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Systems wi th high reliability requirements are designed with a 
great degree of fault tolerance. These systems use extensive 
redundancy, have complex recovery management techniques, 
and are highly reconfigurable. There are two  classes of prob- 
lems that arise in modell ing the dependabil i ty of complex fault 
tolerant architectures: the construction of a comprehensive 
model of the system, and the solution of the model once for- 
mulated. 

This paper surveys the literature on the research work avail- 
able in the area of dependabi l i ty modell ing, wi th  particular 
emphasis on the modell ing techniques, the adopted numeri- 
cal methodologies and the implemented software tools. 
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1. Introduction 

The increasing complexity of electronic systems de- 
mands for a high degree of fault-tolerance. Classical 
motivation for fault-tolerance can be found in [12], 
and techniques for designing fault-tolerant struc- 
tures are addressed to in [142]. In order to properly 
express the attributes of  fault-tolerant (FT) systems 
a new terminology has recently emerged from the 

scientific and technical community [98]. This new 
terminology, with clear and widely acceptable defi- 

nitions is presented in [13]: "'Dependability is that 
property of  a computer  system that allows reliance 
to be justifiably placed on the service it delivers 
[13]". Quantifying the alternation between delivery 
of proper or improper  service and quantifying the 
total amount  of  work or the performance level of  
the service versus time leads to the definition of dis- 
tinct measures: reliability, availability, performabi- 

lity. These measures correspond to different percep- 
tions of  the same attribute of  the system: its 
dependability [13]. An error is the phenomenologi- 
cal manifestation of a fault which is usually classi- 

fied in two classes: physical fault and human-made 
fault. An error is that part of  a system state which is 

liable to lead to a failure. A fai lure  occurs when the 
delivered service deviates from the specified service. 
Achieving a dependable system calls for the utiliza- 
tion of a set of  methods which can be classed into: 
fault avoidance, fault tolerance, fault removal, fault 
forecasting. 

Quantitative evaluation of  the dependability 
measures requires the development of  suitable 
mathematical modelling and analysis techniques. In 
order to properly model the system service versus 
time there is a need to take into account in a single 
framework [157]: 
• the structure of  the system and the interactions 

between its modules 
• the stochastic occurrence of a fault 
• the propagation of a fault into an error and a fail- 

ure 
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• the fault error detection and recovery mechanism 
• the effect of a fault on the delivered service (the 

performance level). 
The effectiveness of a model is related to its mo- 

delling power (ability to represent the interesting 
features of the real system) and to its analytical 
tractability (ability to evaluate properties and beha- 
v/ours of  the system by solving equations rather 
than running the real system). Dependability evalu- 
ation is of  great practical importance for identifying 
current problems and correct them, for preventing 
future problems by improving design, for predicting 
the behaviour of the system versus ume and for sup- 
porting decision in design and technical assistance. 

This paper intends to provide an extensive survey 
on the literature available in the area of  dependabi- 
lity modelling and analysis of complex systems. In 
Section 2, the techniques for modelling the occur- 
rence of  a fault, the recovery from a fault and the ef- 
fect of  a fault on the performance of the system are 
considered. In particular, the need for a combined 
evaluation of performance and reliability measures 
is emphasized. Section 3 reviews the numerical tech- 
niques proposed to solve complex dependability 
models both in transient and in steady state. Three 
issues are particularly addressed: the largeness of 
the model, the stiffness, and the computation of 
more detailed measures of  effectiveness. 

2. Modelling techniques 

Pioneering work in the area of modelling and analy- 
sis of FT systems was carried out by Bouricious et 
al. at IBM [32,31]. The basic architecture consid- 
ered by the authors was a standby redundant spar- 
ing system with the incorporate ability to recover 
from a fault by inserting a sparing module. The ef- 
fect of the recovery strategy was captured into a sin- 
gle parameter called the coverage factor. The cover- 
age was formally defined as the probability of  
surviving a failure without irreparable damage. The 
authors showed the remarkable influence of  the 
coverage on the reliability features of  the system. 
Several subsequent papers [10,22,148,157,5,60] 
have studied the effect of the coverage on redundant 
recongifurable systems. 

