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Abstract

Power management in battery operated sensor net-
works, is a hot topic addressed by many ongoing re-
searches. One of the most commonly employed technique
consists in turning on and of the power of the ra-
dio unit to reduce the power consumption. In this paper
we exploit the modelling power of Interacting Marko-
vian Agent to evaluate the performance of four dif-
ferent on-off strategies. A Markovian Agent (MA) is
an entity whose behaviour is described by a continu-
ous time Markov chain (CTMC) and that is able to
interact with other MA’s by sending and receiving mes-
sages. A perceived message may induce a state transition
in a MA according to a perception function than can de-
pend on the geographical location of the MA’s, on the
message routing strategy and on the transmission prop-
erty of the medium. We represent each sensor by a MA
and we show how MA’s can interact to produce the col-
lective behaviour of the sensor network.

Keywords: Sensor network, performance and de-
pendability measures, Markov Agents, on-off behaviour

1. Introduction

In this paper, we consider different policies to reduce
power consumption in battery operated wireless sen-
sor networks. We focus on the of energy-saving mecha-
nisms at the MAC layer, similar to the one proposed in
[13, 12, 14]. These works propose wake-up scheduling
schemes that activate sleeping nodes when they need
to transmit/receive, thus avoiding a degradation in net-
work connectivity or quality of service provisioning.

We consider a sensor network in which sensors are
distributed in a continuous finite geographical area ac-
cording to a known spatial Poisson density [7]. The sen-
sors receive stimuli from the environment and transfer
that stimulus to a central base station (called the sink),

by means of intermediate hops through sensors of the
same type. Each sensor can be in an active (radio unit
on), or asleep (radio unit off) or failed condition and
we model different energy saving policies. When in its
active condition, a sensor can buffer the received mes-
sages and retransmit them to the most convenient sen-
sor to minimize the number of hops to reach the cen-
tral base station.

Performance and dependability measures of are ob-
tained by modeling the system by means of a new en-
tity called Markovian Agent (MA). In particular, we
show how the proposed entity is suited to model and
analyze very large stochastic systems of interacting
objects, whose dimensions exceed the capabilities of
any state-space based model, while representing, at the
same time, the local properties and the local dynam-
ics of each agent.

A Markovian agent (MA) has a finite number of dis-
crete states, and chooses its actions randomly accord-
ing to the infinitesimal generator of a CTMC. The MA
communicates with the environment and with the other
MA’s by sending messages that can be received (per-
ceived) by the other agents. Upon acceptance, the per-
ceived messages may induce a state transition, so that
the final behaviour of a MA is determined by its lo-
cal model and by the interaction with the other MA’s.
The MA’s are distributed in a finite geographical area
according to a given spatial density and their interac-
tion is defined by a perception function that depends
on the spatial distribution, the transmission property
of the medium and the message routing strategy.

The modelling and analysis of large scale stochas-
tic systems composed by interacting objects has been
mainly faced in the literature by resorting to the super-
position of interacting Markov chains or to fluid mod-
els. In the first case, the available techniques require
the generation of the global state space, defined as the
Cartesian product of the state spaces of the individual
interacting objects. The explosion of the state space



can be mitigated by exploiting symmetry properties,
often included in the system definition, and producing
the global transition rate matrix by means of tensor al-
gebra operators applied to the local matrices [6]. Rep-
resentative attempts in this direction define the inter-
acting objects directly as Markov chains [3, 1, 5, 2], or
as finite state automata [10, 11] or as Petri nets [4, 9].
However, the compositional approaches, based on fi-
nite state objects, do not account for interactions re-
lated to the relative position of the local objects. On
the other hand, fluid models [8, 7] are able to cap-
ture the global behaviour of the system but loosing the
capability of detailing the local behaviour. In our ap-
proach, the local objects are finite state MA’s but their
interaction is represented by a fluid model.

We model each sensor with a MA, and we assume
that the spatial distribution of MA’s is constant in time
and we refer to this situation as StaticMarkovianAgent
Model (SMAM). The construction of the MA and the
SMAM for the sensor network system, and the quanti-
tative evaluation of some relevant performance and de-
pendability indices of the collective system behaviour
is the object of the present paper.

2. Markovian Agents

A MA is an extension of a continuous time Markov
chain, that adds the possibility of receiving and gener-
ating messages. We define a Markovian Agent MA as
a touple:

MA = {Q, Λ, P,R} (1)

Where:
Q = |qij | is the n×n infinitesimal generator matrix

of a continuous time Markov chain.
Λ = |λi|, is a vector whose components represent

the finite rate of self-jump, that is the rate at which
the Markov chain reenters the same state.

