
Chapter 13
Markovian Agent Models: A Dynamic
Population of Interdependent Markovian
Agents

Andrea Bobbio, Davide Cerotti, Marco Gribaudo, Mauro Iacono
and Daniele Manini

Abstract A Markovian Agent Model (MAM) is an agent-based spatio-temporal
analytical formalism aimed to model a collection of interacting entities, called
Markovian Agents (MA), guided by stochastic behaviours. An MA is characterized
by a finite number of states over which a transition kernel is defined. Transitions
can either be local, or induced by the state of other agents in the system. Agents
operate in a space that can be either continuous, or composed by a discrete number
of locations. MAs may belong to different classes and each class can be para-
metrized depending on the location in the geographical (or abstract) space. In this
work, we provide a very general analytical formulation of an MAM that encom-
passes many forms of physical dependencies among objects and many ways in
which the spatial density may change in time. We revisit recent literature to show
how previous works can be cast in terms of this more general MAM formulation.

Keywords Agent-based model ! Spatially distributed systems ! Performance
modelling

13.1 Introduction

A Markovian Agent Model (MAM) is an agent-based spatio-temporal analytical
formalism aimed to model a collection of interacting Markovian Agents (MAs).
An MA has a finite number of possible discrete operating modes (states) over which
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a transition kernel is defined. The transition kernel is composed by two components
a local transition matrix and an induced transition matrix. The local matrix contains
a fixed component that depends on the MA structure and its position in the space
but does not depend on the interaction with the other MAs. The induced matrix
depends on the interaction of an MA with the other MAs. MAs may belong to
different classes and each class has a spatial density function that depends on the
location in the geographical (or abstract) space. In this work, we provide the
solution equations for a very general MAM that encompasses a static MAM in
which the spatial density of the MAs of any class remains constant in time and a
dynamic MAM in which the spacial density varies as a function of the time. The
density variation in the dynamic MAM can be due to the displacement of the MAs
in the space (being constant their overall number) or to the birth or death of MAs.
A typical example of a population of agents with similar characteristics is repre-
sented by the number of calls in a wireless cellular network where each cell can
have a different number of ongoing calls, and this number may change due to new
calls (birth), completion of calls (death) or and handoff-in and handoff-out calls
from adjacent cells, or also due to reduction in the performance of a cell caused by
degradation or failure [30].

The modelling and analysis of large-scale stochastic systems composed by
spatially defined interacting objects has been mainly faced in the literature by
resorting to the superposition of interacting Markov chains [1, 25], to stochastic
Reward model or hierarchical models [10, 23], to various process algebra for-
malisms [15, 20] and to fluid models [18, 21].

In recent years, the MAM has emerged as a new versatile analytical technique
whose main idea is to model a distributed system by means of interacting agents, so
that each agent maintains its local properties but at the same time modifies its
behaviour according to the influence of the interaction with the other agents [3, 17,
20]. By separating the local behaviour of an MA, that does not depend on the
interaction with other agents, from the influence of the other MAs, we can avoid the
construction of the combined state space. The solution of the overall model is
obtained by building several models, one for each MA, and then solving them
separately. This technique, that avoids generating a large model, is sometimes
referred to as largeness avoidance. In the present work, we provide a very general
analytical formulation of an MAM that encompasses many kinds of forms of
physical dependencies among objects and many ways in which the spatial density
may change in time. We revisit recent literature to show how previous works can be
cast in terms of this more general MAM formulation.

Section 13.2 introduces the theory of MAM to arrive to the equations describing
the dynamics of the probability distribution of a class of MAs as a function of the
time and of the MA location in the space. Section 13.3 discusses the way in which
the influence matrix is defined and evaluated for several different case studies.
A wide spectrum of different cases is discussed in this section to give the reader a
flavour of the possibilities offered by the technique.
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13.2 Theory

Markovian Agents describe systems composed by several interacting agents, each
one characterized by a set of possible states, and whose evolution can be described
by the way in which they evolve in their state space. MAs behaviour is similar to
Automata, and in particular to Continuous Time Markov Chains (CTMCs). The
structure of a single MA is represented in Fig. 13.1. The circles labelled i; j; . . .k,
represent the states of the CTMC describing the MA. Differently from conventional
CTMC models, the transitions among the states are of two possible types that are
drawn differently:

• Solid lines (like the transition from i to j or the self-loops in i or in j) represent
the local or autonomous behaviour of the objects. They are the fixed component
of the infinitesimal generator that are independent of the interaction with the
other MAs. For instance, they can be used to model a failure occurring to the
agent, or the reaction to an internal stimulus. MAs include also self-loop tran-
sitions that require a particular notation since they are not visible in the
infinitesimal generator of the CTMC [29]. Self-loop transitions are required
because, even if they do not vary the state of the agent, they might influence the
behaviour of other agents.

• Dashed lines (like the transition from i to k or the transitions into i or j) represent
the transitions induced by the interaction with the other MAs. In the literature,
several different types of induction have been considered. In any case, induction,
as the name suggests, induces an agent to change state at a rate that depends on
the state of the other agents. The way in which the rates of the induced tran-
sitions are computed is explained in Sect. 13.3.

