
Modeling Software Systems with Rejuvenation, Restoration and Checkpointing
through Fluid Stochastic Petri Nets�

A. Bobbio[1], S. Garg[2], M. Gribaudo[3], A. Horváth[4], M. Sereno[3], M. Telek[4]

[1]Dipartimento di Scienze e Tecnologie Avanzate, Universit`a del Piemonte Orientale, 15100 Alessandria, Italy

[2]Lucent Technologies, Bell Laboratories, Murray Hill, NJ, USA

[3]Dipartimento di Informatica, Universit`a di Torino, 10149 Torino, Italy
[4]Hı́radástechnikai Tansz´ek, Budapesti M˝uszaki Egyetem , Budapest, Hungary

Abstract

In this paper, we present a Fluid Stochastic Petri Net
(FSPN) based model which captures the behavior of aging
software systems with checkpointing, rejuvenation and self-
restoration, three well known techniques of software fault
tolerance. The proposed FSPN based modeling framework
is novel in many aspects. First, the FSPN formalism itself,
as proposed in [19], is extended by adding flush-out arcs.
Second, the three techniques are simultaneously captured
in a single model for the first time. Third, the formalism
enables modeling dependencies of the three techniques on
various system features such as failure, load and time in the
same framework. Further, our base FSPN model can be
viewed as a generalization of most previous models in the
literature. We show that these FSPNs can not only mimic
previously published models but can also extend them. For
one FSPN model, we present numerical results to illustrate
their usage in deriving measures of interest.

1 Introduction

It is now well established that outages in computer sys-
tems are caused more due to software faults than due to
hardware faults [16, 25]. Therefore, to build reliable sys-
tems, it is imperative to improve the reliability of software
during the design, code development as well as the execu-
tion phase. Increasing the testing time proportionately in-
creases development costs but provides only marginal gains.
Moreover, it is well known that regardless of testing ef-
fort, large software always contains some residual bugs.
Therefore, improving the execution reliability of software

�This work has been supported by the Esprit Human Capital and Mobil-
ity project MATCH and by the Italian-Hungarian intergovermental R&D
program. M. Telek acknowledges the support of OTKA F-23971.

via cost-effective fault-tolerance techniques is becoming an
attractive alternative.

One such technique calledsoftware rejuvenation, first
proposed by Huanget al. in [20], is devised to tolerate a
specific subset of software faults. These faults result in a
steady accrual of error conditions in the internal state and/or
the external operating environment of the executing soft-
ware. The phenomenon is calledsoftware aging[20]. Ef-
fects of aging manifest as failures which may be observed as
just performance degradation (for instance reduction in the
service rate of a database server), fail-stop behavior (such
as an application hang or a crash), or abnormal termination
(such as erroneous output of a simulation). Memory leaks,
unreleased object references, faulty pointer handling and
roundoff errors are some typical examples of software faults
which result in aging during software execution. Numerous
real-life examples, evincing the widespread existence of ag-
ing in software systems ranging from popular desktop op-
erating systems and applications to life and mission critical
systems can be found in the literature. Interested reader is
referred to [12] for a comprehensive list. Garget al. [13]
have shown the evidence of aging in general purpose UNIX
systems via statistical time series analysis of resource us-
age data. Software rejuvenation was originally defined as
“preemptive rollback of a running process to a clean state”
and simply involved restarting a process after some cleanup.
Several examples of the use of rejuvenation in real systems
may be found in [15, 17, 20, 22, 26].

Checkpointing, which involves saving the execution
state of a program, along with transaction logging, is an-
other well known fault tolerance technique used primarily
to reduce the recovery time after failures. In this sense,
it is complementary to the failure masking property of re-
dundancy techniques and the failure avoidance property of
software rejuvenation. Naturally, combining checkpointing
with rejuvenation, as proposed in [8] yields greater benefits.