P = |pij | is a n× n matrix, that describes the mes-
sage generation probability.

R = |rij | is a n× n matrix, that describes the mes-
sage acceptance probability.

Q is the infinitesimal generator of an ordinary
CTMC, whose entry qij represents the transition rate
from state i to state j, with qii = −∑n

j=1,j 6=i qij . We
explicitly include the possibility of self-loops in the
CTMC and we define λi as the rate at which the CTMC
makes a jump reentering the same state. While resi-
dent in a state or during a transition a MA can gener-
ate a message. A message generated in a state can be
viewed as a message generated during a self-loop.

Each element pij ∈ P , represents the probability
that a message is generated when a transition from
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Figure 1.A representation of aMarkovianAgent.

state i to j occurs. From the above definitions, we can
compute the rate βi at which messages are produced
in state i:

βi =
∑

j 6=i

qijpij + λipii (2)

A MA can perceive the messages emitted by other
MA’s. A MA in state i has a probability rii of ignor-
ing an arriving message and a probability 1− rii of ac-
cepting an arriving message. An accepted message in-
duces an immediate state change toward state j with
probability rij . We have that:

n∑

j=1

rij = 1, ∀1 ≤ i ≤ n. (3)

Since a MA can change state when it accepts a mes-
sage, the transitions in the associated CTMC are not
only determined by matrix Q but also by the rate at
which received messages are accepted. The perception
function models how emitted messages are perceived by
other MA’s and is primarily function of the spatial dis-
tribution of the agents, the routing strategy and the
property of the medium. The perception function will
be addressed in the following section. Figure 1, gives a
visual representation of a MA. Continuous arrows rep-
resent state transitions governed by the infinitesimal
generator Q of the Markov Chain. During such transi-
tions, messages can be generated, as represented by the
dotted arrows starting from a transition arc whose la-
bels represent the generation probability. Dashed ar-
rows that connect states represent transitions caused
by the acceptance of an incoming message.

2.1. Static Markovian Agents Model

A Static Markovian Agents Model (SMAM), is a col-
lection of Markovian Agents over a space. In this paper
we focus on a bi-dimensional topology. A SMAM is de-
fined by the tuple:

SMAM = {MA,V, ρ, u} (4)

where:
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Figure 2. a) Markovian Agent over a continu-
ous space, b) A representation of the perception
function u(v, i,v′, i′) .

MA is a Markovian Agent.
V is the finite space over which Markovian Agents

are spread.
ρ : V → IR+ is the spatial density function of the

Markovian Agents. We assume that the agents are dis-
tributed over the space V following a spatial Poisson
process of finite parameter ρ(v). That is, the number
of agents in a finite area A ⊆ V, is distributed according
to a Poisson distribution Pois(

∫
A

ρ(v)dv). In a Static
Markovian Agent Model, the spatial density ρ(v) re-
mains constant. Figure 2a shows how the density ρ(v)
can be interpreted for the considered space.

u : V × IN×V × IN → [0 . . . 1] is the perception func-
tion. u(v, i,v′, i′) is the probability that an agent in po-
sition v in state i perceives a message generated by an
agent in position v′ in state i′. The definition of the
perception function u(·) is quite general, and allows to
model several message routing strategies and MA in-
terdependencies. In particular, an agent in state i can
distinguish the state i′ in which the message was is-
sued and take the corresponding action. A visual inter-
pretation of function u(v, i,v′, i′) is given in figure 2b.

3. Sensor network with base station

We model and analyze a wireless sensor network
with a central base station topology using SMAM. Sen-
sors are represented by MA’s and are distributed in a
continuous finite region V according to a spatial Pois-
son density of rate ρ(v). Sensors receive stimuli from
the environment that are transferred to the sink, by
means of intermediate sensors of the same type.

Each sensor can be in three possible states, active
(radio unit on), asleep (radio unit off) or failed. When
active, the sensor can buffer the accepted messages by
increasing the queue length by one, while the transmis-
sion of a buffered message decreases the queue length.
A stimulus directly sampled from the environment gen-
erates an immediate message without increasing the
buffer count. This action is represented by self loops.
In order to show how the MA can reflect different lo-
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Figure 3. A sensor that can go to sleep only when
its buffer is empty .
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Figure 4. A sensor that discards all the content
of its buffer when it goes to sleep (a preemptive
repeat service policy).

cal behaviours, we have modeled different policies for
the active/asleep alternation.

i - The sensor can go to sleep only when the buffer is
empty (Figure 3).

ii - The sensor discards the content of the buffer when
it goes to sleep loosing all the buffered messages
(Figure 4).

iii - The sensor first empties its buffer, and then goes
to sleep (Figure 5).

iv - The sensor freezes the buffer when it goes to sleep
(a preemptive resume service policy)(Figure 6).