Fig. 13.1 Schematic
structure of a Markovian
agent
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13.2.1 Markovian Agents Model

The Markovian Agent Model (MAM) represents a system as a collection of
Markovian Agents (MAs) spread over a geographical space V. As introduced, the
essence of the MAM is that each MA is described by a CTMC, whose infinitesimal
generator contains a fixed component that depends on the MA structure and
position in space v2V, and a component that depends on the interaction with the
other MAMs.

Space V can be either discrete or continuous. If discrete, V ¼ fv1; v2; . . .vNg
where vi are the locations. If continuous, V#Rk, with 1$ k$ 3: Agents are
divided in C classes, and an MA belonging to class c (with 1$ c$C) is charac-
terized by nc different states. Let us call p

fcg
j ðt; vÞ the probability that a class c agent

is in state 1$ j$ nc at time t, at location v 2 V:
Agents are analyzed using counting process and exploiting mean field approx-

imation [2, 24]. In particular, any location v can hold a number of class c agents that
is defined by function qcðt; vÞ: For discrete space models, qcðt; vÞ accounts for the
average number of class c agents in location v at time t. For continuous space
models, qcðt; vÞ is the average density of class c agents in point v at time t, and for
any finite area X#V, the average number Ncðt;XÞ of class c agents contained
inside X at time t can be computed as

Ncðt;XÞ ¼
Z

X

qcðt; vÞdv:

We also define pfcgj ðt; vÞ ¼ pfcgj ðt; vÞ ! qcðt; vÞ as the density of class c agents in
state j at location v and time t. Note that if we are considering a discrete model,
where each location has exactly one agent, we have pfcgj ðt; vÞ ¼ pfcgj ðt; vÞ: Value
pfcgj ðt; vÞ will be the main performance index that will be exploited to compute all
the interesting measures in the model solution process.

According to the definition of the density qcðt; vÞ, we can then classify MAMs
with the following taxonomy:

• An MAM is static if qðt; vÞ does not depend on time, and dynamic otherwise;
• An MAM is discrete if the geographical area on which the MAs are deployed is

discretized and qðt; vÞ is a discrete function of the space or it is continuous if
qðt; vÞ is a continuous function of the space;

• An MAM is single class if C ¼ 1, and multi class if C[ 1:

To simplify the notation, let us collect the terms into row vectors pcðt; vÞ ¼
jpfcgj ðt; vÞj that represents the state distribution of an MA belonging to class c at
time t in position v. Moreover, let PVðtÞ ¼ fðc; v; pcðt; vÞÞ : 1$ c$C; v 2 Vg be
the ensemble of the probability distribution of all the agents of all the classes at time
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t, and let us denote with ½PV ( ¼ fðt0;PVðt0ÞÞ : 0$ t0\tg the evolution of the
ensemble of the probability distribution from the initial state up to time t. The
dynamic of the state density distribution of a class c agent in position v is described
by the following equation:

@pcðt; vÞ
@t

þ @ðxcðt; v; ½PV (Þ ! pcðt; vÞTÞ
@v

¼ mcðt; v; ½PV (Þ þ pcðt; vÞ !Kcðt; v; ½PV (Þ:

ð13:1Þ

The terms xcðt; v; ½PV (Þ, mðt; v; ½PV (Þ and Kcðt; v; ½PV (Þ are respectively the
motion, increase and transition kernels. They can all depend on the class c, on the
position v, on the time t and on the ensemble probability ½PV (, and they rule the
evolution of the system.

The motion kernel xcðt; v; ½PV (Þ is used only for agents deployed in continuous
space: for models that are characterized by a finite number of locations, the second
term on l.h.s. of Eq. (13.1) can be discarded since it is not required. Otherwise
xcðt; v; ½PV (Þ ¼ ðxfcg

x ðt; v; ½PV (Þ;xfcg
y ðt; v; ½PV (Þ; . . .Þ is a set of diagonal matrices

whose element xfc:ig
x ðt; v; ½PV (Þ represents the speed along direction x for a class

c agent in state i (with 1$ i$ nc). With a slight abuse of notation, @
@v ¼

@
@x ;

@
@y ; . . .

! "

denotes the partial derivates along all the dimensions of space V. For example, for a
two-dimensional system, we have:

@ðxcðt; v; ½PV (Þ ! pcðt; vÞTÞ
@v

¼ @ðxfcg
x ðt; v; ½PV (Þ ! pcðt; vÞTÞ

@x

þ
@ðxfcg

y ðt; v; ½PV (Þ ! pcðt; vÞTÞ
@y

:

ð13:2Þ

The increased kernel mcðt; v; ½PV (Þ accounts for the effects that grows the number
or the density of agents in a point in space. It can be subdivided into two terms:

mcðt; v; ½PV (Þ ¼ bcðt; v; ½PV (Þ þmin
c ðt; v; ½PV (Þ: ð13:3Þ

Term bcðt; v; ½PV (Þ is the birth term: it is used to model the autonomous gen-
eration of agents and expresses the rate (measured in agents per time unit or agent
density per time unit) at which class c agents are created in location v at time
t. Termmin

c ðt; v; ½PV (Þ is the location input term, and accounts for class c agents that
“warp” into location v at time t from other points in space. In discrete space model,
it is used to model cell transfer of agents. Continuous space models may use this
term to account for “wormhole” or “portal” effects where agents that reach one
location, can vanish and immediately reappear in other points in the space.
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The transition kernel Kcðt; v; ½PV (Þ accounts for both the state transitions of the
agents, and for the effects that can reduce the number of agents in one location. It
can be subdivided into four terms:

Kcðt; v; ½PV (Þ ¼ Qcðt; vÞþ Icðt; v; ½PV (Þþ
* Dcðt; v; ½PV (Þ *Mout

c ðt; v; ½PV (Þ:
ð13:4Þ

Matrix Qcðt; vÞ ¼ jqfcgij ðt; vÞj in Eq. (13.1) defines the rate of local transitions, as
in traditional CTMC, according to the agent position v and time t. Note that to
further emphasize the locality of this term, Qcðt; vÞ does not depend on the com-
plete state history of the model ½PV (: The influence matrix I cðt; v; ½PV (Þ accounts
for the rate of induced transitions due to the influence of other agents. The entries of
matrix I cðt; v; ½PV (Þ depend on the state probabilities of other agents and must
satisfy precise structural restrictions so that the matrix Qcðt; vÞþ I cðt; v; ½PV (Þ is
still an infinitesimal generator matrix. Matrix Dcðt; vÞ is the death term: it is a
diagonal matrix whose elements dfcgii ðt; vÞ represent the rate at which class c agent
in location v at time t may disappear from the model depending on its state i. Matrix
Mout

c ðt; v; ½PV (Þ is a matrix whose terms mout:fcg
ij ðt; vÞ account for the discrete output

from a location v at time t for a class c agent. If i ¼ j, output does not cause a
change of state; otherwise, the state of the agent may vary during its motion. It is
the exit counterpart of vector min

c ðt; v; ½PV (Þ previously introduced. In particular,
the two terms are usually related by some conservation law. For example, if agents
can warp from location v to location u at rate k, we have min

c ðt; u; ½PV (Þ ¼
jk; . . .jpcðt; vÞ and Mout

c ðt; v; ½PV (Þ ¼ diagðk; . . .Þ:
In order to solve the model, the initial state of the system must be provided. For

discrete space models, it is enough to provide qcð0; vÞ, the initial density of class
c agents in location v, and pfcgj ð0; vÞ, the corresponding initial state probability.

From pfcgj ð0; vÞ and qcð0; vÞ we can then compute the initial condition of
Eq. (13.1), and express it as:

pfcgj ðv; vÞ ¼ pfcgj ð0; vÞ ! qcð0; vÞ: ð13:5Þ

Continuous space models also require boundary conditions to describe what
happens to agents that exit the domain V, and whether external agents enters inside
V from outside. To simplify the presentation, we will limit our discussion to cases in
which agents are confined inside V. In this case the boundary conditions are:

qcðt; vÞ ¼ 0; 8v 2 BoundaryðVÞ; ð13:6Þ

where BoundaryðVÞ is the set of all points that define the boundary of the con-
sidered space V:
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13.3 Induced Transitions

Equation (13.1) provides an abstract description of the agents’ behaviour, since the
rates of induced transitions composing the influence matrix are not fully specified.
The definition and evaluation of the influence matrix depend on the considered
problem. In this section, we will present several cases from the literature, and we
will show how they can be incorporated in Eq. (13.1).

13.3.1 Largeness Avoidance: Shared Repair in Complex
Systems

Large fault-tolerant systems are composed by many subsystems that may undergo
failures and repairs during operation. High availability is a prescribed requirement
in many applications and necessitates an accurate model. To capture dynamic
behaviour and dependencies that arise in the failure and repair process of the
system, a preferred way is to resort to state-space models. However, state-space
models suffer from state-space explosion; i.e. extremely large state-space is required
for the accurate modelling of real systems, referred to as largeness. A way to tackle
largeness is to avoid generating a large model, called largeness avoidance.
Equation 13.1 offers a technique of largeness avoidance. Each subsystem is
modelled as an MA with its local infinitesimal generator QcðtÞ (there is no spatial
dependence on the position v, in this case) and the influence matrix I cðt; ½PV (Þ that
must be inferred from the physical dependencies inside the system. The largeness
avoidance is obtained by computing the overall system dependability measures by
solving individual MAs defined on the state-space of each subsystem. Shared repair
is an usual source of dependence, and examples of availability modelling with
various kinds of dependencies due to shared repair are given in [27, 28].

A simple example, inspired from [27], is the following. A system is composed
by n subsystems that for simplicity we represent as a two-state model with a single
up state u and a single down state d. The subsystems share a single repair person
that follows a preemptive repair priority policy; i.e. the subsystems are ordered
according to a predefined repair list, that for the sake of simplicity we assume in the
natural order X1 + X2 + ! ! ! + Xn, and upon failure the repair crew starts repairing
the subsystems with higher priority (subsystem Xi before Xj with j[ i). Let us call
ki the failure rate of component i, and li the corresponding repair rate. We consider
here only the steady-state solution.