As mentioned earlier, the concept of rejuvenation was

proposed originally to simply mean process restart which
results in down time. However, at times, the system may
undergo a procedure which does not involve down time yet
changes the degraded state to a more cleaner one. This
self-restoration only causes a performance overhead but no
downtime. Well known examples include online garbage
collection such as inemacsor Java Virtual Machine (JVM),
transaction logging and data backup and archiving.

It is an important issue in the use of these techniques to
evaluate the tradeoff of their benefit against the overhead
they cause and determine when and how often checkpoint-
ing, rejuvenation or restoration should be initiated. Analyt-
ical modeling has been used to address this issue. We now
briefly describe previous research work in modeling.

In [11], Markov regenerative stochastic Petri net (MR-
SPN) formalism is used to model a software system with
rejuvenation, while in [12] a Non-homogeneous Continu-
ous Time Markov Chain (NHCTMC) models the behavior
of a transactions based software system. Further models to-
wards evaluating the effectiveness of software rejuvenation
can be found in [23]. A different system model is discussed
in [4] which assumes that the degradation level of the sys-
tem can be observed at predefined observation instances and
rejuvenation is initiated based on the observed degradation
level, rather than at periodic intervals.

In the past two decades there have been a number of
papers which evaluate the fundamental tradeoff of reduc-
tion in recovery time and the checkpoint overhead itself and
determine the optimal checkpoint interval in different soft-
ware systems. In [9, 21, 24], systems with a finite failure
free completion time are modeled in which checkpointing
is used to either minimize the expected completion time or
maximize the probability that the software completes exe-
cution within a certain deadline. In [5, 14], long running
server software systems which employ checkpointing are
modeled. The measures of interest in this case include avail-
ability, throughput and response time.

Expected completion time of a program with a finite mis-
sion time is computed in [10]. The stochastic model allows
generally distributed time to failure and combines check-
pointing, with rejuvenation. Performance degradation is not
captured and under periodic rejuvenation and checkpointing
policies, corresponding optimal intervals are determined.

In this paper, we apply the Fluid Stochastic Petri Net
(FSPN) modeling formalism to analyze degrading (aging)
software systems which employ rejuvenation and check-
pointing. In the literature, there are several variations of
Fluid Stochastic Petri Nets (FSPNs). In some cases this
formalism has been used for deriving analytical solutions
[19, 27, 28], others use simulation as a solution methods for
FSPNs [1, 7].

In this paper we extend the formalism of FSPNs by in-

troducingflush-outarcs1. These arcs connect continuous
places to transitions, and describe the capability of a tran-
sition to flush out all existing fluid from a continuous place
when it fires.

The FSPN framework proposed here coupled with the
use of appropriate measures enables us to capture the dy-
namic behavior of the software. Our contributions in this
paper include the following.
� The model presented in this paper captures reju-

venation, aging/degradation, checkpointing and self-
restoration along with interdependencies in a com-
bined general FSPN model.

� To capture these dynamics, we also enhance the FSPN
modeling framework, as proposed by Hortonet al. in
[19] to include flushing of fluid places. That formalism
allows for only draining the fluid out of a place at finite
rate and discrete jumps in fluid levels are not possible
to be modeled.

� FSPN model for a server system which employs both
rejuvenation and checkpointing.

� The FSPN modeling framework which allows to cap-
ture realistic scenarios such as failure during any spe-
cial operational phase (checkpointing, self restora-
tion), and a combined system of checkpointing and re-
juvenation, where checkpointing does not necessarily
result in a system renewal. Most of the previous mod-
eling work is limited in one or more of these aspects.

� Numerical analysis techniques for FSPNs with flush-
out arcs and the definition of some performance mea-
sures have been included in the paper. This demon-
strates that the proposed FSPN formalism is useful to-
wards evaluating performance measures for systems
with aging, rejuvenation, and checkpointing.

The rest of the paper is organized as follows. In Section 2,
we introduce the FSPN modeling formalism and describe
how it extends the existing ones. Section 3 consists of the
description of the overall model. In Section 4, we present
a special case and relate it to previous modeling research.
Section 5 consists of numerical experiments to illustrate the
use of FSPN models and finally we close in Section 6 with
conclusions and pointers to future work.