Since then, two main lines of  research have been 

pursued. The first one attempts to provide a de- 
tailed representation of the fault handling mecha- 
nism (FHM) and to incorporate the FHM into a 
general modelling framework for the whole system 
[I 54,70,159]: the second one investigates the effect 
of  a fault, and of the consequent reconfiguration 
[I 63,94,121]. on the performance level of the sys- 
tem. In parallel with the refinement of  the modelling 
techniques, there has been a need to define new and 
more significant dependability measures. While the 
classical reliability and availability measures 
[150,15] are calculated at a given instant of  time or 
in steady state and can thus be classified as instanta- 
neous measures, the development of  the dependabi- 
lity theory has led to the definition of  cumulative 
measures, that reflect system's operational charac- 
teristics over a finite time interval [73]. Since cumu- 
lative measures are defined over a finite horizon, 
their computation requires the transient analysis of 
the underlying stochastic process. 

2.1 Fault handling model./or FT.s:vstems 

In order to construct a general dependability model 
three sets of inputs are necessary [I 58]: the system 
structure, the fault-occurrence behaviour, and the 
fault-handling behaviour. The first category of in- 
puts provides information regarding the set of com- 
ponents or modules, their interconnections and 
conditions under which the system will fail. Usual 
approaches for representing the system structure at 
this level are: block diagrams [15], fault-trees 
[15,145], Petri nets [4,14.19,110], directed graphs 
[139]. 

The second category of inputs describes the sto- 
chastic occurrence of faults in a system. For numer- 
ical reasons, the fault-occurrence model is usually 
described in terms of a discrete-state continuous- 
time homogeneous Markov chain. The markovian 
assumption implies that all the random times ap- 
pearing in the model are exponentially distributed. 
To overcome this limitation Semi-Markov models 
[41,131] or regenerative processes [49,20,21] have 
been considered. 

The third category of inputs models the behav- 
/our of the system when a fault occurs and is called 
the fault-handling model. The information gathered 
into the fault-handling model refers to the class of 
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the fault, the possible propagation of the fault into 
errors and final failures, and the way in which the 
system reacts to the fault. Basically, a fault can be 
dormant or active, an error latent or detected and a 
failure benign or catastrophic. Exits from the fault- 
handling model can be usually categorized into 
three types: transient restoration (as a consequence 
of an intermittent fault or a benign failure), success- 
ful recovery, or fatal failure. 

Due to the high sensitivity of the dependability 
measures with respect to the fault-handling model, 
extensive research work has been devoted to cha- 
racterize the type of the fault, the propagation of 
the fault into error and failure, and the final out- 
come from the fault-handling model by means of  
discrete-state representations. Papers dealing with 
the modelling of fault-handling mechanisms can be 
found in [154,70,100,148,149,158,5,45]. A Petri net 
approach to the fault-handling model has been pre- 
sented in [I 57]. In [141] the use of  retry techniques 
for recovery from transient faults has been ana- 
lysed. A discussion and a comparison among va- 
rious techniques for modelling the coverage in a FT 
system is reported in [60]. 

The combination of  the three mentioned catego- 
ries of inputs into a single final model generates two 
main problems: the explosion of  the state space, and 
the potential appearance of numerical instabilities 
caused by the presence in the combined model of  
time constants (the fault-occurrence rates and the 
fault-handling rates) which differ by many orders of  
magnitude. Computer  packages developed with the 
intent of coping with these problems are briefly 
mentioned in paragraph 3.4. 

