
PETRI NETS

IN PERFORMANCE ANALYSIS:

AN INTRODUCTION

M. Ajmone Marsan1, A. Bobbio2, and S. Donatelli2

1 Dipartimento di Elettronica

Politecnico di Torino – Italy

ajmone@polito.it

2 Dipartimento di Informatica
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1 Introduction

Petri nets (PN) [86, 87, 91] were originally developed and used for the study of
the qualitative properties of systems exhibiting concurrency and synchronization
characteristics.

The use of PN-based techniques for the quantitative analysis of systems re-
quires the introduction of temporal specifications within the basic, untimed mod-
els.

This fact was recognized about twenty years ago, and led to several differ-
ent proposals for the introduction of temporal specifications in PN. The main
alternatives that characterize the different proposals concern

– the PN elements associated with timing (normally either places or transi-
tions, but some authors also looked into the possibility of defining timed arcs
or tokens),

– the firing semantics in the case of timed transitions (either atomic firing or
firing in three phases),



– the nature of the temporal specification (either deterministic or probabilis-
tic),

– the conflict resolution policy.

In this tutorial paper we consider PN models that are augmented with a
temporal specification by associating a (possibly null) firing delay with transi-
tions. The transition firing operation is assumed to be atomic, i.e., tokens are
removed from input places and put into output places with a single, indivisible
operation, after the transition firing delay has elapsed. The specification of the
firing delay of timed transitions is of probabilistic nature, so that either the prob-
ability density function (pdf) or the cumulative distribution function (Cdf) of
the delay associated with a transition needs to be specified. Such functions may
be general, or even degenerate, thus allowing the definition of constant (possibly
null) delays. We refer to this type of timed Petri nets as Generally Distributed
Timed Transitions Stochastic Petri Nets (GDTT SPN).

Such timed Petri nets are those most frequently used in the field of perfor-
mance evaluation. Evidence of this fact can be gathered by the observation of
the papers presented at the series of International Workshops on Petri Nets and
Performance Models, the leading forum for the presentation of novel results in
this field.

In this work we review the different classes of GDTT SPN that have been
proposed in the literature, and we shall consider in some details two special
subclasses of GDTT SPN: i) Stochastic Petri Nets (SPN), where all transition
firing delays are non-null and have negative exponential pdf, ii) generalized SPN
(GSPN), where immediate (null-delay) transitions are freely mixed with timed
transitions associated with exponentially distributed non-null random firing de-
lays.

The goal of this paper is to provide a tutorial introduction to GDTT SPN and
their subclasses, discussing several aspects related to their use for performance
analysis of complex systems, specially emphasizing their strong and weak points,
and the feasibility of their solution.

This tutorial paper is addressed to PN experts who are not familiar with
the stochastic performance modelling field. For this reason, a brief overview of
the classical approach to the performance evaluation of systems in a proba-
bilistic framework is included in Section 2, where some elementary notions are
summarized. Basic tools are discussed first, with special attention to stochastic
processes with Markovian characteristics, and their generalizations. The most
common model specification techniques are then presented, starting from queues
and queueing networks, and arriving at PN-based approaches; along the path
from one modelling paradigm to the other we shall note an increase in modelling
power, that is however paid with a reduction in the ease of the model solution.

Section 3 contains the general definition of GDTT SPN models, and a dis-
cussion of their possible use for performance analysis.

Sections 4 and 5 are specifically addressed to the two subclasses of GDTT SPN
that we discuss in more details: SPN, and GSPN, respectively. The presentation
of the different modelling paradigms is paralleled with examples of their appli-



cation, thus visualizing the strong and weak points of the different alternatives.
Finally, Section 6 provides some concluding remarks, and comments on the

present and future trends of research in this field.

2 Performance Evaluation

The performance evaluation area can be initially subdivided into two subareas.
The first one relates to measuring, and comprises three distinct fields that can
be called

– measurements,
– benchmarks,
– prototypes.

Measurements are performed on a real system under real operating condi-
tions. They provide the actual system performance in the particular condition
in which the system is observed. However, measurement results have very little
generality, since they are heavily dependent upon the detailed characteristics of
the measured system, and on the particular workload imposed on the system
during the measurement.

When the performances of two systems, say two supercomputers, have to be
compared, it is not sufficient to rely upon measurements, since nothing guar-
antees that the operating conditions under which measurements are performed
are equivalent. The comparison would thus be unfair. In order to overcome this
problem, benchmarks were developed. They provide an artificial workload for
the system, such that observations can be performed in equivalent operating
conditions, and meaningful comparisons can be made.

Both measurements and benchmarks require the availability of the system
to be studied, so that it can be observed. In the (many) cases in which the
performance study concerns a system that is not available (maybe because it is
not yet operational), it is necessary to develop a representative approximation
of it, either in hardware or in software. Such approximations, which need to be
fairly detailed, are normally called prototypes (the term emulator is also often
used when the approximation is implemented in software). Observations are then
made on such prototypes, possibly using benchmarks as artificial workloads.

In all three cases, the system performance is obtained by observing the be-
haviour of the system, or its approximations, in operation, i.e., when loaded by
either the actual user requests, or the benchmark.

The study of the performance of a system, however, is not only an important
task during and after the system implementation, but also during the early de-
sign stages, in order to compare possible alternate architectural choices. This is
true in particular when the development of new systems is mainly motivated with
the request for ever-increasing performance, like in the computer and telecom-
munications fields.

During the design process, measurements on real systems are obviously not
possible, and also prototype implementations present insurmountable difficulties
due to the necessity of specifying many details that are far from being decided.



The second subarea of performance evaluation thus comes into play: mod-
elling. It can be partitioned into two fields:

– simulation models,

– analytical models.

In both cases the performance study is carried out using a description that
includes only some “important” characteristics of the system. In the case of
simulation models, the description is embedded into the computer program that
simulates the system, whereas in the case of analytical models the description
is given in mathematical terms. Goal of the analysis is to evaluate a set of
“performance indices,” like, for example, the percentage of time the system is
idle, or the average amount of useful work performed by the system in a fixed
period of operation, or the variability of the quality of the service offered to the
final (human) user of the system.

Models (both simulative and analytical) can be either deterministic or prob-
abilistic. While it is clear that most systems of interest exhibit a deterministic
behaviour (we tend to like the fact that by running twice the same program
with the same input data we obtain the same results, or that two transfers of
the same file produce identical copies), it may be simpler to describe a very large
number of complex, detailed deterministic phenomena by means of macroscopic
probabilistic assumptions. This is often done because details are not known, and
even when they are, their inclusion may lead to very complex models. Further-
more, the probabilistic approach may be advantageous because it may provide
sufficient accuracy while yielding more general results, and it may permit the
study of sensitivity to parameter variations.

It should be noted that a key element in the development of a model is the
selection of the level of abstraction (also called level of detail). This amounts
to selecting the system features to be included in the model. No precise rule
exists for this selection, that rests mainly on the experience and ingenuity of the
performance analyst. On the other hand, the level of abstraction is the element
that differentiates a model from a prototype or an emulator. Simulation lends
itself better to the development of more detailed models, whereas analytical
models are normally more abstract.

An important characteristic of models concerns the representation of the
system behaviour along the time scale. While it is obvious that any instrument
for the measurement of time operates according to a discrete time scale, due to
its finite precision, and that most interesting modern systems, being digital in
nature, intrinsically use a discrete time scale, models often use a continuous time
scale. The reason for this discrepancy lies in the greater simplicity of continuous-
time models. Indeed, if the time axis is discrete, the model has to consider the
fact that multiple events may occur between two consecutive time marks, and
explore the effect of all possible combinations and orderings of these events. In
the continuous time scale, instead, using appropriate probabilistic assumptions,
it is possible to univocally order events, so that it is always possible to take into
consideration only one event at a time.



In this paper we deal with models of a probabilistic nature operating on a
continuous time scale.

The mathematical framework underlying this class of models, be they simu-
lative or analytical, is the theory of stochastic processes.

2.1 Stochastic Processes

Random phenomena are close to our everyday experience, at least due to our
familiarity with unpredictable weather changes, equipment failures, and games
of chance based on dices or cards (excluding the tricks played by magicians, that,
when successful, leave no space for casuality).

A stochastic process is a mathematical model useful for the description of
phenomena of a probabilistic nature as a function of a parameter that usually
has the meaning of time. Many text books on stochastic processes are available,
see for example [70].

Since the definition of a stochastic process is based on the notion of a random
variable, it is necessary to recall some elementary concepts of probability theory
first.

A random experiment is an experiment which may have several different out-
comes. The set of all possible elementary outcomes is the sample space of the
experiment. A simple example of a random experiment is provided by the toss
of a fair dice. The sample space is, in this case, comprised of six elementary
outcomes. By associating a probability measure to all possible (elementary and
complex) outcomes of a random experiment we construct a probability space.
Continuing with our example, we can associate probability 1/6 with each ele-
mentary result of the dice toss, and appropriate probabilities to complex results
such as “more than one and less or equal to five, but not equal to three”.

A random variable is a real function defined over a probability space; for
example, a random variable could associate the value 2πi (where π = 3.1415 . . .)
to the elementary result i, i = 1, 2, . . . , 6. The set of possible values of the function
is the state space of the random variable.