2 Fluid Stochastic Nets

In this paper, we apply the FSPN formalism to model
systems which employ rejuvenation and checkpointing.
The formalism that will be used, that represents an exten-
sion of the one proposed by Hortonet al. in [19], is the
same used in [18]. For space constraints we do not include

1Adding flush-out arcs results in non-conformance to the real physical
property of fluids; that they can be pumped and drained only at a finite
rate making fluid level a continuous function in time. Nevertheless we still
use the name and the concepts of FSPNs to be consistent with the previous
literature.

the description of the FSPN formalism, readers can find the
details on the paper [18].
The main new contribution to the extension of the fluid
model in [19] is the inclusion of flush-out arcs, that empty a
fluid place in zero time when some condition is verified in
the net. The flush out arcs are formally introduced in [18],
and their usefulness in modeling is extensively exploited in
the present paper

Performance measures defined on FPSN models

Previous work on FSPNs was mainly concentrated on
the analytical or simulative description of the dynamic of
the system. Little attention has been paid to the modeling
power of the formalism and to the investigation of the mean-
ing of the performance measures that can be obtained from
the analysis of the model. Here, we attempt to classify the
set of performance measures which can be associated with
FSPN models. The limit of the modeling abilities of FSPNs
is still an open research area.
It can be said, in general, that the set of performance mea-
sures that can be evaluated from a FSPN encompasses the
set of those that can be evaluated in discrete SPN models.
In fact, in addition, we can define new measures that are
specifically related to the fluid (or continuous) part of the
net. We can refer to the measures connected to the discrete
part of the FSPN asdiscrete performance measuresand to
those connected to the continuous part ascontinuous per-
formance measures.
Moreover,discrete performance measurescan still be clas-
sified asdiscrete state measures(when the measure refers to
the probability of occurrence of some condition on the dis-
crete markings) andthroughput measures(when the mea-
sure refers to the passage of tokens through the net or to the
number of firings of a transition). Similarly,continuous per-
formance measurescan be classified asfluid state measures
and flow measures. Flow measures can be considered as
the continuous counterpart of discrete throughputmeasures.
The rate of flow through a fluid arc is the counterpart of the
throughput of a discrete arc connected to a timed transition
while the rate of flow through a flush-out arc is the counter-
part of the throughput of an arc connected to an immediate
transition. Since in FSPNs, the firing rate of a timed tran-
sition may depend both on the discrete and the continuous
component of the marking, the firing time may be any gen-
erally distributed random variable, and the meaning and the
evaluation of throughput measures are more complex than
in the Markovian SPN models.
A very elegant and unifying way to define and to compute
both kinds of performance measures in discrete SPNs is by
means of the concept of reward [3, 6]. In FSPN, the flow
rate assigned to a continuous arc may, as well, be interpreted
as a reward rate that can depend on the discrete and the con-

tinuous component of the marking. In this view, fluid places
are structural elements whose fluid level represents the ac-
cumulation of the reward as a function of the time. Hence,
in FSPN the reward is directly associated with the graphical
representation of the model allowing to describe and eval-
uate all the reward measures in a natural way at the level
of the graphical representation without using any additional
specification (as in discrete SPN).
Furthermore, reward measures can be defined at a given
time instant, in steady state (if it exists) or over a time inter-
val. In Markov Reward Models, like those generated from
Discrete SPNs, the reward measures that can be evaluated at
the same cost of the solution of the standard Markov equa-
tion, are the expected instantaneous reward measures (either
at a given time instant or in steady state) or the expected ac-
cumulated reward measures [3]. The majority of the pack-
ages dealing with SPNs restricts the evaluation of signifi-
cant measures to the expected reward measures mentioned
above.
The evaluation of thecdf of the reward accumulated over
a finite time interval requires a considerable increase in the
computational effort and is usually not offered in SPN pack-
ages. On the contrary, FSPNs allow to define these distri-
bution measures within the default structural specifications
and to evaluate them with the default modeling abilities. As
an example, thecdf of the reward accumulated over a time
interval can be evaluated as the distributionof the fluid level
at a properly defined fluid place. Moreover, in order to eval-
uate the distributionof the completion time or response time
of a task on a server, a suitable absorbing condition must be
structurally defined on the FSPN, so that the above distribu-
tion can be computed as the probability of absorption in a
structural element of the FSPN.