2.2 Per[ormance oriented reliability analysis 

Fault-tolerance may assume different forms. A way 
to achieve high reliability coupled with high per- 
forrnance is to allow the system to be gracefully de- 
grading. Graceful degradation [30] means that, 
upon occurrence of  a fault, the system attempts to 
reconfigure into an operating state with one fewer 
active module: a successful reconfiguration keeps 
the system operational but with reduced perform- 
ance capabilities so that the delivered service de- 
grades. In this case, the most appropriate and sig- 
nificant measure is the ability of  the system to 

provide a given amount ofwork  in a given time tak- 
ing into account failures and repairs. The total 
work accumulated by the system up to a given time 
is a random variable called perfbrmahility. Perform- 
ability analysis merges the traditional fields of 
performance evaluation and reliability. 

The classical methods of the steady-state (fault- 
free) performance evaluation [83] overestimate sys- 
tem capacity as a function of time. On the other 
hand, classical reliability theory is based on the as- 
sumption that each component,  and the system as a 
whole, can be modelled by a binary variable [15] 
representing two possible states: functional or non- 
functional. This assumption implies that the state 
space of the system can be univocally partitioned 
into two mutually exclusive subsets of states, one 
containing the up states, the other containing the 
down states. The classical reliability measures are 
defined on this binary partitioning of states. 

The new methodology, proposed to face up the 
unified analysis of  performance and reliability for 
FT systems, consists in modelling the variation of 
the system configuration versus time with a discrete 
state stochastic process, and associating to each 
state a non-negative real constant representing the 
effective working capacity (or performance level) of 
the system in that state. The stochastic process is re- 
ferred to as the structure-state process and the asso- 
ciated constant is referred to as the reward rate. The 
structure-state process, together with the reward as- 
signed to each state form the Stochastic Reward 
Model [133]. 

Markov and Semi-Markov reward models have 
been the subject of  an extensive literature 
[106,41,92.93,84], but only recently they have re- 
ceived attention as algorithmically feasible tools in 
the dependability analysis of FT or degradable sys- 
tems. 

The idea of introducing a performance index (or 
reward rate) measuring the effective computation 
capacity of a system in each configurational state 
was first proposed in [17]. A formal definition of  the 
performability (with the proposal of this neologism) 
has been given in [109]. 

Two different views in performability analysis 
can be envisaged: 
• a system oriented view [17,69,108,56,87] in which 

the aim of the analysis is to determine the ability 
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of  the system to provide a given amount  of  serv- 
ice at an acceptable accomplishment level: in the 
framework of Stochastic Reward Models, this 
view implies the evaluation of the distribution 
function of the random variable defined as the 
total accumulated reward up to a given time 

• a task oriented view [68,36,37] in which the aim is 
to evaluate the distribution function of  the com- 
pletion time of  a task that requires an assigned 
amount  of  work: in this case, the interaction of 
the task in progress with the system when a fault 
occurs and a recovery procedure is started plays a 
very important  role [68,96] on the execution of 

the task. 
An unified approach to the above points of  view has 
been elaborated by Kulkarni et al. in [96,95]. In this 
approach,  the system is modelled by a Reward Sto- 
chastic Model, where two possible mechanisms of  

preemption and recovery between the task in execu- 
tion and the system have been considered: 
• When a change of  state occurs in the structure- 

state process, the system keeps memory of  the 
work already done and the task in progress is re- 
sumed in the new state. This policy is called pre- 
emptive resume (prs ). 

• When a change of  state occurs in the structure- 
state process, the system cannot keep track of  the 
past, and the work already done is lost; the task 
in progress must be restarted from scratch in the 
new state. This policy is called preemptive repeat 
identical (pri) if the repeated task has the same 

work requirement of  the original preempted task, 
and preemptive repeat different (prd) if the work 
requirement is different, but sampled from the 
same distribution. 

Research work in the area of  performability analy- 
sis is aimed at evaluating the distribution function 
of  the accumulated reward up to a given time (per- 
formability) or of  the task completion time, when 
the structure-state process is a Markov or a Semi- 
Markov process and under various combinations of  
preemption policies. Closed form solutions for the 
distribution functions have been obtained in the 
Laplace transform domain: recent work can be 
found in [9,56,75,86,87,155,62,77]. 