The probabilistic characterization of a random variable X is given in terms
of its Cdf

FX(x) = P{X ≤ x}

which is a real, nonnegative, nondecreasing function of x for which

lim
x→−∞

FX(x) = 0

and

lim
x→∞

FX(x) = 1

Alternatively, the random variable X can be described by its pdf

fX(x) =
d

dx
FX(x)



which is a nonnegative function for which

∫ ∞

−∞

fX(x)dx = 1

In the case of random variables assuming values in a discrete set, instead of
using their pdf, which is a generalized function, it may be more convenient to
use their probability mass function (pmf)

pX = (p1, p2, p3, . . .)

which is a vector whose entries

pi = P{X = xi} i = 1, 2, . . .

are the probabilities that the random variable equals one of the admissible values.
The probabilistic characterization of a random vector X comprising n ran-

dom variables Xi, i = 1, 2, . . . , n is given either by the joint Cdf of the n random
variables:

FX (x) = P{X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn}

or by their joint pdf

fX(x) =
∂n

∂x1∂x2 . . . ∂xn
FX (x)

The importance of the probabilistic characterization of a random variable or
a random vector is in the fact that it provides the tool for the mathematical
formulation of any problem involving the random quantity itself.

We are now ready to give the definition of a stochastic process. A stochastic
process {X(t), t ∈ T } is a family of random variables defined over the same
probability space, taking values in the state space S, and indexed by the param-
eter t, which assumes values in the set T ; normally T = [0,∞), and t is usually
interpreted as “time”.

A stochastic process can be visualized as a family of functions of time, called
sample paths of the process. Each sample path defines a particular trajectory
over the state space, and corresponds to a possible observed behaviour of the
process. Consider for example the stochastic process modelling the state of a door
(either closed or open). Each sample path is a function of time made of steps
corresponding to the durations of the open and closed times. The observation of
the process eliminates the uncertainty on its evolution, and thus yields (at least
for the observed time period) a sample path (the same difference is found before
and after the toss of a dice). Figure 1 depicts the sample path of a continuous-
time stochastic process: each step represents the sojourn time in a state (black
dots denote right-continuity). The set of all possible sample paths, together
with a probability measure, may provide an alternate description of a stochastic
process, which is however normally impractical.



X(t)

t

Fig. 1. Sample path of a continuous-time stochastic process.

2.2 Markov Processes and Their Generalizations

The complete probabilistic characterization of a random process requires the
characterization of any random vector X comprising an arbitrary number k of
random variables X(ti) extracted from the process at any set of time instants
{ti}

k
i=1.
In the general case, the complete probabilistic characterization of a stochastic

process is a formidable task. Special classes of stochastic processes for which the
probabilistic characterization is simpler are of particular interest.

One such class is comprised of Markov processes. A Markov process is a
stochastic process that satisfies the Markovian property

P{X(τ) ≤ x|X(t), t ∈ [0, θ]} = P{X(τ) ≤ x|X(θ) = y}

for any τ > θ.
Note that the Markovian property defines a stochastic process for which the

behaviour in the future (at some time τ) depends only on the present situation
(at time θ), not on the past history. In other words, a Markov process has no
memory of the trajectory followed to reach the present state. This condition is
not met by many real life systems; nevertheless, Markovian processes are widely
used for the construction of stochastic models of discrete event systems. Their
main merit lies in their low analysis complexity, and in the possibility of coping
with the main sources of memory in the system behaviour with an accurate
definition of the process state.

Markov processes with a discrete state space are called Markov chains. If the
parameter t is discrete, the process is a discrete-time Markov chain (DTMC).
If the parameter t is continuous, the process is a continuous-time Markov chain
(CTMC). The time spent in states of a CTMC is a random variable with negative
exponential pdf, as we shall see.

Another class of stochastic processes with discrete state space that allow a
simple description and analysis is that of Semi-Markov Processes (SMP). Calling



δi the instant of time in which the stochastic process X(t) changes state for the
ith time, and Yi the random variable that describes the state of the process
between δi and δi+1, then the stochastic process X(t) is Semi-Markov if and
only if:

P{Yn+1 = j, δn+1−δn ≤ τ |(Yk, δk), k ∈ [0, n]} = P{Yn+1 = j, δn+1−δn ≤ τ |Yn = i}

the latter probability is often written as Hij(τ), to emphasize the dependency of
the process future behaviour on the current state and the elapsed sojourn time
in that state.

The stochastic sequence {Yn, n ≥ 0} is a DTMC, called the Embedded
Markov Chain (EMC) of the SMP. Therefore, also in this case, at the instant
in which the state of X(t) changes, the future of the stochastic process only
depends on the present state, but now the pdf of the time spent in states is no
longer exponential.

A further generalization of both CTMC and SMP is obtained with Markov
Regenerative Processes (MRP), that allow the identification of a number of
instants when the process changes state and “regenerates”: at these instant the
future evolution of the process only depends on the current state.

A stochastic process X(t) is a MRP if and only if it comprises a renewal
sequence of random variables {(Yn, tn), n ≥ 0} such that

P{X(tn + τ) = j|X(t), t ∈ [0, tn], Yn = i} = P{X(τ) = j|Y0 = i} (1)

The sequence of states at regeneration instants forms a DTMC, but now
between two consecutive regeneration points it is possible to have many (possibly
infinitely many) changes of states, and the distribution of the time between two
consecutive regeneration points needs not be exponential.

2.3 Continuous-time Markov chains

The Markovian property requires that sojourn times in states be exponentially
distributed random variables. Indeed, the negative exponential pdf

fX(x) = µe−µxu(x)

where u(x) is the unit step function1, and µ is the parameter (or rate) of the
pdf, is the only continuous pdf for which the memoryless property

P{X ≥ x+ α|X ≥ α} = P{X ≥ x}

holds. Hence, at any time instant, the residual sojourn time in a state does not
depend on the time already spent in the state (i.e., on the past history), but
only on the present state, as required by the Markovian property.

Note that the negative exponential pdf is characterized by just one parameter,
µ, whose inverse µ−1 identifies the average value of the random variable.

1 The unit step function u(t) is such that u(t) = 0 for t < 0, and u(t) = 1 for t ≥ 0.



These considerations imply that for the complete probabilistic description of
a CTMC it is sufficient to give the pmf over the state space S at the initial time
(typically 0), as well as the averages of the negative exponential pdf describing
the sojourn times in all states in S, and the probabilities of moving from one
state to another.

In practice, a CTMC is described through either a state transition rate dia-
gram or a transition rate matrix, also called infinitesimal generator and denoted
by Q. The state transition rate diagram is a labelled directed graph whose ver-
tices are labelled with the CTMC states, and whose arcs are labelled with the
rate of the exponential distribution associated with the transition from a state
to another. The infinitesimal generator is a matrix whose elements outside the
main diagonal are the rates of the exponential distributions associated with the
transitions from state to state, while the elements on the main diagonal make
the sum of the elements of each row equal to zero.

In Figure 2 we show the state transition rate diagram for a CTMC with two
states (closed and open door in our previous example), for which the average
sojourn time in state 1 is λ−1, and the average sojourn time in state 2 is µ−1.
The infinitesimal generator for such a CTMC is

Q =

[

−λ λ
µ −µ

]

1 2

λ

µ

Fig. 2. State transition rate diagram for a CTMC with two states.

The solution of a CTMC model consists of the computation of the pmf over
the state space S either at any arbitrary time instant t or in equilibrium condi-
tions. When an equilibrium or steady-state pmf exists, and is independent of the
initial state, the CTMC is said to be ergodic [42, 53, 64].

Denoting by
πi(t) = P{X(t) = i}

the probability that the CTMC is in state i at time t, the pmf at time t

π(t) = (π1(t), π2(t), π3(t), . . .)

is defined by the differential equation

dπ(t)

dt
= π(t) Q



with initial condition π(0), whose solution can be expressed as

π(t) = π(0)eQt

where eQt is the matrix exponential defined by

eQt =

∞
∑

k=0

(Qt)k

k!

Letting

πi = lim
t→∞

P{X(t) = i}

in the case of ergodic CTMC, the steady-state pmf

π = (π1, π2, π3, . . .)

can be obtained as the solution of the system of linear equations

πQ =0

augmented with the normalization condition

∑

i

πi = 1

The interested reader can find in [96, 99] an in-depth treatment of the problem
posed by the solution of the above equations.

A modelling interpretation of the steady-state probabilities is the following:
πi is the probability according to which a random observer finds the system in
equilibrium at state i, or equivalently the percentage of time that the system
spends in state i when in equilibrium conditions.

The cost of solving the linear system πQ = 0 is polynomial in the number of
states. Iterative techniques are often applied, whose cost per iteration is of the
order of the number of nonzero elements in Q, i.e., of the order of the number
of arcs in the state transition diagram.

From the steady-state pmf it is possible to derive many parameters of interest
to quantify the system performance.

As an example, consider a lamp equipped with one lightbulb. The lamp may
be turned on and off, and the lightbulb can fail while the lamp is on. Failed bulbs
are replaced with new ones, and before the replacement operation is performed,
the lamp switch is set in the off position.