3 System description

We consider a software system which exhibits ag-
ing/degradation in two ways.
Soft failure: The system performance decreases due to sys-
tem degradation. An example is increased paging activity
by the kernel due to locked memory resources which results
in a reduction in effective CPU cycles. The user perceived
effect may include less total work done per unit time, reduc-
tion in the service rate of a server etc.
Hard failure: The probability of the occurrence of a crash
failure (failure rate) increases with time due to system
degradation. The software becomes unavailable resulting
in no work being done. Aging may result in soft, hard or
both kinds of failures although one may be more noticeable
than the other.
To counteract the effect of aging, software rejuvenation is
used, whereas, to prevent the loss of work, checkpointing
with rollback recovery is employed. In addition, the sys-

tem may have complementary restoration capability which
reduces the “age” (degradation level) without making the
software unavailable.

We present an FSPN model of such a software system in
which all the three are coexistent, which, to the best of our
knowledge, have not been coexistent together before. We
now list the processes, which together capture the dynamics
of the software system and allow us via the FSPN formalism
to evaluate various measures of interest. The FSPN model,
shown in Figure 1, will be explained in the sequel. Table
1 maps the labels on the transitions and on the places of
the FSPN of Figure 1 to the system behavior. In order to
make the net representation clearer, we have denoted some
inhibitor arcs with a triangle and a label which implies that
there are inhibitor arcs from place to transitions having the
same label.
Degradation. The degradation process, which models ag-
ing, is modeled by a continuous quantity which may depend
on the number of jobs currently in the server queue. We
assume that the software system is a server which serves
customers arriving according to a Poisson process. The
degradation may also simply depend on the time the soft-
ware witnessed a renewal event (crash or rejuvenation) or it
may depend on the total amount of work completed since
the last renewal event. Our model can capture each of these
dependencies.

The continuous marking of placec1, i.e.,x1 is a measure
of the degradation level of the system. TransitionT1 pumps
fluid in placec1 and represents the increasing of the system
degradation. The flow rate at which the fluid is pumped in
placec1 can depend on the (discrete) marking of placep1
that represents the number of customers in the system (e.g,
R1;1(m)). If we need to represent a degradation process
that depends on the time since last renewal event (rejuve-
nation or crash) we define the flow rate at which the fluid
is pumped in placec1 asR1;1(m;x3) (wherex3 is the con-
tinuous marking of placec3 and represents the time since
last renewal event). We can also express a non-linear degra-
dation processes by making the flow rate at which the fluid
is pumped in placec1 function ofx1 itself (e.g.,R1;1(x1)).
dependent onx1 itself.
Rejuvenation. We assume that the decision of performing
a rejuvenation may depend on the degradation level and on
the time spent since last renewal event. It is natural to as-
sume that a rejuvenation always forces a checkpoint other-
wise work already done since the last checkpoint is lost.

In the initial marking, placep2 contains1 token andp3
no tokens. TransitionT2 represents the beginning of a reju-
venation, and its firing rateF2(x1; x3) may depend on the
degradation level of the system (x1) and on the time since
last renewal event (x3). We assume that when the system
performs a rejuvenation, a checkpoint is forced. The vice
versa is not true, i.e., a checkpoint does not imply a reju-