The ability of  evaluating the distribution function 
of  cumulative measures defined over the structure- 
state process has stimulated the definition of new 

quantities that more precisely characterize the be- 
haviour of the system over a finite horizon. An in- 
teresting cumulative measure is the interval availa- 
bility [73,76,63,62,57], defined as the proportion of  
time spent in the operating states during a finite 
time interval. A further enlargment of  the classical 
reliability theory consists in analysing the system 
lifetime, or the repair strategy, when the system 
breakdown depends on the total time spent in the 
set of the down states [64,137,147.74]. 

2.3 Petri Nets 

Petri Nets (PN) are a graphical tool for the formal 
description of the logical interaction or of  the flow 
of  activities in complex systems [1,128]. With re- 

spect to other more popular graphical techniques, 
PN are particularly suited to model in a natural way 
situations like concurrency, conflict, blocking, syn- 
chronization and sequentiality. A recent tutorial 
paper, with an extended bibliography, on the classi- 
cal theory of  PN can be found in [118]. 

The classical PNs do not convey any notion of 
time; in order to make the model suitable for the 
quantitative analysis of  the time behaviour of  sys- 
tems a class of  extended models called Stochastic 
Petri Net (SPN) has been formulated. The basic 
idea in SPN [120,115,3,66] is to associate to each 
PN-transition a random variable representing the 

amount  of  time that must elapse before an enabled 
transition can fire. When all the random variables 

are exponentially distributed, the SPN can be 
mapped into a homogeneous Markov chain, so that 
the dynamic of the system can be evaluated by solv- 
ing the corresponding Markov chain equations. 
When the random variables associated to the PN- 
transitions are generally distributed, the semantics 
of  the model becomes more complex. In order to es- 
tablish a procedure for univocally mapping the PN 
into a stochastic point process, further specifica- 
tions should be given. The set of  these specifications 
forms the PN-execution policy [2]. 

Examples of  the use of SPN for modelling FT de- 
gradable systems have been considered in a number 
of  papers: [19,4,157,59, 110,6,7]. In particular, [157] 
and [59] propose PN models for representing com- 
plex fault-occurrence/fault-handling behaviours. 
The use of  SPN as a tool for the quantitative analy- 
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sis of  stochastic systems has been surveyed in [23]. 

2.4 Fault trees 

The representation of  the occurrence of a particular 
event in a system (the top event) by means of a logi- 
cal tree is still one of  the most important and dif- 
fused technique in reliability engineering and safety. 
When the top event is a critical condition for the 
system and the basic leaves initiating the tree are 
non-operational states for the components, the logi- 
cal tree is referred to as the fault tree. The construc- 
tion and analysis of fault trees is described in many 
excellent reliability textbooks as, for instance, in 
[15]. A bibliographic review on methods, tools and 
applications is given in [101]. 

The basic idea behind the methods for both qual- 
itative and quantitative analysis of  fault trees is the 
reduction of the top event in terms of  basic events 
using boolean algebra [145]. Recent results along 
this line are reported in [116,144,145]. The probabil- 
ity of  the top event can be evaluated either by means 
of exact algorithms [126], or by approximate algo- 
rithms [113,143]. In the latter case the tightness of  
the approximation is of  primary concern [143]. Mo- 
reover, the lack of  pertinent failure rate data for the 
basic events has stimulated studies on the propaga- 
tion of the uncertainty along the tree [44,138,105]. 
A representation of  fault trees in terms of  Petri nets 
has been described [85], where some results from the 
PN theory are exploited in the fault trees analysis. 