We can easily identify three states in our system: 1) off, 2) on, and 3) failed.
The transitions from state to state obey the following rules:

– when the lamp is off, it may be turned on,
– when the lamp is on, either it can be turned off, or the bulb can fail,
– when the lightbulb fails, it is replaced by a new one, after switching off the

lamp.



In order to obtain a CTMC model, we need to introduce temporal specifi-
cations such that the evolution in the future depends only on the present state,
not on the past history. To this purpose we assume that:

– the time periods during which the lamp is off are exponentially distributed
with parameter β,

– the time periods during which the lamp is on are exponentially distributed
with parameter α,

– the lightbulb lifetime (sum of the durations of the on periods before a fault)
is exponentially distributed with parameter µ,

– the lamp repair time is exponentially distributed with parameter λ.

The state transition rate diagram of the resulting CTMC is depicted in Fig-
ure 3, and the infinitesimal generator is

Q =





−β β 0
α −(α+ µ) µ
λ 0 −λ





λ

µ

1
(off)

α β

2
(on)

3
(failed)

Fig. 3. State transition rate diagram for the CTMC describing the behaviour of a lamp.

The CTMC is ergodic, and the steady-state distribution is easily computed
by solving the system of linear equations:

βπ1 = απ2 + λπ3

(α+ µ)π2 = βπ1

λπ3 = µπ2

π1 + π2 + π3 = 1

obtaining

π =
1

λ(α+ β) + µ(λ+ β)
(λ(α + µ), λβ, βµ)



Note that the first three equations of the linear system above can be inter-
preted as equalities of the flow into and out of a given state, where the probability
flow over an arc is the product of the steady-state probability of the state from
which the arc originates times the arc label. Thus for example in the case of
state 1 we get

flow out = βπ1

flow in = απ2 + λπ3

This also implies the linear dependency of the equations; however, the solution
is unique when considering the fact that probabilities must sum to 1.

From π it is possible to compute several steady-state performance indices:

– π2 is the fraction of time in which the lamp is on,
– π3 is the fraction of time in which the bulb is failed,
– [λπ3] = [µπ2] is the mean number of failures in unit time (the failing through-

put),

– [λπ3]
−1

= [µπ2]
−1

is the average time between two consecutive failures,

– [(α+ µ)π2]
−1 = [βπ1]

−1 is the average time between two consecutive instants
at which the lamp is turned on.

From the transient solution π(t) we can derive other interesting performance
indices:

– π2(t) probability of the lamp being on at time t,
– π3(t) probability of the bulb being failed at time t,

and, if no repair is possible in the system (i.e., the arc between states 3 and 1 in
the CTMC model has rate 0, or is removed), we can compute the probability of
the bulb not having yet failed at time t as 1− π3(t).

Another simple example of a CTMC is provided by the Poisson process.
In this case the state space comprises all nonnegative integers, and transitions
are possible only from state i to state i + 1 for all i ≥ 0. Sojourn times in
states are independent random variables with negative exponential pdf, and
mean independent of the state. The parameter of such exponential pdf is the
rate of the Poisson process. The Poisson process obviously never reaches an
equilibrium condition and hence is not ergodic. The pmf at time t of a Poisson
process with rate λ comprises probabilities

πi(t) =
(λt)i

i!
e−λt u(t) i ≥ 0

assuming that
π0(0) = 1

These probabilities form a Poisson pmf.
Constructing models of complex systems directly at the CTMC level is gener-

ally difficult, mainly due to the need of choosing an appropriate state definition,
and enumerating all states in the evaluation of transition rates. For this reason,
more abstract probabilistic modelling tools were proposed. The main such tools
are based on queueing theory or Petri nets.



2.4 Queues

A queue [7, 43, 45, 47, 55, 69, 71] is a system to which customers arrive to
receive service by a service station. The service station may comprise one or
more servers. When all servers are busy, customers are forced to wait in a waiting
room. At the end of service, customers leave the queue. A pictorial representation
of a queue is given in Figure 4.

Service

Customer
departures

Customer
arrivals

Waiting
room

Fig. 4. Pictorial representation of a queue.

A queue is a compact description of a probabilistic (not necessarily Marko-
vian) model in which users (customers) share resources (servers). The probabilis-
tic characterization of the model is comprised of the stochastic process describing
the arrival of customers, and the random variables describing the customer ser-
vice times. Other parameters of a queueing model are:

– the number of servers in the service station,

– the size of the waiting room,

– the size of the customer population,

– the queueing discipline.

The simplest queue is known with the acronym M/M/1. The first symbol M
identifies the arrival process as Markovian, and precisely as a Poisson process
with a fixed rate, say λ. The second symbol M identifies the service time as
Markovian (hence with negative exponential pdf); an average service time µ−1

is considered. The symbol 1 refers to the presence of only one server in the service
station. Furthermore, the size of the waiting room and the customer population
are taken to be unlimited, and the first-come-first-served discipline is used for
the selection of the next customer to be served among those in the waiting room.

The CTMC corresponding to the M/M/1 queue has the state transition rate



diagram depicted in Figure 5, which corresponds to the infinitesimal generator

Q =





















−λ λ 0 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 0 · · ·
0 µ −(λ+ µ) λ 0 0 · · ·
0 0 µ −(λ+ µ) λ 0 · · ·
. . . . . . .
. . . . . . .
. . . . . . .





















λ

µ

0 1

λ

µ

2

λ

µ

3

λ

µ

4

λ

µ

Fig. 5. State transition rate diagram of the CTMC generated by the M/M/1 queue.

The solution of the M/M/1 queue at time t, leads to a rather complicate
expression, that can be found, for example, in [69]. When λ < µ the CTMC is
ergodic, and the steady-state probabilities can be expressed as:

πi =

(

1−
λ

µ

)(

λ

µ

)i

i ≥ 0

Many queueing models exist with more elaborate characteristics for what
concerns the customer arrival process, the pdf of the customer service time,
the number of servers, the size of the waiting room, the size of the customer
population, the queueing discipline.

Nevertheless, a single queue may not be adequate to describe complex system
behaviours, where customers may require the service of many different servers, in
different orders. For this reason, a more flexible formalism was introduced, and
it is still one of the most popular in performance evaluation: queueing networks.

2.5 Queuing networks

A queueing network [7, 55, 71] is a system of interconnected queues in which
customers circulate, and possibly arrive from, and leave to, the outside world.
When no arrivals from, and departures to, the external world are possible, the
queueing network is said to be closed; otherwise it is said to be open.

The path followed by customers in the network is determined by routing
probabilities.

As an example, an open queueing network comprising three queues is depicted
in Figure 6.
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µ3

µ1

p12

p13

p21

p31

Fig. 6. An open queueing network comprising three queues.

With queueing networks it is possible to construct models of systems where
the sharing of individual resources is represented in more detail than it would
be possible if the system model had to be constructed using only one queue.

Queuing networks have become extremely popular in the applied stochastic
modelling field for a wide gamut of different application areas, such as telecom-
munications, computers, manufacturing, and transportation. For example, Fig-
ure 6 can be considered as a description of a very simple manufacturing process:
servers at queues represent machines, and customers are products that are being
manufactured. Each product is first worked at machine 1, and it is then moved
to either machine 2 or 3. After being worked at machine 2 or 3 the product is
either considered finished, and it leaves the system, or it may require to repeat
the sequence of operations on machine 1 followed by machine 2 or 3.

The main reason for which queueing networks have become so popular is
due to the product form solution property that holds for a fairly wide class of
these models. This property implies that the steady-state solution of the queue-
ing network can be factored in the product of the steady-state solutions of the
individual queues, and hence obtained with very limited complexity (typically
polynomial in the number of queues and customers).

It should be stressed that queueing theory is fairly advanced in the case
of continuous-time models. The analysis of discrete-time models is much more
complex because of the reasons mentioned in Section 2, and, for example, the
product-form characteristic of queueing networks is not retained in the case of
discrete-time models, except for some cases of limited practical interest.

The shortcomings of queueing-based models are mainly due to their lack of
descriptive power in presence of phenomena such as synchronization, blocking,
splitting of customers, and to the fact that most of these features, quite common
in distributed systems, generally destroy the product-form characteristic, so that



even a simple queueing model must be translated into its corresponding CTMC
for the solution phase.

To cope with the lack of modelling power of queueing networks, many authors
have introduced special “queues”, that allow the description of the phenomena
mentioned above, but there is no commonly agreed language for extended queue-
ing networks, and this special queues usually do not have a formally defined
semantics.

2.6 Timed Petri nets

When blocking and synchronization phenomena are important characteristics
of the system to be modelled, their description with queueing networks is not
natural, and the model solution must be obtained (with few exceptions) from
the CTMC translation of the queueing model.

The use of Petri nets (PN) for performance analysis comes into play in this
environment, where they are basically equivalent to extended queueing models
from the point of view of the model solution, since both require a translation into
the underlying CTMC, but PN offer a language in which synchronization, block-
ing, and splitting are native in the formalism, and in its semantics. Moreover,
PN models benefit from the availability of a wide range of qualitative results
derived in a number of years of lively research; these qualitative results allow for
example to check for deadlocks, livelocks, etc.

The use of PN-based techniques for performance analysis requires the in-
troduction of temporal specifications within the basic, untimed models, thus
generating the modelling paradigms that are usually named Timed Petri Nets
(TPN).