venation. WhenT2 fires (a rejuvenation begins) the token
in placep2 is moved in placep3 and placesc1, c2, c3, and
c4 are flushed out (thick arcs from these places to transi-
tion T2). In this manner the firing ofT2 resets the level of
degradation of the system, the work not saved yet, the time
since last renewal event, and the time since last checkpoint
to zero. TransitionT3 represents the time required to com-
plete a rejuvenation. When the system is performing a re-
juvenation (token in placep3) the following transitions are
disabled:T1, T4, T5, T6, T8 andT16. This is obtained with
inhibitor arcs with labelr. The meaning is that while the
system is rejuvenating all the jobs and timers are stopped
and the system is as good as new at the end of the rejuvena-
tion. Moreover neither a checkpoint (since rejuvenation is
already a checkpoint) nor a crash (since its occurrence can
be included in transitionT3 that models the time spent by
the system in this state) can occur.
Work. A continuous quantity, simply captures the work
done by the system. An example is the total CPU cycles
used by the server. This work is occasionally saved with a
checkpoint. If a crash occurs the work done by the system
not saved yet is lost.

TransitionT4 pumps fluid in placesc2 andc3 with rate
R4;2(m;x1) and1 respectively. The fluid level ofc2 rep-
resents the work of the system not saved yet by a check-
point, while the fluid level ofc3 represents the time since
last renewal event (i.e., crash or rejuvenation). The rate
R4;2(m;x1) at which T4 pumps fluid inc2 may be de-
pendent on the degradation level of the system (continuous
markingx1) and on the number of customers in the system
(discrete markingm). In this way, we can express “soft
failures” and system load dependency. Placec2 is flushed
out by the firing of transitionsT2 (checkpoint forced by a
rejuvenation),T7 (execution of a checkpoint without reju-
venation), andT8 (occurrence of a crash). TransitionT4 is
disabled when the system is performing a rejuvenation or a
checkpoint, or when a crash occurs. This is obtained with
the inhibitor arcs labeledc, h, andr. Placec3 is flushed out
by firing of transitions that represents the occurrence of a
renewal event, i.e., rejuvenation or crash.
Time, also a continuous quantity is needed to keep track of
the time spent since the last checkpoint, crash or rejuvena-
tion occurred and is needed to model dependencies as well
as to calculate measures of interest.

The continuous marking of placec4 (denoted byx4) rep-
resents this quantity. Placec4 is flushed out by the fir-
ing of a transition that represents the occurrence of one of
the following events: rejuvenation (and checkpoint forced),
checkpoint, and crash. The inhibitor arcs on transitionT5
represent that the time is stopped when either a checkpoint,
rejuvenation or crash recovery is in progress.
Checkpoint. When a checkpoint occurs the work done by
the system not saved yet is saved. A crash can occur during

a checkpoint, in this case the work not saved by a previous
checkpoint is lost.

The subnet labeledCheckpointdescribes the occurrence
of a checkpoint independent of a rejuvenation. Transition
T6 represents the beginning of a checkpoint, the firing time
F6(x2; x4) of this transition may depend on the quantities
x2 andx4 that are the markings of placec2 and c4. This
means that the occurrence of a checkpoint may depend on
the quantity of work executed and not saved by a checkpoint
yet, and by the time since the last checkpoint. The firing of
T6 flushes out placec4 while T7 flushes out placec2. With
these actions we represent the fact that the beginning of a
checkpoint resets the time spent since the last checkpoint,
while the completion of the checkpoint saves the work not
saved yet. In this manner we can model the occurrence of
a crash during a checkpoint. If a crash occurs (token in
placep6) after the beginning of a checkpoint (token in place
p5), transitionT7 cannot fire because it is enabled in conflict
with the immediate transitiont10. The firing oft10 puts the
token in placep4. Placec2 is not flushed out by transition
T7 that represents the saving of the work not saved yet, but
it is flushed out by transitionT8 that represents the lost of
this work. The inhibitor arcs on transitionT6 inhibit the
occurrence of a checkpoint independent of a rejuvenation
during a rejuvenation or when a crash occurs. When the
system is performing a checkpoint (token in placep5) the
occurrence of a rejuvenation is inhibited (labelh on place
p5 and on transitionT2).
Crash. When the system crashes the work done by the sys-
tem not saved yet by a checkpoint is lost. A crash is a re-
newal event, i.e., it resets the degradation level of the sys-
tem.