The straightforward area of application of fault 
trees is the analysis of very large systems of  binary 
independent components. Several extensions have 
been recently proposed aimed at making the tech- 
nique suited for modelling the dependability of FT 
systems. Fault trees with multiple components 
(components represented by more than two states 
operating at possibly different performance levels) 
have been discussed in [162]. Common cause fail- 
ures (uncovered failures in FT systems can be cate- 
gorized as a particular type of common cause) have 
been investigated in [I 16], while in [58] the coverage 
models are explicitly included in the fault tree anal- 
ysis. 

3. Numerical techniques in dependability analysis 

While fault trees are solved by resorting to combin- 

atoriai techniques and Boolean algebra, the modell- 
ing techniques surveyed in 2.1, 2.2 and 2.3 lead to 
the formulation of stochastic point processes. The 
numerical analysis of the process provides the de- 
sired values for the dependability measures. 

When the object of the analysis is the computa- 
tion of the instantaneous measures or of the time 
averaged expected values of the cumulative meas- 
ures, the numerical problem consists in evaluating 
the state probabilities versus time. or in steady state, 
of the corresponding stochastic process. For the 
sake of numerical tractability, the time behaviour of 
the model is usually assumed to be represented by a 
homogeneous Markov chain. Even if the numerical 
solution of Markov chains has been widely consid- 
ered in the literature, two main problems still re- 
quire research work: the model largeness and the 
model stiffness. 

When the expected values of the dependability 
measures are not sufficiently accurate for the char- 
acterization of the system effectiveness, the com- 
plete distribution functions of the cumulative meas- 
ures need to be estimated. These distribution 
functions are expressed in closed form as analytic 
functions in the complex space. Different solution 
methods have been explored in this case. and an 
overview is reported in paragraph 3.2. 

3.1 Numerical analysis of  large st~lCf Markov chains 

We can distinguish between methods for solving 
• steady state Markov equations and methods for 
solving transient Markov equations. In the first 
case, the problem assumes the form of  a set of  linear 
equations for which standard solution methods can 
be found in classical textbooks on matrix computa- 
tion [153.71]. Due to the large dimension and the 
sparsity of the transition rate matrix, iterative meth- 
ods (like Gauss-Seidel or Successive Over Relaxa- 
tion - SOR) are usually preferred. Peculiar studies 
devoted to the steady state solution of  Markov 
chains are given in [119,80,35,97]. 

For what concerns the transient analysis, the 
problem consists in solving a set of first-order dif- 
ferential equations. These equations are often 
sparse and stiff. Stiffness [I 12] arises when the 
model contains time constants very short with re- 
spect to the integration interval. In dependability 
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modelling of FT systems, stiffness is caused by the 

need to include into a single comprehensive model 
events which occur in very different time scales: fail- 
ures and repairs [99], fault free system operation 
and fault occurrence behaviour [4,108], fault hand- 
ling and fault occurrence behaviour [I 60]. 

A comparison among different solution tech- 
niques for the transient analysis of  Markov chains 
is presented in [114,134,104]. Following these re- 
sults, the most promising techniques are the rando- 
mization technique [79,91,111,81,107] (for what 
concerns accuracy and execution time), and implicit 
methods for ordinary differential equations when 
the stiffness ratio increases [112,82,42,39,134]. 

In order to cope with the explosion of the state 
space, the following three main research lines can be 

identified. 

3.1.1 Automatic generation of the transition rate 
matrix 
If an algorithm can be envisaged to build up the 
complete transition rate matrix starting from 
smaller blocks only the block submatrices need to 
be stored. The automatic techniques for the matrix 
generation can be based either on graphical ap- 
proaches (like block diagrams or Petri nets), or on 
algorithms which exploit the structure and the sym- 
metries of  the complete transition rate matrix. The 
Kronecker algebra for matrices [33,54] has been 
used for this purpose in the reliability field 
[8,34,102]. However, other algorithms, based on a 
different ordering of  the state space with respect to 
the one induced by the Kronecker algebra, are 
available [127]. These automatic algorithms fall 
short in the presence of common cause failures 
(more than one component failure in a state) as 
pointed out in [102]. Methods to overcome this limi- 
tation are investigated in [I 30]. 