Of the numerous TPN proposals that appeared in the literature, we con-
sider only the case in which timing is associated with transitions that keep the
atomic firing semantics typical of the “untimed” PN world. We thus neglect the
approaches based on timed places, timed arcs, timed tokens, as well as timed
transitions that operate in three phases, removing tokens from input places as
soon as they become enabled, then letting the transition delay elapse, and fi-
nally generating tokens into output places. Although preferences about modelling
paradigms are very personal, it may be fair to say that the class of TPN that
we consider in this paper is the one that gained widespread acceptance among
researchers in the field.

Consistently with the stochastic modelling technique that characterizes queue-
ing approaches, delays associated with TPN transitions will be assumed to be
of probabilistic nature.

In summary, we focus on TPN models where a random delay is associated
with transitions whose firing is assumed to be atomic, i.e., tokens are removed
from input places and put into output places with a single indivisible operation,
after the transition firing delay has elapsed. The specification of the firing de-
lay of timed transitions is of probabilistic nature, so that either the probability
density function (pdf) or the cumulative distribution function (Cdf) of the delay



associated with a transition needs to be specified. Such functions may be gen-
eral, or even degenerate, thus allowing the definition of constant (possibly null)
delays. We refer to this type of timed Petri nets as Generally Distributed Timed
Transitions Stochastic Petri Nets (GDTT SPN).

The class of TPN that we consider is however too wide to allow a simple so-
lution of any GDTT SPN model; for this reason we shall pay special attention to
two special subclasses of GDTT SPN, that have the nice property of permitting
a reasonably simple evaluation of performance metrics:

– Stochastic Petri Nets (SPN), where all transition firing delays are non-null
and have negative exponential pdf,

– generalized SPN (GSPN), where immediate (null-delay) transitions are freely
mixed with timed transitions associated with exponentially distributed non-
null random firing delays.

When a GDTT SPN model of a system has been developed, this is nor-
mally translated into its underlying stochastic process, that is analyzed either in
steady-state or in transient conditions. The computation of the corresponding
probabilities can be translated into performance metrics that have a net-level
semantics; for example, a net-level result may be the distribution of the num-
ber of tokens into a particular place at steady-state, or the average number of
times a transition fires during a specified time interval. The mapping between
the system features and their description within the GDTT SPN model allows
the translation of such net-level performance parameters into the system-level
performance metrics of interest.

3 Generally Distributed Timed Transitions Stochastic

Petri Nets

For the translation of a GDTT SPN model into its underlying stochastic pro-
cess, it is necessary to associate with the model an execution policy, comprising
two specifications: a rule to choose the next transition to fire in any marking
(the firing policy), and a criterion to account for the past history of the model
whenever a transition fires (the memory policy)2.

As regards the firing policy, two alternatives are basically possible: either use
the delays associated with transitions to decide which one will fire next, or add
a specific metrics for this purpose. The GDTT SPN formalisms that we consider
in this paper adopt the first option, that corresponds to the race policy: the
transition with the minimum remaining delay is the one that fires first.

As regards the memory policy, again two basic alternatives are possible at
every change of marking:

2 In (untimed) Petri nets, the next transition to fire is chosen non deterministically,
and there is no need to record the “past history,” which is captured by the current
state (an intrinsically Markovian assumption!)



continue: the timers3 associated with transitions hold their present values and
will continue being decremented later on;

restart: the timers associated with transitions are restarted, i.e., their present
values are discarded, and new values will be generated when needed.

The memory policy is implemented whenever a transition fires. The memory
policy thus affects transitions that fire as well as transitions that lose their en-
abling due to the change of marking, and transitions that keep their enabling in
the new marking. The memory of transitions that fire is irrelevant, since in this
case a new delay instance must always be generated. The memory of transitions
that do not fire is often assumed to be of the following types:

Resampling - The timer of the transition is reset to a new value at any change
of marking. The new value is sampled from the pdf of the delay associated
with the transition.

Enabling memory - If in the new marking the transition is still enabled, the
value of the timer is kept; it is instead reset to a new value if the transition
is not enabled.

Age memory - The timer value is kept, even if the transition is not enabled in
the new marking.

Table 3 summarizes the possible memory combinations, depending on the
transition enabling in the new marking.

transition remains enabled transition loses enabling

Resampling restart restart

Enabling memory continue restart

Age memory continue continue

Table 1. Summary of the memory mechanisms.

A GDTT SPN is a seven-tuple

GDTT SPN = (P, T, I, O,H,M0,W , E)

where (P, T, I, O,H,M0) is the underlying PN system, which as usual comprises

– a set of places P = (p1, p2, . . . , pm),
– a set of transitions T = (t1, t2, . . . , tn),
– the input, output, and inhibitor functions I, O,H : T → N ,
– an initial marking M0 = (m01,m02, . . . ,m0m),

3 We can describe the evolution of a GDTT SPN by associating a timer with each
transition: timers are decremented at constant speed while transitions are enabled,
and when a timer runs down to zero the corresponding transition fires.



to which it is necessary to add

– a distribution function W : T → {pdf}, that assigns to each transition a
random variable with a specified pdf,

– an execution policy function E : T → {resampling, enabling, age} that as-
signs an execution policy to each transition.

The stochastic process that corresponds to the evolution of the GDTT SPN
over its state space (or reachability set) is called the marking process.

It should be noted that if W identifies only continuous functions, then the
probability that two transitions are scheduled to fire at exactly the same instant
is zero. In such case, a GDTT SPN model evolves by firing transitions one by
one.

A GDTT SPN model can correspond to quite complex stochastic processes,
whose definition, not to mention their solution, is not at all a trivial task. Re-
searchers and practitioners have defined subclasses of GDTT SPN corresponding
to simpler classes of stochastic processes, that will be discussed in the sequel of
this paper.

Stochastic Petri Nets (SPN)

When all the firing delays associated with transitions are exponentially dis-
tributed random variables, GDTT SPN are called Stochastic Petri Nets (SPN).

The marking process generated by a SPN is a CTMC, with state space iso-
morphic to the reachability set.

This type of GDTT SPN models is the most popular in the literature [1, 54,
80, 81, 83, 84], and a number of software tools are available for them [18, 36, 41,
46, 56, 73, 76].

We keep, in this context, the name that was initially assigned to this class
of GDTT SPN, although a more appropriate (less ambiguous) name could be
Exponential Petri Nets. We discuss SPN at length in section 4.

Generalized Stochastic Petri Nets (GSPN)

Generalized SPN (GSPN) were originally proposed in [6], with the aim of al-
lowing the simple modelling of complex state changes induced by the firing of
a transition, as well as the representation within one model of activities that
consume a significant amount of time and activities that require a negligible
amount of time. GSPN models comprise therefore two types of transitions:

timed transitions, which are associated with random, exponentially distributed
firing delays, as in SPN, and

immediate transitions, which fire in zero time, with priority over timed tran-
sitions.

We discuss GSPN at length in section 5.



Semi-Markov SPN

When all transitions in a GDTT SPN are assigned a resampling policy, the
marking process becomes a semi-Markov process, independently of the adopted
W function.

This case was studied in [19, 84], but is of little interest in applications, since it
is difficult to find systems where the firing of any transition of the corresponding
GDTT SPN has the effect of forcing the reset of the timers associated with all
other transitions, even of those that are concurrently enabled.

A more interesting semi-Markov SPN model was defined in [52]. In this case,
transitions are partitioned into three classes: exclusive, competitive and concur-
rent. Provided that the firing delays associated with all concurrent transitions
are exponentially distributed, and that non-exponential competitive transitions
are resampled whenever they become enabled, the associated marking process
becomes a semi-Markov process.

Phase Type SPN (PHSPN)

A PHSPN is a GDTT SPN in which:

– the function W associates with transitions PH (phase type) distributions
[85] with a single initial stage and a single final stage,

– any timed transition is assigned a memory policy among the three defined
alternatives: resampling, enabling or age memory.

The distinguishing feature of PHSPN is that it is possible to design a com-
pletely automated tool for their solution. The non-Markovian process generated
by a PHSPN over the reachability set R(M0) is converted into a CTMC defined
over an expanded state space. The measures pertinent to the original process are
defined at the PN level and can be evaluated by solving the expanded CTMC.

A program package that can solve this type of nets is ESP [48].

Deterministic SPN (DSPN)

Deterministic and Stochastic PN were defined in [10], with the aim of providing
a technique for considering GDTT SPN models in which not all transition firing
delays are forced to be exponentially distributed.

In [10] only the steady-state solution of DSPN was studied. An improved
algorithm for the evaluation of the steady-state probabilities was successively
presented in [75, 76], and some structural extensions were proposed in [40].

A DSPN [10] is a GDTT SPN in which:

– the functionW(t) associates either exponentially distributed or deterministic
firing times with timed transitions,

– at most one transition with deterministic delay is enabled in each marking,
– the execution policy for all deterministic transitions is enabling memory.



As a consequence of this definition, during the firing of a transition with a
deterministic delay, the marking process can undergo state changes only due to
exponentially timed transitions, thus describing a CTMC called the subordinated
process.

The steady-state solution technique originally proposed in [10] is based on
the evaluation of the subordinated CTMC at the firing time of the deterministic
transition.

