
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