In all the figures, b is the buffer dimension, σi is
the sleeping rate from state i and φi is the failure rate
from state i. λi is the self loop rate in state i cou-
pled with a message generation probability pii = 1 (a
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Figure 5. A sensor that first empties its buffer,
and then goes to sleep .
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self loop always generates a message). µ is the mes-
sage service rate coupled with a message generation
probability pi,i−1 = 1 (a message service always gener-
ates a message). The dotted arc from state i to state
i + 1 signifies that the acceptance of a received mes-
sage increases the buffer count by one.

We assume that the sensors are spread in a circu-
lar area of radius h and that the sink is in the center of
the circle, and at the origin of the axis. The power of
a message issued by a MA decays as the square root of
the distance. Since we are looking at the perception ca-
pability we can assume that a maximum communica-
tion range dmax exists at which the signal has enough
power to be received. Hence, a MA in position v is able
to perceive a message from a MA in position v′ if the
distance dist(v − v′) < dmax.

As presented in [7], a minimum energy routing strat-
egy is obtained by transmitting the message to the sink
through MA’s located along the radius connecting the
sensor to the sink, with hops of equal length. If y is the
distance of the emitting MA from the sink, the mini-
mum number of hops is nhmin = dy/dmaxe and each
hop has a length dh = y/nhmin ≤ dmax.

The perception function u(v, i,v′, i′) is constructed
to route a message according to the minimum energy
routing strategy. To this end, the destination sensors
are located in a circular area of radius δ centered into
the theoretically optimal next hop position for a sensor
that is located along the radius connecting the sink at
a distance dh from the previous hop. Furthermore, we
assume that the acceptance probability is ri,i+1 = 1 in
the active states (0 ≤ i < b) and zero elsewhere; i.e. a
message received in an active state i, with at least one
free buffer position, is accepted with probability 1 and
produces a transition to state i + 1.

3.1. Quantitative Performance Analysis

To address the transient analysis of the SMAM
model, let us denote by πi(τ,v) the probability that
a MA at the spatial position v is in state i at time τ .
We have that

∑n
i=1 π(τ,v) = 1, ∀τ,v. We collect all the

π(τ,v) in a vector π(τ,v) of size n. Due to the prop-
erty of the Poisson distribution, the number of agents
in a given state i, at a given position v, at a given
time τ , is distributed according to a Poisson distribu-
tion of parameter:

ρi(τ,v) = ρ(v)πi(τ,v) (5)

The total number of messages received by an agent in
state i, depends on the tuple (τ,v), that specify its po-
sition v, and the current time instant τ . We call γi(τ,v)
the rate at which messages are observed by a MA in
state i, at (τ,v). Due to the properties of the Pois-
son distribution, we can compute γi(τ,v) as:

γi(τ,v) =
∫

V

n∑

i′=1

ρi′(τ,v′)u(v, i,v′, i′)βi′dv′ (6)

We collect the γi(τ,v) in the matrix Γ(τ,v). Not all the
messages observed by an agent in (τ,v) cause a change
of state. In fact, messages are ignored with probabil-
ity rii. We can use matrix Γ(τ,v) combined with ma-
trix R to characterize the stochastic process that de-
scribes the transient behavior of an agent. We define
C(τ,v) as the actual transition rate at (τ,v):

C(τ,v) = Q + Γ(τ,v) [R− I] (7)

Matrix C(τ,v) can be used to compute πi(τ,v) using
the standard Kolmogorov equations:

dπi(τ,v)
dτ

= πi(τ,v)C(τ,v) (8)

Solution of the Kolmogorov equations (8) can be ob-
tained numerically, starting from a known initial con-
dition π(0,v) and solving iteratively.

3.2. Numerical Results

We analyze the sensor model, on a circular space of
radius r = 16, with a constant spatial sensor density
of ρ(v) = 10. We assume µ = 0.1, and λ = 0.01. With
these figures, each queue is very heavily loaded. In this
example we assume a finite queue length of size N = 3.
The maximum communication range is dmax = 4.9.
We analyze the model by discretizing both the time
and the space. All the results, presented here, were ob-
tained on a standard Laptop PC, and took only a few
seconds to be computed. We start by considering pol-
icy i) (i.e. the sensor can go to sleep only if its buffer is
empty) without failure (i.e. φi = 0, ∀i). Figure 7a shows
the mean queue length for each sensor. Note that the
model presents the expected axial symmetry. The rings
with a higher queue length reflect the fact that MA’s
at certain distance from the sink are used more fre-
quently as a relay by outer MA’s. The mean queue
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Figure 8. Comparison of policies: a) battery level
vs time, b) mean queue length

length for all the four considered policies is presented
in Figure 8b.