Tools currently supporting the steady-state analysis of DSPN models are
DSPNexpress [76], UltraSAN [46] and TimeNET [56], this last one also supports
transient analysis.

Choi et al. [37] proved that the marking process associated with a DSPN
is a Markov regenerative process (MRP), for which steady-state and transient
solution equations are available [42].

Markov Regenerative SPN (MRSPN)

A natural extension of DSPN was proposed in [38], where the deterministic
distribution is substituted by a general one; this model is referred to by the
authors as MRSPN, since the underlying model is again an MRP.

Similar restrictions as for DSPN apply also to MRSPN, that is to say:

– W(t) is either exponential or general,
– at most one transition with general pdf can be enabled in each marking,
– the only allowed execution policy for generally distributed transitions is en-

abling memory.

During the firing delay of a transition with general distribution, only expo-
nential transitions can concurrently fire: the process subordinated to a generally
distributed transition is thus a CTMC.

With the aim of extending the modelling power of MRSPN by including
generally distributed transitions with age memory policy, Bobbio and Telek [20,
21] investigated a class of models characterized by the fact that the subordinated
process between two consecutive regeneration epochs is a Semi Markov Reward
Process [90].

GDTT SPN Taxonomy

The relationships among the various subclasses of GDTT SPN are depicted in
Figure 7.

It should be noted that some of the definitions of the GDTT SPN subclasses
do not provide a structural characterization of the class. Indeed, the net struc-
ture is sufficient to decide whether a GDTT SPN belongs to the SPN, PHSPN
or GSPN classes (it is sufficient to check the W function). Instead, it may not
be possible to determine from the GDTT SPN structure, without building the
reachability set, whether a GDTT SPN is a DSPN or a MRSPN, since it is
necessary to determine the set of effectively conflicting transitions. As a con-
sequence, from the structure of the GDTT SPN it is only possible to obtain
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Fig. 7. Subclasses of GDTT SPN.

sufficient conditions for the GDTT SPN to be a DSPN or a MRSPN. Actually,
even the state space construction may not be sufficient in the more general case
of MRSPN, since it may be the case that additional informations, computable
from the reachability graph, may be needed.

Another possible classification of GDTT SPN could be based on the rela-
tionships between the behaviour of the timed models and the behaviour of the
underlying P/T net. Indeed, in those cases in which the reachability graph of
the timed net is identical to the one of the P/T net, the standard qualitative
analysis techniques can be applied; in particular, all properties proved on the
P/T net structure and/or on the reachability graph of the P/T net are valid also
for the timed model, typically P- and T-invariants, boundedness, liveness, etc.
This is the case for SPN.

In the case in which general firing delay pdf are allowed, it may happen that
the probabilistic characteristics of the model have an impact on the qualitative
behaviour, in the sense that, although two transitions may be simultaneously
enabled, one of them cannot fire due to timing constraints, or not all interleavings
of concurrent transitions can actually take place in any timed sequence.

A sufficient condition for the two reachability graphs to be identical is that
W is taken from the set of pdf that have unlimited support [2, 3]. This condition
in general is not met by GDTT SPN with deterministic distributions, or uniform
distributions over a finite interval.

In the case of GSPN, instead, the reachability set is identical to the one of the
underlying PN system with priorities. Not too many qualitative analysis results
are available for this class of nets, but it can be observed that the presence of
inhibitor arcs and priorities only restricts the reachability set with respect to the
one of the basic underlying net.

The restriction of the reachability set guarantees that all P-invariants found
with the study of the basic underlying PN still hold for the GSPN; in principle,
there might exist other place invariants which hold for the GSPN, but are not
valid for the basic underlying PN. For what concerns T-invariants, the presence



of priorities and inhibitor arcs may make non fireable a fireable invariant.

4 Stochastic Petri nets

SPN models were proposed by researchers active in the applied stochastic mod-
elling field, with the goal of developing a tool which allowed the integration of
formal description, proof of correctness, and performance evaluation. For what
concerns the last aspect, the proposals aimed at an equivalence between SPN
and CTMC models, while for the first two, it was chosen to introduce time in
such a way as not to alter the untimed behaviour of the system.

In order to obtain an equivalence between a PN and a CTMC, it is necessary
that the determination of the next reachable states depends only on the current
one (true by definition in Petri nets), and that sojourn times in markings are
random variables with negative exponential pdf.

This idea formed the basis of the doctoral dissertations of S.Natkin [84] at the
Conservatoire National des Arts et Métiers in Paris, France, and of M.K.Molloy
[80] at the Computer Science Department of the University of California at Los
Angeles in the United States. These works were performed independently and
approximately at the same time, in the late seventies. They led to the definition
of almost identical models which even bore the same name: Stochastic Petri Nets.
It should be mentioned, however, that the idea of associating an exponentially
distributed random delay with PN transitions was already present in the doctoral
dissertation of F.J.Symons within the definition of Numerical Petri nets [98, 97].

4.1 The Basic Model

An SPN is a GDTT SPN in which the W function assigns to each transition an
exponential pdf. Since the exponential distribution is fully characterized by its
mean value (or by its inverse, the rate), and its memoryless characteristics makes
inessential, as we shall explain later, the definition of an execution policy for
transitions, then the definition of an SPN is simpler than the one for GDTT SPN,
namely:

SPN = (P, T, I, O,H,M0,W )

where:

– (P, T, I, O,H,M0) is the underlying PN system4, as for GDTT SPN,
– W : T → ℜ is a weight function; w(t) is the rate of the exponential distribu-

tion associated with transition t.

w(t) is also called the firing rate of transition t.
According to some definitions of SPN, the weight function can depend on the

current marking: in this case we write w(t,M) to express the weight of transition

4 Inhibitor arcs were not present in the first definitions of SPN, but they have become
very popular in the field, so that we prefer to include them in the basic definition.



t in marking M . Common types of marking dependency are the ones borrowed
from queueing theory, namely single, multiple and infinite server, but while in
queueing systems the dependence of the service rate normally is on the number
of customers in the queue, in SPN the dependence is on the transition enabling
degree [8].

The average firing delay of transition t in markingM is therefore [w(t,M)]−1.
Under the race policy that we are considering, the transition with the min-

imum delay is the one that fires first. The firing delay computed for each tran-
sition at the ingress in a new marking is either a new value sampled from the
exponential distribution associated with the transition (for transitions that are
“restarted”), or the residual firing time of the timer (for transitions that “contin-
ue”). However, due to the memoryless property of the exponential distribution,
the distribution of the whole firing time is identical to the one of the residual
firing time, hence the race is always among exponentially distributed variables,
thus making not necessary the definition of the execution policy in SPN mod-
els. Since the minimum of two random variables with negative exponential pdf
and parameters µ1 and µ2 is a random variable which still is exponentially dis-
tributed, with parameter (µ1 +µ2), the sojourn time in markingM is a random
variable with negative exponential pdf, with mean





∑

t∈E(M)

w(t,M)





−1

where E(M) is the set of all enabled transitions in M .
The fact that all firing delays have exponential pdf permits a simple expres-

sion to be written for the probability that a given transition, say t, is the one for
which the minimum delay has been sampled, and hence determines the change
of marking by firing:

P{t|M} =
w(t,M)

∑

t′∈E(M) w(t
′,M)

t ∈ E(M)

The reachability set of an SPN is identical to the one of the underlying
untimed PN (with interleaving semantics) due to the unlimited support and to
the continuity of the exponential distribution.

The state transition rate diagram of the CTMC corresponding to the SPN is
obtained by constructing the reachability graph, and by labelling arcs with the
firing rate of the transition whose firing produces the marking change. Indeed, if
in a marking M two transitions t1 and t2 are enabled, either concurrently or in
conflict, withM [t1〉M1 andM [t2〉M2, the sojourn time inM is a random variable
distributed as the minimum of the two exponential distributions of the random
variables associated with t1 and t2, that is to say, it is exponentially distributed

with rate w(t1)+w(t2). Since the probability of firing t1 is w(t1)
w(t1)+w(t2)

, then the

rate at which the system moves from M to M1 is [w(t1) + w(t2)]
w(t1)

w(t1)+w(t2)
=

w(t1). A similar computation leads to w(t2) for t2.



The steady-state solution of the model is then obtained by solving the system
of linear equations

πQ =0
∑

M∈RS π[M ] = 1

π is the equilibrium pmf over the reachable markings, and we write π[M ] for
the steady-state probability of a given marking M .

The transient solution of the model is instead obtained solving the set of
differential equations

dπ(t)

dt
= Qπ(t)

where π(t)[M ] is the probability of the system being in state M at time t.
We may now go back to the lamp example discussed in Section 2.3. The SPN

model describing the system considered in the example is depicted in Figure 8.
The reader is adviced to compare the SPN model and the CTMC state transition
rate diagrams, noting the similarity in the topology. This is due to the fact that
the PN underlying our SPN model is a state machine [91].

OFF

FAILED

ON

λ

µ

βα

Fig. 8. SPN model of the lamp example.

In many cases this similarity in the topology does not exist.
Consider as a second example the SPN depicted in Figure 9. This is the

SPN representation of the M/M/1 queue described in Section 2.4. Hence, the
state transition rate diagram it generates is the one depicted in Figure 5, which
comprises a denumerable infinity of states, in spite of the extremely simple SPN
topology.