Given that X1 is repaired first, the repair of the other subsystems with lower
priority is delayed. We can account for this delay modifying the repair rates of the
subsystems with lower priority. The MA related to model X1 is solved first and the
probability pX1

d that the subsystem X1 is under repair (i.e. is in the down state) is
calculated. Thus the probability that the repair person is idle is pX1

u ¼ ð1* pX1
d Þ:

Subsystem X2 can be repaired only if the repair person is not busy with subsystem
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X1 (i.e. X1 is in the up state), which can be accounted for by reducing the repair rate
of subsystem X2 by the factor pX1

u :

l02 ¼ l2p
X1
u ¼ l2ð1* pX1

d Þ:

By the same reasoning, subsystem Xj can be repaired only if all the subsystems
Xi; ði\jÞ are not under repair and are operating. This effect is accounted for by
reducing the repair rate of subsystem Xj by:

l0j ¼ lj
Y

i\j

pXi
u ¼ lj

Y

i\j

ð1* pXi
d Þ:

The above problem can be rewritten in terms of MAM using Eq. (13.4). Each
subsystem is an MA whose local kernel contains only the failure transitions that are
independent of the rest of the system:

QXj ¼ *kj kj
0 0

# $
for any j:

The influence matrix accounts for the repair transitions that are influenced by the
other agents:

IXj ¼
0 0
lj
Q
i\j

pXi
u *lj

Q
i\j

pXi
u

" #

:

And for each MA:

KXj ¼ QXj þ IXj :

In this very simple case, the influence matrix can be computed sequentially from
IXj to IXjþ 1 . In more complex repair schemes [27, 28], the computation of the
influence matrix requires a fixed-point iteration.

13.3.2 Message Passing Model

In the message passing model, the influence among MAs is represented by the
exchange of relational entities, called messages, that are emitted by an MA and
perceived by the other ones modifying their stochastic dynamics. The interaction
among agents is ruled by a perception function that captures the sending and
receiving aptitude of the involved MAs and is a function of their geographical
location and of the features of the traversed media. MAs may belong to different
classes with different local behaviours and interaction capabilities, and messages
may belong to different types where each type induces a different effect on the
interaction mechanism. The perception function describes how a message of a given
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type emitted by an MA of a given class in a given position in the space is perceived
by an MA of a given class in a different position.

In particular, the message passing model considers a set of different messages
M, and a set U ¼ fu1ð!Þ. . .ujMjð!Þg of jMj perception functions, one for each
message type.

This model does not allow birth or death of agents (bcðt; v; ½PV (Þ ¼ 0 and
Dcðt; v; ½PV (Þ ¼ 0). Matrix QcðvÞ is the nc , nc infinitesimal generator matrix of
the CTMC that describes the local behaviour of a class c agent in position v, and
corresponds to the local transition kernel of the general model. In order to consider
the possibility to send messages without changing state, self-jump transitions are
explicitly included in the model. In particular, the nc component vector KcðvÞ ¼
jkfcgj ðvÞj represents the rates of self-jumps for a class c agent in position v, i.e. the
rates at which the CTMC reenters the same state.

The induced transition kernel I cðt; v; ½PV (Þ is instead built starting from several
parameters that characterize the way in which messages are sent and received. In
particular, Gcðv; lÞ ¼ jgfcgij ðv; lÞj is a nc , nc matrix describing the probability that
an agent of class c in position v generates a message of type l 2 1. . .jMj during a
jump from state i to state j, and Acðv; lÞ ¼ jafcgij ðv; lÞj is a nc , nc matrix, that
describes the action activated upon acceptance of a type l message for an agent of
class c in position v.

The perception function ulðv; c; i; v0; c0; i0Þ 2 ½0; þ1Þ represents the aptitude
with which an agent of class c, in position v, and in state i, perceives a message of
type l generated by an agent of class c0 in position v0 in state i0:

From the previous terms, we can define bfcgj ðv; lÞ as the total rate at which
messages of type l are generated by an agent of class c in state j and in position v:

bfcgj ðv; lÞ ¼ kfcgj ðvÞgfcgjj ðv; lÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

a-

þ
X

k 6¼j

qfcgjk ðvÞgfcgjk ðv; lÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b-

; ð13:7Þ

where the first term (a) in the r.h.s is the contribution of the messages of type l
emitted during a self-loop from state j and the second term (b) is the contribution of
messages of type l emitted during a transition from state j to any state kð6¼ jÞ:

Then we define cfcgii ðt; v; ½PV (; lÞ as the total rate at which messages of type l
coming from the whole volume V are perceived by an agent of class c, in state i, in
position v, at time t:

cfcgii ðt; v; ½PV (; lÞ ¼
Z

v02V
v0 6¼v

XC

c0¼1

Xnc0

j¼1

ulðv; c; i; v0; c0; jÞbfc0gj ðv0; lÞpfc0gj ðt; v0Þdv0:

ð13:8Þ
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The term ulðv; c; i; v0; c0; jÞbfc
0g

j ðv0; lÞpfc
0g

j ðt; v0Þ in Eq. (13.8) is the rate of type
l messages received by class c agent in state i in position v, coming from a class c0
agent in position v0 in state j, at time t. Since this term depends on the current
density of agents in other locations of the model pfc

0g
j ðt; v0Þ, the value of

cciiðt; v; ½PV (; lÞ depends also on the total state of the model ½PV (: The total rate
cciiðt; v; ½PV (; lÞ is obtained integrating the contributions coming from all the states
and all the agent classes, and over the entire area V. Note that in discrete space
models, the integral is replaced by a summation. We collect the rates of Eq. (13.8)
in a diagonal matrix Ccðt; v; ½PV (; lÞ ¼ diagðcfcgii ðt; v; ½PV (; lÞÞ: This matrix can be
used to compute the induced transitions kernel I cðt; v; ½PV (Þ:

I cðt; v; ½PV (Þ ¼
X

l2M
Cfcgðt; v; ½PV (; lÞ Afcgðv; lÞ*I

! "
: ð13:9Þ

In Eq. (13.9) the acceptance matrix Afcgðv; lÞ is used to decide whether message l
received by an agent in state i will cause a transition (with probability
1* afcgii ðv; lÞ), and to which state j its reception will lead (afcgij ðv; lÞ).