3.1.2 Aggregation/disaggregation techniques 
These techniques are aimed at decomposing the 
original problem into subproblems in such a way 
that the final (either exact or approximate) solution 
can be obtained by solving smaller and more stable 
sets of equations. These methods can be applied 
both to the steady state as well as to the transient 
analysis. The fundamental principles of these algo- 
rithms have been discussed in [47,40,146,65,156]. A 

transition rate matrix, that contains strongly con- 
nected blocks which are weakly connected to each 
other, is said to be nearly completely decomposable. 

In this case, a single step aggregation algorithm for 
the steady state analysis has been formulated in 
[47,161]. The extension of  the same idea to the tran- 
sient analysis has been discussed in [27], The peculi- 
arity of this aggregation technique is that a stiff 
problem is decomposed into smaller non-stiff sub- 
problems. A perturbation approach to separate dif- 
ferent time scales in a Markov chain is discussed in 
[129,43,136]. 

Bounds for the steady state decomposition algo- 
rithm are investigated in [48]. In [152] it is proved 
that the elimination of the stiffness by the reduction 
of  the fault handling model to a branch point (the 
coverage probability approximation) provides al- 
ways conservative reliability estimations. 

An approach, referred to as behavioural decom- 
position, based on the inspection of the physical 
system has been illustrated in [160]. When the tran- 
sition rate matrix is defined in terms o f a  Kronecker 
product of  submatrices, peculiar solution algo- 
rithms have recently appeared [ 102,130,156]. 

3.1.3 State space truncation 
Since real systems are designed to have a high level 
of reliability or availability, they spend most of  the 
time in states with the majority of their components 
operational. This observation implies that most of  
the probability mass is concentrated in a relatively 
small subset of  the state space. Truncation tech- 
niques are thus intended at generating only that 
part of the whole state space in which the system 
spends most of  the time so that results calculated 
from the truncated state space are accurate enough 
with respect to the exact values. In fault tree analy- 
sis the order of the cut sets provides a natural way 

to truncate the analysis at a preassigned accuracy 
level [I 13]. In the transient analysis of  Markov 
chains, an algorithm to generate a reduced state 
space has been presented in [18]. The truncation cri- 
terion is based on the computation of  the probabili- 
ty of exiting from the already generated state space 
at a given time. When the exiting probability is 
below a preassinged threshold level, the state space 
generation stops. In the case of  the steady state 
availability analysis, a truncation algorithm is pre- 
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sented in [117]. This algorithm provides both a 
lower and an upper bound, whose computation is 

based on results reported in [48]. 

3.2 Computation of cumulative measures 

Cumulative measures [73] reflect the system charac- 
teristics over a finite time interval. When the perfor- 
mability model is in the form of a Stochastic Rew- 
ard Process, typical cumulative measures are the 
total accumulated reward (performability) and the 
task completion time. Cumulative measures are 
random variable that can be characterized through 
their expected values or their distribution functions 
[133]. 

3.2.1 Expected values 
The computation of  the expected values of the cu- 
mulative measures involves the computation of the 
integrals of the state occupation probabilities of the 
associated Markov chain. The computation of  the 
integrals is done at a cost of the same order of  the 
cost for the computation of the instantaneous pro- 
babilities. All the numerical techniques available for 
the transient analysis can be modified for the com- 
putation of the integrals, as described in [135]. The 
extension of  the decomposition technique for stiff 
Markov chains to the integral case has been pre- 
sented in [29]. 

3.2.2 Distribution functions 
The computation of the distribution functions of  
the cumulative measures requires a very involved 
numerical procedure [56,96], even in the simplest 
case in which the underlying fault-occurrence 
model is a Markov chain. 