As an additional example, consider a system that exhibits choice, concur-
rency, as well as splitting and joining of customers, whose model is given in
Figure 10. A process executes a choice between a fork activity (modelled by tran-
sition T 1), and a computation (modelled by transition T 2). The computation
is followed by an additional activity modelled by transition T 4. The execution
of the two forked processes is modelled by the two independent transitions T 5



µλ

Fig. 9. SPN representation of the M/M/1 queue.

and T 6, while transition T 3 represents the join, and indeed its enabling requires
that both subprocesses have finished their execution. Transition T 7 represents
a subprocess common to the two branches, that takes the process back to its
initial state.

P6

P1

P2 P3

P4 P5

P7

T4

T1 T2

T3

T5T6

T7

Fig. 10. SPN model of a fork and join system.

The state space of this SPN comprises seven states, shown in Table 2, while
the infinitesimal generator is given in Table 3, and its state transition diagram
is depicted in Figure 11.

It is important to remark that, in case of conflict, the rate of conflicting
transitions accounts for both the duration of the activity and the probability of
that activity. For example, if in the system we are modelling the average time



M1 P1

M2 P2 + P3

M3 P6

M4 P2 + P5

M5 P3 + P4

M6 P7

M7 P4 + P5

Table 2. State space of the Fork and Join SPN model.

M1 M2 M3 M4 M5 M6 M7

M1 w(T1) w(T2)
M2 w(T5) w(T6)
M3 w(T4)
M4 w(T6)
M5 w(T5)
M6 w(T7)
M7 w(T3)

Table 3. Representation of the infinitesimal generator of the Fork and Join SPN model.

P1

P6

P7

w(T5) w(T6)
P4+P5

P2+P5

P2+P3

P3+P4

w(T3)

w(T4)

w(T7)

w(T2)w(T1)

w(T6) w(T5)

Fig. 11. State transition rate diagram of the Fork and Join SPN model.



to decide whether to perform a fork and join (T 1) or a simple computation
(T 2) is equal to 0.0001 time units, and the probability of a fork and join is 99%
against the 1% of the normal computation, we obtain a rate for T 1 and T 2 of:
w(T 1) = 9, 900 and w(T 2) = 100: in SPN there is no way to split the duration
from the probabilistic choice.

4.2 Performance Indices

Several kinds of aggregate results are easily obtained from the steady-state or
transient distributions over reachable markings. In this section we quote some of
the most commonly and easily computed aggregate performance parameters [9].

– The expected fraction time spent in a subset of markings M, in the interval
[0 . . . t], can be computed as

ψ{M, t} =
1

t

∑

M∈M

∫ t

0

π(z)[M ]dz

where π(t)[M ] is the probability of being in stateM at time t. From the the-
ory of Markov chains, it is well known that as t approaches infinity, ψ{M, t}
becomes equal to the steady-state probability

π(M) =
∑

M∈M

π[M ]

– The probability of an event defined through place markings (e.g., no token
in a subset of places, or at least one token in a place while another one is
empty, etc.), can be computed by adding the probabilities of all markings in
which the condition corresponding to the event definition holds true. Thus,
for example, the steady-state probability of the event A defined through a
condition that holds true for the markings M ∈ M is obtained as:

P{A} =
∑

M∈M

π[M ]

while the probability of event A at time t is

P{A, t} =
∑

M∈M

π(t)[M ]

This formula can also be used to compute the probability that a given con-
dition is satisfied for the first time at time t, provided that the SPN is such
that all and only the states satisfying the conditions that define event A are
deadlock states (if this is not the case, the SPN should be modified accord-
ingly). The same result can be obtained by changing the marking process
rather than the SPN: it is only necessary to make the states in M absorbing.



– The pmf of the number of tokens at steady-state in a place, say p, can be ob-
tained by computing the individual probabilities in the pmf as probabilities
of the event “place p contains k tokens”. The pmf of the number of tokens
in a place, at time t, can be obtained similarly, using the event “place p
contains k tokens at time t”

– The average number of tokens in a place (at time t) can be computed from
the pmf of tokens in that place (at time t).

– The expected number of firings of transition tk in the interval [0, t], ftk(t), can
be computed integrating over the given interval the firing rate of transition
tk, expressed as the sum over all states M enabling tk of the firing rate of tk
in M , weighted by the probability of being in M at time t

ftk(t) =

∫ t

0

∑

M :tk∈E(M)

w(tk,M) π(z)[M ] dz

where E(M) is the set of transitions enabled inM , and w(tk,M) is the firing
rate of tk in M . The sum and the integral can be exchanged to get:

ftk(t) =
∑

M :tk∈E(M)

∫ t

0

w(tk,M) π(z)[M ] dz

– The frequency of firing of a transition (throughput), i.e., the average number
of times a transition tk fires in unit time, can be computed as the weighted
sum of the transition firing rate:

ftk =
∑

M :tk∈E(M)

w(tk,M) π[M ]

All the above performance indices can be defined using a unified approach
based on rewards: a reward is a function r(t) : M → ℜ for transient analysis
and r : M → ℜ for steady state. An average reward can be computed as the
weighted sum

R(t) =
∑

M∈RS

r(M)π(t)[M ]

R =
∑

M∈RS

r(M)π[M ]

for transient and steady state analysis, respectively.
For example, the mean number of tokens in a place p can be computed by

defining r(M) =M(p), and the throughput of a transition can be computed by
the reward function

r(M) =

{

w(t,M) if t ∈ E(M)
0 otherwise

From the above indices it is possible to compute the average delay of a token
in traversing a subnet in steady-state conditions by using Little’s formula [69, 77]

E[T ] =
E[N ]

E[γ]



where E[T ] is the average delay, E[N ] is the average number of tokens in the
process of traversing the subnet, and E[γ] is the average input (or output) rate of
tokens into (or out of) the subnet. This procedure can be applied whenever the
interesting tokens can be identified inside the subnet (which can also comprise
other tokens defining its internal condition, but these must be distinguishable
from those whose delay is studied), so that their average number can be com-
puted, and a relation can be established between input and output tokens (e.g.,
one output token for each input token).

As an example of a performance parameter which in the general case is
difficult to compute, we may quote the distribution of the delay incurred by a
token in traversing a subnet, or in completing a cycle through a net.

5 Generalized SPN

The key factor that limits the applicability of SPN models is the complexity of
their analysis. This is due to many factors. The possibly very large number of
reachable markings is by far the most critical one. Other aspects may however
add to the model solution complexity. One of these is due to the presence in one
model of activities that take place on a much faster (or slower) time scale than the
one relating to the events that play a critical role on the overall performance. This
results in systems of linear equations which are stiff, i.e., difficult to solve with an
acceptable degree of accuracy by means of the usual numerical techniques. On
the other hand, neglecting the “fast” (or “slow”) activities may result in models
which are logically incorrect. It may also happen that in the construction of the
topology of an SPN model, the analyst inserts transitions that correspond to
purely logical aspects of the system behaviour to ease the description of complex
marking changes, so that no timing can be reasonably associated with them.

Generalized SPN (GSPN) were originally proposed in order to tackle these
problems [6]. The definition was later improved in order to better exploit the
structural properties of the modelling tool [4, 5]. The book [8] presents in detail
the GSPN formalisms together with a number of application examples.

GSPN models comprise two types of transitions:

timed transitions, which are associated with random, exponentially distributed
firing delays, as in SPN, and

immediate transitions, which fire in zero time, with priority over timed tran-
sitions.

Furthermore, different priority levels of immediate transitions can be used,
and weights are associated with immediate transitions.

A GSPN is thus an eight-tuple

GSPN = (P, T,Π, I, O,H,M0,W )

where (P, T,P , I, O,H,M0) is the underlying untimed PN with priorities, that
comprises



– the set P of places,
– the set T of transitions,
– the input, output and inhibitor functions I, O,H : T → N ,
– the initial marking M0.

Additionally, the GSPN definition comprises the priority function Π : Π : T →
N which associates lowest priority (0) with timed transitions and higher priorities
(≥ 1) with immediate transitions:

Π(t) =

{

0 if t is timed
≥ 1 if t is immediate

Finally, the last item of the GSPN definition is the function W : T → ℜ, that
associates a real value with transitions. w(t) is:

– the parameter of the negative exponential pdf of the transition firing delay,
if t is a timed transition,

– a weight used for the computation of firing probabilities of immediate tran-
sitions, if t is an immediate transition.

In the graphical representation of GSPN, immediate transitions are drawn
as segments, and exponential transitions as white rectangular boxes.

The untimed underlying model of a GSPN is a P/T net with inhibitor arcs
and global priorities: the addition of priorities to a P/T system can reduce the
number of reachable states, and it may destroy eventuality properties like liveness
and home states, while all safety properties are maintained.

The stochastic interpretation of a GSPN model is very similar to that of an
SPN model, with the changes necessary to account for immediate transitions.

When a marking is entered, it is first necessary to ascertain whether it enables
timed transitions only, or at least one immediate transition. Markings of the
former type are called tangible, whereas markings of the latter type are called
vanishing.