The message passing model has been applied in the literature to several case
studies. For example, in the field of Wireless Sensor Networks, it has been used in
[17] to study on-off policies, and in [3] to evaluate swarm intelligence based routing
algorithms. In [6] messages are used to study the propagation of earthquakes, while
in [9] they are used to study the propagation of fire. Finally, in [8] agent are used at
two levels: to model both a physical phenomenon (fire propagation in forest) and a
WSN monitoring infrastructure.

13.3.3 Spatial Density Dependent Communications

In the message passing model presented in Sect. 13.3.2, the value of the perception
function depends on the type ofmessage exchanged between twoMAs, a sender and a
receiver, and on their properties (location, class, and current state), as formally
described by the notation ulðv; c; i; v0; c0; i0Þ: However, this dependency causes a
one-to-one relationship that restricts the expressiveness of the model since the influ-
ence matrix I cðt; v½PV (Þwould in principle allow to represent one-to-all interactions.
An effective trade-off between these extremes is given by considering one-to-many
relations,where several neighbours of the perceiver agent are taken into account. In the
following, we will describe an example of such approach to model theDouble Bridge
Experiment [12, 16], a famous ant colony optimization (ACO) problem [13].

In the experiment, two bridges connect a nest of ants with a food source. Two
scenarios are investigated: in the former the lengths of the bridges are equal, in the
latter a bridge is shorter than the other one. The experiment shows that using
stigmergy, a form of indirect communication through the environment, the ant
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colony is able to reach the food following the shortest path. Indeed, during the
journey from the nest to the food and vice versa, ants release an amount of a
chemical substance called pheromone. Ants perceive it and are conditioned to
choose with greater probability a path marked with a strong concentration of
pheromone. In presence of bridges of different length, the ants choosing the shortest
one reach the food earlier than those choosing the longer path. Thus, the pheromone
trail increases faster on the shorter bridge and further ants choose it to reach food. In
the end, the ant colony converges to follow the shortest path.

The dynamic of the ant colony in this experiment can be described by a simple
stochastic model [12, 16], where the probability of choosing a given branch is given
by:

pisðtÞ ¼
ðkþuisðtÞÞ

a

ðkþuisðtÞÞ
a þðkþuilðtÞÞ

a ; pilðtÞ ¼ 1* pisðtÞ; ð13:10Þ

where pisðtÞ is the probability of choosing the shorter branch, and uisðtÞ is the
amount of pheromone on the shorter branch at a time t. The same values on the
longer branch are given by pilðtÞ and uilðtÞ: The parameter k is needed to provide a
non-null probability of choosing a path not yet marked by pheromone; the exponent
a provides a non-linear behaviour. We can observe that in such case, the probability
of choosing a specific direction depends on the spatial distribution of the pher-
omone concentrations.

The MAM of the Double Bridge Experiment proposed in [4] represents ants as
messages, and locations that ants traverse by MAs. More formally, agents are
deployed on a geographical space V structured as an undirected graph G ¼ ðV;EÞ
with V ¼ fv1; v2; . . .vNg the set of locations where the MAs reside, and E the edges
of the graph. Figure 13.2 shows the graphs for the two scenarios of the experiments,
where nodes labelled n and f represent the location of nest and source food,
respectively. Messages passing from a location to another are depicted as little
arrows with a label indicating the direction of the ants. Label mfw for ants directed to
the source food, mbw for ants coming back to the nest. The number of hops from
node n to node f represents the length of the path, thus Fig. 13.2a depicts a scenario
with equal branches, whereas Fig. 13.2b the different branches one.

n

t

t

f

mfw mfw

mfw
mfw

mbw mbw

mbw mbw

b0

b1

n

t

t

f

mfw mfw

mfw

mbw mbw

mbw

t t mfw

mbw

b0

b1

(a) (b)

Fig. 13.2 Graph used to model the experiment scenarios. a Equal branches, b two different
branches
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The amount of pheromone is discretized in a finite number of levels and the MA
in location v codes in its state space the current level of pheromone in that location.
The arrival of ants causes the increment of the pheromone and is represented in the
model by the reception of messages and consequent transition from a lower to an
higher level state of the MA in location v. In the model the birth and death of MAs
are not considered (i.e. bcðt; v; ½PV (Þ ¼ 0 and Dcðt; v; ½PV (Þ ¼ 0). Moreover, since
the flow of messages represent the moving ants across a set of fixed locations, the
term xðt; v; ½PV (Þ is neglected too. Thus, the general Eq. (13.1) became

@pðt; vÞ
@t

¼ pðt; vÞ !Kðt; v; pVðtÞÞ; ð13:11Þ

where the transition kernel Kðt; v; pVðtÞÞ depends on the ensemble of the proba-
bility distribution of all agents at current time t only. In particular, it can be
computed as described in Sect. 13.3.2 where the perception function ulð!Þ with
l 2 fmfw;mbwg is defined as

ulðv; v0; tÞ ¼
ðkþE½pðt; vÞ(ÞaP

v002Nextlðv0Þ ðkþE½pðt; v00Þ(Þa
: ð13:12Þ

Parameters k and a are the same of Eq. (13.10), E½pðt; vÞ( gives the mean value
of the concentration of pheromone at a time t in position v. The function Nextðv0Þ
gives the set of elements fv00g such that the agent in position v00 perceives a
message emitted by the agent of in position v0. Note that, even if the perception
function is defined on a pair of sender and receiver MAs as in Sect. 13.3.2, its value
depends on the properties of a set of agents that in this case are the neighbours of
the sender MA.