An algorithm for the solution of  performability 
problems when the preemption policy is of resume 
type has been illustrated in [151]; this algorithm 
computes first the eigenvalues of a particular matrix 
and then resorts to the numerical inversion of a 
Laplace transform equation (for which a wide 
choice of different methods are available 
[67.51.55,89,88]). In [87] a recursive formula has 
been proposed for computing the moments of  the 
accumulated reward by resorting to the spectral re- 
presentation of the transition rate matrix. In [78] 

and [155] the first two moments of the distribution 
of the performability have been calculated by 
means of the randomization technique. An exten- 
sion of the randomization technique for the compu- 
tation of the distribution of the interval availability 
and of some performability figures has been investi- 
gated in [63] and [62], respectively. 

A different and computationally more versatile 
approach has been proposed in [28,26]. This ap- 
proach is based on the use of a family of distribu- 
tion functions called Coxian [50] or Phase type (PH) 
distributions [122,123], which are defined as the dis- 
tribution of the time till absorption of  a continuous 
time homogeneous Markov chain. Indeed, if the 
work requirement of a given task is a PH random 
variable, the task completion time is still a PH ran- 
dom variable [28] and can thus be calculated by 
solving a homogeneous Markov chain. The contin- 
uous problem in the complex space is converted 
into a discrete problem in the real space. This tech- 
nique is able to accommodate for any probabilistic 
mixture of preemption policies. 

However, a great deal of  research is still needed in 
the field of efficient numerical algorithms for the 
computation of the distribution function of cumu- 
lative dependability measures. 

3.3 Non-Markovian models 

A further important point to be mentioned is the 
need of extending the modelling power of the pro- 
posed methodologies by allowing the relevant ran- 
dom variables to be generally distributed, thus 
overcoming the exponential assumption. Even if 
Semi-Markov or regenerative processes have been 
investigated for this purpose, the most promising 
approach, from a computational point of  view, 
seems to be the use of the class of PH distributions 
mentioned in the previous paragraph [123]. A non- 
markovian discrete-state stochastic process whose 
transition times are PH random variables can be 
converted into a homogeneous Markov chain de- 
fined over an extended state space [24]. Therefore, 
the efficient numerical techniques developed for 
Markov chains can be applied in this case. 

PH distributions combine formal elegance with 
computational efficiency [122,53]; moreover, the 
PH family forms a dense set of distributions so that 
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any distribution function can be approximated as 
closely as desired by a member of this family. A 
number of usual distributions often encountered in 
applied stochastic modelling (like: the Erlang distri- 
bution, the hyperexponential and, obviously, the 
exponential) belongs to the PH family. 

Interesting properties have been proved for these 
distributions in the reliability field [1 I], and applica- 
tive examples are reported in [124,25,38]. General 
purpose packages incorporating the class of PH dis- 
tributions have begun to appear [46,52,140]. 

3.4 Software tools 

Examples of automated analytic models for depend- 
ability analysis, which incorporates at different 
levels of details some of the features examined in the 
previous paragraphs are: ARIES [103,125], SURF 
[46], CARE III [154], SAVE [72] HARP [61,16], 
SHARPE [1401. 

A critical evaluation of the mathematical funda- 
tions of some of these packages has been performed 
in [70]. An extensive comparison among available 
software tools (non restricted to the ones mentioned 
above) is documented in [90]. The characteristics 
considered in [90] are: the area of application, the 
required input specifications, the stochastic model 
on which the package is based, the adopted solution 
technique and the obtained output measures. 

4. Conclusion 

A survey of the literature dealing with the modelling 
and analysis techniques for the evaluation of the de- 
pendability of FT or degradable complex system 
has been reported. 

As a final comment it should be stressed that the 
theoretical activity related to the development of 
dependability models is necessary for coping with 
the increasing complexity of new FT systems; how- 
ever, this activity to be successful and practically 
applicable must proceed together with the actual 
implementation of FT systems and with the knowl- 
edge of experimental field data regarding the per- 
formance features and the failure rates of the mo- 
dules integrated in the FT realization. 
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