In the case of a tangible marking, the timers of the enabled timed transitions
either resume their decrement, or are re-initialized and then decremented, until
one timed transition fires, exactly as in the case of SPN.

In the case of a vanishing marking, the selection of which transition to fire
cannot be based on the temporal description, since all immediate transitions fire
exactly in zero time. The choice is thus based on priorities and weights. The
set of transitions with concession at the highest priority level is first found, and
if it comprises more than one transition, the further selection, of probabilistic
nature, is based on the transition weights according to the expression

P{t} =
w(t)

∑

t′∈E(M) w(t
′)

where E(M) is the set of enabled immediate transitions in marking M , i.e., of
the transitions with concession at the highest priority level.



Observe that in the above formula the probabilities are normalized over
all enabled transitions, so that the normalization takes place also among non-
conflicting transitions. From a modeller point of view it may be difficult to specify
transitions weights if they are then normalized over the whole net. However, it
was proved in [3] that if no confusion is present in the net (that is to say if no
interplay exists between conflict and concurrency), it is possible to determine
at a structural level the sets of possibly conflicting transitions, called “extended
conflict sets (ECS),” and the normalization of weights can be done only among
transitions that belong to the same ECS.

Note that the semantics of a GSPNmodel always assumes that transitions are
fired one by one, even in a vanishing marking comprising nonconflicting enabled
immediate transitions. The equivalence of this behaviour with the one resulting
from the simultaneous firing of some immediate transitions in the model can be
exploited to reduce the complexity of the solution algorithms [16].

The analysis of a GSPN model requires the solution of a system of linear
equations comprising as many equations as the number of reachable tangible
markings. The infinitesimal generator of the CTMC associated with a GSPN
model is derived with a contraction of the reachability graph labelled with the
rates or weights of the transitions causing the change of marking.

A different approach to the analysis of GSPN models, which also implies a
different semantics, is presented in [12].

An example of construction of the tangible reachability graph is presented
in Figure 12, that depicts a very simple GSPN in which a conflict exists among
immediate transitions. Its reachability graph is shown in the upper right por-
tion. Dotted lines for state p2 indicate that the state is vanishing: indeed, when
transition T 1 fires the system enters marking p2 in which two immediate tran-
sitions are enabled, and the marking changes in zero time to either p3 or p4,
with probability α

α+β
and β

α+β
respectively. The tangible reachability graph in

the lower right portion is obtained by eliminating the vanishing marking p2. The
rate at which the system moves from p1 to p3 (p4) is obtained by multiplying
the rate µ of the state transition from p1 to p2 with the probability of going
from state p2 to p3 (p4).

Figure 13 shows a GSPN model of a fork and join behaviour similar to the
one described with the SPN in Figure 10. The GSPN model is obtained from
the SPN model by making immediate those transitions that describe only a
logical behaviour, or an activity of negligible duration; in particular the choice
is modelled as a conflict between two immediate transitions and the join is also
considered as an immediate action. Markings P1 and P2+P3 are now vanishing.

The application of SPN and GSPN modelling techniques has been very pro-
ductive in several areas. The factor that has however limited their acceptance as
a modelling tool lies in the (graphical and computational) complexity of the mod-
els of realistic systems. Different efforts for the problem solution are summarized
in Section 6.

It must also be stressed that the use of SPN and GSPN heavily relies on the
availability of adequate software tools, without which the model construction
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and solution is possible only for the smallest toy examples5.
As a complete example of the use of GSPN both from a modelling and from

an analysis point of view, we consider a multiserver multiqueue system, also
known in the literature as a multiserver cyclic polling system.

5.1 GSPN Model of a Multiserver Cyclic Polling System

A single-server cyclic polling system comprises a set of waiting lines that receive
arrivals from the external world, and one server that cyclically visits the queues,
providing service to customers, if any is waiting. The GSPN description of such
a polling system is provided in Figure 14.
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Fig. 14. GSPN representation of a single-server cyclic polling system.

The GSPN model in Figure 14 comprises four replicas of the subnet that
describes the internal organization of each individual queue (enclosed within
ovals), interconnected by four replicas of the subnet that describes the movement
of the server from a queue to the next one.

5 Readers interested in untimed and timed Petri nets tools can find many useful in-
formations at the Petri net Web site “www.daimi.aau.dk/PetriNets”



Transition T
(q)
a models the customer arrival process at queue6 q (q = 0, 1, 2, 3).

Customers waiting for a server are queued in place p
(q)
q , while a token in place p

(q)
p

represents the server when polling queue q. The two immediate transitions t
(q)
s ,

and t
(q)
w have priorities 2, and 1, respectively (Π(t

(q)
s ) = 2, Π(t

(q)
w ) = 1). Transi-

tion t
(q)
s fires if the server finds a waiting customer when it polls the queue, so

that service can be provided; if t
(q)
s cannot fire when the queue is polled by a

server, i.e., if the server finds no waiting customers, then t
(q)
w fires, and the server

walks to the next queue.

One token in place p
(q)
s represents a customer of queue q being served, as

well as the server when providing service at queue q. T
(q)
s is timed with a delay

equal to the customer service time.

The server moves to place p
(q)
w at the end of the visit at queue q (after the

service completion represented by the firing of T
(q)
s , if a waiting customer was

found; after the firing of t
(q)
w if no waiting customer was found). From p

(q)
w the

server walks to the next queue. Transition T
(q)
w models the server walk time from

queue q to the next queue in the cyclic schedule.
The GSPN model in Figure 14 represents the case of a single customer in each

queue (M(p
(q)
a ) = 1), and of a single server initially placed at the exit of queue 0

(M(p
(0)
w ) = 1). GSPN models for K customers in each queue, and S circulating

servers can be obtained by assigning an initial marking with M(p
(q)
a ) = K, and

M(p
(0)
w ) = S
The characteristics of the timed and immediate transitions in the GSPN

model in Figure 14 are summarized in Tables 4 and 5, respectively: note that

transitions that represent activities of servers (T
(q)
s and T

(q)
w ) are of infinite-server

type, since we want each server to be able to either walk or serve in parallel
with any other server; vice-versa, the transitions that represent an arrival of a

customer to a queue (T
(q)
a ) are single-server, to emulate a finite Poisson source

of customers.

transition rate semantics

T
(q)
a λ(q) single-server

T
(q)
s µ(q) infinite-server

T
(q)
w ω(q) infinite-server

Table 4. Characteristics of the timed transitions in the GSPN model of a cyclic sin-
gle-server polling system (q = 0, 1, 2, 3).

6 The superscript (q) indicates that the place (or transition) belongs to the model of
queue q.



transition weight priority

t
(q)
s 1 2

t
(q)
w 1 1

Table 5. Characteristics of the immediate transitions in the GSPN model of a cyclic
single-server polling system (q = 0, 1, 2, 3).

Typical aggregate performance figures of interest in the analysis of polling
systems are the average customer delay, the probability of customers having
to wait for a server, as well as the throughputs of the whole system, and of
individual queues.

The structural analysis of the GSPN model detects five P-semiflows that

cover all the places of the GSPN. Four of them cover the triplets of places p
(q)
a ,

p
(q)
q , p

(q)
s , with q = 0, 1, 2, 3. The resulting P-invariants are M(p

(q)
a ) +M(p

(q)
q ) +

M(p
(q)
s ) = N (q). This guarantees that places p

(q)
a , p

(q)
q , p

(q)
s , with q = 0, 1, 2, 3

are bounded, as was expected, since the number of customers either waiting or
being served at any queue cannot exceed the number of customer in the closed

arrival generation process. The fifth P-semiflow covers places p
(q)
p , p

(q)
s , p

(q)
w ,

with q = 0, 1, 2, 3. The token count of the resulting P-invariant is S, since the
P-invariant refers to the conservation of the number of servers in the system. As
a result, the GSPN model is bounded, and thus the number of reachable states
is finite.

The GSPN model in Figure 14 is covered by 16 T-semiflows; each of them
represents a possible path of a server in the cycle of queues. The simplest cycle

(no customer is available at any queue) corresponds to the T-semiflow t
(q)
w , T

(q)
w ,

with q = 0, 1, 2, 3. The 16 T-semiflows correspond to the possible combinations of
the conditions “customer ready for service” and “customer not ready for service”
in the 4 queues. For example, the T-semiflow that represents a cycle in which

the server provides service only at queue 0, is: T
(0)
a , t

(0)
s , T

(0)
s , T

(0)
w , and t

(q)
w ,

T
(q)
w , with q = 1, 2, 3.

The covering of the transitions of the net is a necessary condition for the
system to be live and reversible, but not sufficient. A reachability graph analysis
shows that the GSPN model indeed is live and reversible.

The size of the reachability graph depends on the number of queues, on the
number of servers, and on the number K of customers at each queue. The second
column of Table 6 shows the size of the reachability graph for 4 queues and 2
servers, for different values of K. Bigger values for the number of queues can be
considered, although the reachability set grows quite fast (the GSPN model with
K = 1, 2 servers, and 8 queues produces 287, 328 tangible markings, the file that
stores the reachability graph occupies about 14 megabytes, and the reachability
set takes about 2.5 megabytes).