13.3.4 Agent Motion Models

In Agent Motion Models (AMMs), the MAs interact each others by exchanging
messages, and move across a continuous geographical space V#Rk with k$ 3: For
simplicity in the following we apply some restrictions, in particular: (i) we focus on
single-class AMMs, thus dropping the subscript c and superscript fcg in the
equations, (ii) we consider a one-dimensional geographical space, i.e. a straight
line, by setting k ¼ 1 and (iii) we exclude “warp” phenomena by setting both terms
minðt; v; ½pV (Þ ¼ 0 and Moutðt; v; ½pV (Þ ¼ 0:

With such assumptions, Eq. (13.1) became

@pðt; xÞ
@t

þ @ðxðt; x; ½pV (Þ ! pcðt; xÞTÞ
@x

¼ bðt; v; ½pV (Þþ pðt; xÞ !Kðt; x; ½pV (Þ;

ð13:13Þ
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where the transition kernels Kðt; x; ½pV (Þ is defined as:

Kðt; x; ½pV (Þ ¼ Qðt; xÞþ Iðt; x; ½pV (Þ
þDðt; x; ½pV (Þ:

ð13:14Þ

Equation (13.13) can be solved applying upwind semi-discretization [22]. The
partial differential equation is first discretized over the space, and then solved with
respect to the time. The upwind technique makes a first-order approximation of the
spatial derivative with respect to the direction of movements. As a result, we obtain
a system of ordinary differential equations that can be solved using standard
methods like Euler or Runge–Kutta.

AMMs can be exploited to study the behaviour of Intelligent Transportation
Systems (ITS) [26], where information and communication technologies are
applied to the design, analysis, monitoring and control of transportation systems,
with particular emphasis on road networks. Transportation systems can involve
multiple entities, such as humans, vehicles and the physical infrastructure, inter-
acting each others. Several aspects of transportation systems are uncertain and
nonlinear. They are usually large scale and are always geographically distributed.
For all such reasons, AMMs are suitable to describe and study performance of the
ITS in terms of road traffic congestion, safety and so on. An AMM was first applied
to ITS for the quantitative risk analysis of collision of vehicles in a road tunnel [7].
The model describes the behaviour of a flow of vehicles capable to sense their
proximity to other cars or to unexpected obstacles. According to such informations,
the vehicles automatically adapt their speed in order to preserve a prescribed safety
distance, or even brake to avoid collisions. In the model, MAs code in their
space-state the cruise speed of vehicles. Proximity messages are periodically
exchanged among MAs and influence such speeds as described by the Iðt; x; ½pV (Þ
term. The perception function rules the reaction of the vehicle to the proximity with
other cars or obstacles. Birth term bðt; x; ½pV (Þ and death term Dðt; x; ½pV (Þ account
for the entrance and exit of vehicle in the tunnel, respectively. The results provided
by the model were used to compute the values of the safety distance and the
maximum allowed speed that minimize the probability of collisions inside the
tunnel.

13.3.5 Population Models

Population Markovian Agents (PMAs) are Markovian Agents models where agents
can move to other locations, can increase in number or decrease (either sponta-
neously or induced by other agents), or they can multiply during the transitions.

To simplify the presentation, we will consider a single class of agents, and we
will drop subscript c or superscript fcg from the equations. We will also focus on a
discrete space model V ¼ fv1; v2; . . .vNg. A PMA describes the evolution of a
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single agent, and it is defined by a tuple ðQ; b; d;R; g;NÞ: The first three compo-
nents define the common Markovian Agent behaviour, while the last three account
for the population evolution of the system. Q ¼ ðeQðvÞ; bQ½k(ðv; v0ÞÞ, are the tran-
sition rate matrices. ~qijðvÞ is the rate at which an agent in location v jumps from

state i to j due to local activities. bQ½k(
ij ðv0; vÞ accounts for transitions caused by

inductions, and represents the rate at which an agent in state k in position v0 induces
jumps from state i to state j in position v. In Eq. (13.4) we have