Two interesting performance indices can be com-
puted for each sensor: the number of transmitted mes-
sages T (τ,v) and the number of received messages
R(τ,v), per time unit. The two indices can be com-
puted as:

T (τ,v) =
n∑

i=1

πi(τ,v)βi

R(τ,v) =
n∑

i=1

ρi(τ,v)γi

These indices, for the considered model, are shown in
Figure 7b. Due to the axial symmetry, only a radial
slice is presented.

We then study the effect of the different sleeping
policies on the power consumption in the sensors. We
assume that the battery is initially charged with 30 unit
of energy and we assume a power consumption rate of
1 unit of energy per unit time when the sensor is ac-
tive and a power consumption rate of 0.01 when the
sensor is asleep. Further, we set for the sleeping rates
σi = σs = 0.1. Figure 8a shows the power consump-
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Figure 9. Comparison between policies: a) mean
waiting time, b) probability of loss

tion as a function of the time, for the described sleep-
ing policies. The policy i) is the most power consuming
because there is a little probability of finding an empty
queue that allows the transition to the sleeping mode.
The policy iii) leads also to a significative power con-
sumption since the queue must be emptied before go-
ing to sleep. Policies ii) (preemptive repeat) and iv)
(preemptive resume) lead to the same low power con-
sumption since the transition to the sleeping mode is
independent of the queue length.

However, the on-off policies have also large effects
on the mean waiting time required by a packet to tra-
verse a sensor queue (and thus on the total end-to-end
delay), and on the loss probability as shown in Fig-
ure 9a and 9b. The discard policy (ii) is the one that
experience the lowest waiting time: this is due to the
fact that discarding the packets, increases the probabil-
ity of finding the queue empty. Both preemptive poli-
cies have more or less the same waiting time.

The packet loss probability is computed by taking
into account two factors: packets might be lost when
they arrive with the buffer full, or when the sensor is
sleeping. A further loss factor arises for the discard pol-
icy (ii) only, since packet might be lost when empty-
ing the queue. As expected, the discard policy, has the
highest packet loss probability. In all the other cases, it
is interesting to see how the curves intersect when mov-
ing away from the center. This is due to the fact that
in most heavily loaded areas, the highest contribution
to the loss probability is given by packets arriving at a
full queue. In the less loaded area, the highest contri-
bution to the loss probability is given by the packets
arriving when the sensor is sleeping.

3.3. Design issues

The proposed model seems to suggest some design
issues for the choice of the best sleeping strategy in dif-
ferent situations. If we have a very redundant network,
where packets losses may be tolerated, and a fast re-
sponse time is required, then the discard policy (ii) is
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Figure 10. Probability of being in the fail state
versus: a) space, b) time

the best choice since it has both the lowest latency and
the lowest power consumption. If reducing the packet
loss is vital, then the if-empty policy (i) should be cho-
sen, since it is the one where sensors expect the mi-
nor loss (at the expense of an higher power consump-
tion). Preemptive policies should be used in interme-
diate cases, preferring the resume policy (iv) when a
longer system lifetime is required, and the one that
first empties the buffer (iii), when a shorter response
time is required.

3.4. Sensor failures

We consider now the failure state included in the fig-
ures 3, 6, to perform also a dependability analysis. We
assume a state-dependent failure rate φi = 0.05+0.1 · i
when the sensor is active, φs = 0.01 when the sensor
is sleeping, and study the failure probability as a func-
tion of the space and as a function of the time. Figure
10a, shows that the sensor with a higher load presents
a higher probability of being in the failed state at a
given time instant. Figure 10b shows the probability
of being in the failed state versus time for sensors lo-
cated at different distances (d = 3 and d = 15) from
the sink. The curve for d = 3 refers to sensors with a
heavy load (see Figure 7a), and the curve for d = 15 ad-
dresses the case of sensors at the boundary of the con-
sidered region with a lighter load.

4. Conclusions

The paper has shown that it is possible to model a
large sensor network by means of interacting MA’s. By
defining the spatial density of the MA’s, very large sys-
tems of interacting objects can be analyzed and their
relevant collective properties quantitatively computed,
while maintaining the local identity and the local be-
haviour of each agent. Research work is in progress to
increase the modeling as well as the decision power of
the MA technique.
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