The third and fourth columns of Table 6 show the throughputs of transitions

T
(q)
a and T

(q)
w , respectively, when the weights of transitions T

(q)
a and T

(q)
s are

taken equal to 1.0 s−1, and the weight of T
(q)
w is set to 5.0 s−1 (which implies

a delay among queues of 0.2 s), independently of the queue index q. Due to the
symmetry of the system, all transitions of equal name, but different queue index,
have the same throughput. The last two columns report the probability that at

any queue the source of arrival is empty ( P{p
(q)
a = 0} ), and that no customer

is waiting ( P{p
(q)
q = 0}).

The analysis was performed only for values of K up to 6, because we can
observe that the system reaches the limit maximum throughput for transitions
that describe servers; indeed, when the system is fully loaded (a customer is
always waiting for service) a server will provide service at each queue, which
implies a mean cycle time per server, equal to 4.8 s (4.0 s for service and 0.8 s to
walk), and, considering that servers are independent in their services and walks,
due to the infinite-server semantics, then the maximum throughput that can be
observed for server transitions is 1/4.8 ∗ 2 = 0.41666 s−1: this value is reached
only when the number of customers is so high that the probability that a server
finds no customer when polling the queue is negligible. As it can be observed
from the last column, the system is very close to this limit condition already for
K = 4, since the probability that no customer is waiting in the queue is close to
zero.

K |RS| f
T

(q)
a

f
T

(q)
w

P{p
(q)
a = 0} P{p

(q)
q = 0}

1 312 0.34500 0.77497 0.65499 0.69001
2 1,998 0.40964 0.45176 0.59035 0.22832
3 7,008 0.41563 0.42185 0.58437 0.03081
4 18,150 0.41649 0.42185 0.58371 0.00594
5 39,096 0.41651 0.41682 0.58349 0.00107
6 74,382 0.41661 0.41669 0.58334 0.00107

Table 6. Reachability set size, throughputs and probabilities for the polling model of
Figure 14.

As an example of transient analysis for this system, consider the event E
defined as “all servers are simultaneously providing service at queue 0 for the
first time ”. We can then compute P{E, t}, using the trick of making the first
encountered state that satisfies E an absorbing state. At the net level this can
be obtained by adding an immediate transition with an input arc of weight equal

to S from place p
(0)
s , and an output arc of weight 1 to a new place pabs. The

probability of event E at time t can then be computed as the probability of
a token in place pabs at time t. Please observe that, for this probability to be



non-zero, we need K ≥ S. Table 7 shows this probability for a polling system
with 4 stations, with the same rate parameters as used for steady-state analysis,
and S = K = 2.

t P{E, t}

1 0.0288
2 0.1124
3 0.1924
4 0.2674
5 0.3376

10 0.6048
50 0.9942

Table 7. P{E, t} for the polling model of Figure 14.

6 Current Research on GDTT SPN

Several groups of researchers are presently active in the field of GDTT SPN. We
mention here some of the current research efforts, aiming at a unitary view of
the research field rather than at a comprehensive list of isolated activities.

Much of the current research work is devoted to the application of GDTT SPN
to performance and reliability studies of a very diverse gamut of systems, includ-
ing distributed computing systems architectures, distributed software, object-
oriented systems, data base, real-time systems, communication protocols, VLSI,
manufacturing systems, inventory and logistics.

In some of these application studies the performance analysis aspect is inte-
grated with the formal proof of correctness of the system under investigation,
exploiting the formal system description obtained with the PN formalism (see
for example [15]).

As we already mentioned, the main problem in the use of SPN techniques
for the analysis of real-life systems originates from the complexity in the model
solution. It is often the case that models comprise such monstrously large state
spaces that the generation of the reachability set is too costly (both in time and
in space) to be performed. Several research efforts are thus devoted to attempts
to reduce the solution cost.

A possible approach is to resort to simulation techniques, rather than trying
to numerically solve the model. By so doing, the problems originating from the
space complexity are removed, since the generation of the reachability set is not
necessary any more, but the burdens inherent to the time complexity remain, as
always in the case of simulation. On the other hand, Haas and Shedler have shown
[57, 58] that the modelling power of GDTT SPN in the simulation framework



is remarkable, since they are equivalent to generalized semi-Markov processes
(GSMP).

A number of research teams are instead attacking the theoretical problems
inherent in the management of largeness in GDTT SPN models. Some of the
main lines of research are concisely mentioned below.

Distributed solution algorithms - Numerical distributed algorithms have
been specifically developed for both the generation of the reachability graph
in a PN and for the solution of the underlying CTMC [11, 39, 33, 79].

Structured representation - An approach to increase the size of analyzable
CTMC is to represent the generator matrix in a compact form as a com-
bination of smaller component matrices, and to exploit this representation
in the solution algorithm. A compositional technique based on Kronecker
operators proposed in [88] was initially transferred to the SPN framework in
[49, 50]. Efficient techniques were developed for reachability analysis [66, 67]
and for numerical analysis [26, 27, 28, 32, 68], exploiting the structure of the
generator matrix. In order to use the structured analysis technique, the PN
model normally has to be described by means of submodels interacting via
synchronizing transitions. However, structured schemes for asynchronously
interacting submodels have also been presented in [25].

SPN and queueing networks - Results obtained in other stochastic mod-
elling fields can be cast into PN. A very interesting line of research is aimed
to combining the techniques available for the analysis of queueing networks
into the language of PN. In some cases, it is possible to solve subsystems
in the form of queueing networks, and to compose the results in a higher
level GSPN representation specifying the interaction among submodels.
The inverse procedure was also followed, first solving independent GSPN
submodels that are then connected in a queueing network structure [13, 14].
A package supporting the replacement of GSPN places by queueing systems
is presented in [17].

Particular classes of SPN, like those generating queueing models with matrix-
geometric structure [85], were also considered, and a tool was built for their
analysis [61, 62]

Product form SPN - Several proposals were recently documented to import
the product form concept into the PN arena.

In [72], a class of SPN is identified for which a product form equilibrium
equation can be written from the knowledge of partial balance equations.
The generation of the reachability graph is needed to recognize this class of
PNs. An extension of the same line is presented in [74].

Henderson et al. [63] developed a product form criterion based only on the
structure of the PN, with no need to generate the reachability graph.

A comparative analysis of these two types of approaches was presented in
[51], where the possibility of recognizing whether a PN admits a product
form solution using results from the structural analysis was proved for the
first time.



A complete characterization of product form SPN is provided in [22], and
a necessary and sufficient condition for the existence of a positive solution
for the traffic equation can be found in [23]. Specific algorithms for the
computation of product form solutions were presented in [44, 94].

Mean value analysis for non-product form SPN was explored in [93].

PN-driven techniques - These techniques deal with the reduction of both
memory requirements and time complexity of solution algorithms by using
information about the structure of the untimed PN models.

High-Level Stochastic Petri Nets, such as for example Stochastic Well-formed
Nets (SWN), often exhibit behavioural symmetries that can be exploited to
reduce the size of the state space, and of the corresponding CTMC, by
grouping states into equivalence classes. The desirable properties of a good
analysis method based on this idea are the possibility of automatically dis-
covering the symmetries using only the information contained in the model
description at the PN level, and the possibility of directly generating the
reduced state space (and the lumped Markov chain) with no need to build
the complete reachability graph.

A completely automatic method for the construction of a lumped CTMC
of a SWN model was presented in [35, 37]. In [59, 60] it was shown that
in some cases it is possible to integrate this approach with decomposition
methods based on Kronecker Algebra. In [92], the same idea was developed
for Stochastic Activity Networks (SAN), and an automatic method was de-
scribed for the construction of the lumped CTMC starting from the SAN
description.

Deterministically Synchronized Sequential Processes (DSSP) are a class of
SPN that can be obtained by resorting to simple modular design principles;
for this class of models, a well-established theory exists for qualitative anal-
ysis [89, 95]. Net-driven techniques, developed for DSSPs, can recognize and
extract from the original model a set of simpler auxiliary submodels that
can then be analyzed through approximate iterative techniques [31] as well
as exact manipulation [32].

Performance Bounds - A complementary approach to the development of
efficient solution techniques for the computation of performance measures, is
the search for bounds. Bounds require less computational effort with respect
to exact analytical solutions, since they are estimated from PN-level equa-
tions, and do not require the knowledge of the reachability graph. Moreover,
the evaluation of the bounds is, usually, not restricted to the Markovian
assumption.

Results in this direction were derived since the beginning of the research on
SPN [24, 82].

Subsequently, an extensive amount of work tried to exploit the structure of
the PN to obtain efficient computation techniques. The evaluation of bounds
for the subclass of marked graphs was presented in [29, 31], and in [30] for
PN with a unique consistent firing count vector.

A general approach for the computation of bounds was formulated in [34],



based on operational analysis techniques applied at the PN level, with very
weak assumptions on their timing semantics. The bounds can be obtained
in polynomial time by solving suitable linear programming problems; they
depend only on the mean values of firing times and are insensitive to dis-
tributions. In the case of Markovian SPN, an improved solution technique,
based on the randomization algorithm, was presented in [78].

A time scale decomposition approach was proposed in [65]. This approach
requires that transitions be classified into two classes: fast and slow.

Is summary, it can be observed that research in the GDTT SPN field has
been and still is lively and challenging, possibly quite rewarding for bright young
researchers wishing to contribute to the field.
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