Qcðt; vÞ ¼ eQðvÞ; I cðt; v; ½pV (Þ ¼
X

v02V

X

k

bQ½k(ðv0; vÞpkðt; v0Þ: ð13:15Þ

Component b ¼ ð~bðlÞ; b̂½k(ðv; v0ÞÞ, where ~bðvÞ ¼ j~biðvÞj and b̂½k(ðvÞ ¼ jb̂½k(i ðv0; vÞj,
are respectively the spontaneous and induced births vectors. In particular, ~biðvÞ
represents the rate at which agents are created in state i at location v, and b̂½k(i ðv0; vÞ is
the rate at which an agent in state k in position v0 induces birth of agents in state i at
location v. In a similar way, d ¼ ð~dðvÞ; d̂½k(ðv; v0ÞÞ, where ~dðvÞ ¼ j~diðvÞj and
d̂½k(ðv0; vÞ ¼ jd̂½k(i ðv0; vÞj are respectively the spontaneous and induced death vectors,
where ~diðvÞ represents the rate at which agents are destroyed in state i at location v,
and d̂½k(i ðv0; vÞ is the rate at which an agent in state k and position v0 induces decrease
in the number of agents in state i at location v. In Eqs. (13.3) and (13.4), we have that
the birth and death kernels can be defined as

bcðt; v; ½pV (Þ ¼ ~bðvÞþ
X

v02V

X

k

b̂½k(ðv0; vÞpkðt; v0Þ; ð13:16Þ

Dcðt; v; ½pV (Þ ¼ diag ~dðvÞþ
X

v02V

X

k

d̂½k(ðv0; vÞpkðt; v0Þ

 !

: ð13:17Þ

The peculiarity of PMAs are the set of reactions R ¼ fr1; . . .; rjRjg that allows
agents to move, duplicate or merge, either in the same or in neighbour locations.
Reactions are characterized by a reaction vector gðv; ½pV (Þ ¼ jghðv; ½pV (Þj, with
v 2 V: In particular, ghðv; ½pV (Þ represents the speed at which reaction rh occurs in
location v. Since reaction rates can have very complex expressions, they can be the
functions of the complete state of the model. The effects of reactions are described
by N ¼ ðN þ ðv; v00Þ;N *ðv; v00ÞÞ where N þ ðv; v00Þ ¼ jnþ

i;k ðv; v00Þj and
N *ðv; v00Þ ¼ jn*i;kðv; v00Þj are nc , jRj matrices that describe the changes on the
number of agents due to the occurrence of the reaction rk 2 R: The value of
nþ
i;k ðv; v00Þ represents the number of agents that are added to state i in location v00

when reaction rk takes place, while n*i;kðv; v00Þ accounts for the agents that are
removed. The formalization of terms g and N is quite similar to one used in
computational system biology (see [14]). Reactions can also multiply or divide the
number of agents in a given location. In this case, both n*j;eðv; v00Þ[ 0 and
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nþ
j;e ðv; v00Þ[ 0 for the same reaction re and state j. The definitions of g and N are

expressive enough to model several different features: duplication or decimation of
agents in a state, movement of agents (deterministic or probabilistic) to other
locations, duplication or decimation combined with state jump and location
movement. Interested readers can find more details in [11]. Reactions can be
implemented in Eq. (13.1) by defining the input and output kernels as follows:

min
c ðt; v; ½pV (Þ ¼

X

v002L
gðv00; ½pV (Þ N þ ðv00; vÞð ÞT ; ð13:18Þ

Mout
c ðt; v; ½pV (Þ ¼ diagðpðt; vÞÞ*1

X

v002L

gðv; ½pV (Þ N*ðv; v00Þð ÞT ; ð13:19Þ

where ðN ÞT denotes the transpose of matrix N . Equation (13.18) considers agents
that are entering a location v, coming from a reaction that takes place in a location v00 .
Equation (13.19) accounts for the change in the number of agents occurring in one
state due to elements removed by the reactions. In particular, it accounts for all the
agents that are leaving location v directed to a reaction happening in location v00 . Since
the rate at which reactions occurs already accounts for the density of the agents, in
order to allow the inclusion in the output kernel of Eq. (13.4), we must normalize the
effect by multiplying on the left by diagðpðt; vÞÞ*1:

The definition of gðv; ½pV (Þ must depend on the total state of the system ½pV (, and
it must be correctly defined to prevent reactions to happen when there are not
enough agents in the involved states: an improperly defined function gðv; ½pV (Þ can
lead to negative counts in the number of agents. Determining the condition for
which a function gðv; ½pV (Þ does not lead to negative counts, is an important topic
that will be investigated in future woks: here we will limit ourselves to consider
functions coming from system biology, that are known to correctly behave as
reaction rates. In particular we refer to the Law of Mass Action which was studied
by Waage and Guldberg in 1864. Such law tells that the reaction rate is proportional
to the probability of a collision of the reactants, that in turn is proportional to the
concentration of reactants (agents in our case), elevated to the multiplicity required
to start the reaction:

ghðv; ½pV (Þ ¼ ch
Y

j:V*ðv;jÞ6¼;

X

v002 V*ðv;jÞ
pjðt; v0Þ

0

@

1

A

P
v002 V*ðv;jÞ

ðn*j;hv;v
00Þ

: ð13:20Þ

Here ch represents the speed at which the reaction occurs. Note that since the
source agents of reaction rh in location v can arrive from any location v00 such that
n*j;hðv; v00Þ[ 0, (here denoted with V*ðv; jÞ ¼ fv0 2 V : n*j;hðv; v0Þ[ 0g), the total
count of agents required to engage a reaction must be computed with the sumP

v002V*ðv;jÞ n
*
j;hðv; v00Þ: For the same reason, the number of agents involved in the
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reaction, must be computed with the sum over all the possible input locations, i.e.P
v02V*ðv;jÞ pjðt; v0Þ.
PMAs are applied in [11] to analyze the cancer evolution, and to comprehend the

mechanisms underlying the Cancer Stem Cells hierarchy whose characterization is
crucial in the study of tumour progression. Current evidence indicates that many
cancers arise from a small population of cells named Cancer Stem Cells (CSCs),
which have undergone malignant transformation driven by frequent genetic
mutations. The application of the PMAs to describe the behaviour of such cell
populations allowed the scientists to observe their proliferation through the host
tissue. The model is exploited to consider movement of cell populations in a
bi-dimensional space, and it is used to derive the system evolution.

Recent studies in cancer biology have led to a new perspective in tumour pro-
gression, known as the CSC theory. It states that the growth and evolution of many
cancers are driven by a small population of cells named CSC, and that CSC-based
tumours are hierarchically structured, and characterized by different subpopulations
of cells: CSCs, Progenitor Cells (PCs) and Totally differentiated Cells (TCs).
Moreover, such heterogeneity is considered the cause of the failure of many con-
ventional therapies. It is hence fundamental to fully comprehend the CSC CSC
dynamics to predict treatment response. The proposed PMA model describes the
CSC-based tumour growth and it is able to reproduce the overall dynamics among
cell subpopulations during tumour progression. Using a derivation similar to the
Generalized Mass Action law, the reactions describing the biological model were
translated into a system of Ordinary Differential Equations (ODEs) able to take into
account the possibility of reactions to expand in neighbour cells.

13.3.6 Abstract Space Models

When space V ¼ fv1; v2; . . .g is discrete, it can be used not only to describe
graph-based routes, but also to represent more abstract configurations. For example,
in [5] locations are used to model different data centres of a geographically dis-
tributed cloud infrastructure. In that case V ¼ fdc1; dc2; . . .g locations are used to
model the different data centres composing the infrastructure. Dependency on the
location is used to assign different capabilities in terms of computational nodes that
are able to run Virtual Machines (VMs), and disk infrastructure capable of saving
data as Storage Blocks (SBs).

Agents classes 1$ c$C represents applications running in the data centre: the
state of the agent defines the resource usage of each application in the infrastructure.
The number of applications for each class c running at data centre dcj is encoded
into the agent density function qcðt; dcjÞ. The average performance of the nodes of
the data centre is encoded in the transition function eKcð½pV (Þ for each application
class. In this case, in particular, the local transition kernel Qcðt; vÞ ¼ 0 since the
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speed at which application acquires and releases resources depends on the entire
state of the data centre, and I cðt; vÞ ¼ eKcð½pV (Þ.

If we consider a fixed number of applications, the birth term and death term can
be set to bcðt; v; ½pV (Þ ¼ 0 and Dcðt; v; ½pV (Þ ¼ 0, otherwise they can be used to
model the starting and stopping of applications in presence of fluctuations in the
workload. The motion terms Mout

c ðt; v; ½pV (Þ and min
c ðt; v; ½pV (Þ can be used to

model application migration from one data centre to the other when supporting
load-balancing applications that works at the complete geographical infrastructure
level.

Abstract space models have also been used in [19] to model cell hand-over and
technology switch in wireless network models, where user agents can connect to
either a 4G LTE network or to a WiFi access point depending on the current load.

13.3.7 Delay Models

The ability of agents that perceive the state of the model even at previous time
instants ½pV (, can be used to add random or deterministic delays in the delivery of
messages to the model presented in Sect. 13.3.2. In particular, let us assume that the
delivery of message l sent from a class c agent in position v to a class c0 agent in
position v0 during a transition from state i to state j required a random time s
distributed according to a positive continuous distribution Ylðsjv; c; i; v0; c0; jÞ. The
time delay in messages can be considered by replacing the definition of
cfcgii ðt; v; ½pV (; lÞ previously given in Eq. (13.8) with:

cfcgii ðt; v; ½pV (; lÞ

¼
Z

v02 V
v0 6¼v

XC

c0¼1

Xnc0

j¼1

bfc
0g

j ðv0;lÞulðv; c; i; v0; c0; jÞ
Z t

0

p
fc0g
j ðt * s; v0ÞdYlðsjv; c; i; v0; c0; jÞdv0:

ð13:21Þ

In this new definition, the time integral over s accounts for the state of the system
at time t * s, weighted by the probability that the delay distribution
Ylðsjv; c; i; v0; c0; jÞ is equal to s. This definition makes Eq. (13.1), which normally
is either an ordinary differential equation (if motion over a continuous space is not
considered) or a partial differential equation, a delay differential equation. Although
the techniques for the solution of delay differential equation are very solid, they can
be computationally expensive and reduce the size of models that could be fruitfully
analyzed. From a theoretical point of view, however, this result enhances the
possibility of MA modelling: a full investigation of the advantages of using delay
differential equation models, and the definition of the use cases when this can
provide good results is ongoing research work.
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13.4 Conclusions

In this work, we have presented a unified theory that can be used to study various
types of Markovian Agent models. In particular, we have shown that a single
equation can describe all the peculiarities of agents: local transitions, induced
behaviours, motion, increase and decrease in population. Markovian Agents have
been used to study a variety of different systems, both physical and IT related: in
this work we have provided some hints on how the formalism has been used, and
given links to the literature where such cases have been discussed.

Even if the theory is already solid, many features and limitations of Markovian
Agents still need to be investigated: future works will focus on improving solution
techniques, providing tools to simplify the use of MA models, defining
best-practices and study the scalability and accuracy of MA models.
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