TransitionT8 represents the occurrence of the crash. The
firing timeF8(x1; x2) of this transition may depend on the
degradation level (x1) and on the time spent since last re-
newal event (x3). The immediate transitionst10 andt11, en-
abled in mutual exclusion, model the situation when a crash
occurs during a checkpoint phase (t10). The immediate
transitionst12 andt13, enabled in mutual exclusion, model
the situation when a crash occurs during a self restoration
phase (t13). The occurrence of a crash resets the degrada-
tion level (placec1), the level of work not saved yet (place
c2), the time spent since last renewal event (placec3), and
the time spent since last checkpoint (placec4). The inhibitor
arc from placep3 to transitionT8 inhibits the occurrence of
a crash during a rejuvenation.
Self Restoration. We assume that the self restoration ca-
pability of the software, when in progress, continually de-
creases the degradation level.

TransitionT14 represents the beginning of this partial
restoration. The firing rate ofT14 F14(m;x1) may depend
on the number of customers within the system and on the
degradation level. During the self restoration phase (token

in p10) a crash can occur (firing ofT8 followed by the firing
of t11), but the occurrence of a rejuvenation is inhibited (in-
hibitor arc from placep10 to transitionT2). The duration of
the self restoration phase, modeled by transitionT15, may
depend on the level of degradation and on the number of
customers in the system.
Workload. This is used to represent the service behavior of
the system. The service time may depend on the degrada-
tion level and on the number of customers in the system.
We assume that the number of customers that can be ac-
cepted by the system is limited by a finite buffer size. When
the buffer is full, during a crash or a rejuvenation the ar-
rival process is stopped. On the other hand the service stops
during checkpoints, rejuvenations, and crashes.

The subnet labeledWorkloadmodels the arrival of cus-
tomers in the system (firing of transitionT16) that require
service (firing of transitionT17). The service time may de-
pend on the degradation level and on the number of cus-
tomers in the system. The arrival of customers is inhibited
when the buffer is full, i.e., there arek customers in the
system (inhibitor arc with multiplicityk from placep1 to
transitionT16), when a crash or a rejuvenation occur (in-
hibitor arcs with labelsc andr on transitionT16). On the
other hand the service stops during a checkpoint, a crash,
and a rejuvenation (inhibitor arcs with labelsh, c, andr on
transitionT17).

The repair after a crash failure and rejuvenation is as-
sumed to renew the system, i.e., the system is restored to
the “as good as new” state. Crash failure may induce a loss
of customers in the system and the performed work since
the last checkpoint. We now proceed to describe the FSPN
model, shown in Figure 1, which captures the above aspects
together. In Section 4, we will present special cases of this
model which capture a subset of these aspects in more de-
tails.

Performance measures

In this section, we propose some interesting performance
measures for the FSPN of Figure 1, according to the taxon-
omy proposed in Section 2, and we discuss how to evaluate
them.

Examples ofdiscrete state measuresare, for instance,
the point or the steady state availability (probability that the
system is working at a given time instant or in steady-state)
or the interval availability (the expected fraction of time in
the interval[0; �) in which the system is working). From
the FSPN of Figure 1, these measures can be obtained by
summing up the probability of the markings whose discrete
component carries a token in placesp2, p4, andp9. Further,
let us denote byPloss the long run probability that an arriv-
ing customer will be lost.Ploss can be computed by observ-
ing that the considered event can happen for two different

x3 x4 x4

F8(x1,x3)

T8

r

p6

p9

T9 t11

p8

p7
c

Crash

x2 x3 x4

x1

Rejuvenation
T3

p2

p3

T2

r

c

F2 (x1,x3)
ha

Workload

r

rc

c

T16

T17 F17 (m,x1)

Self Restoration

Degradation

x1

R1,1(m)

c1T1

p1m

t12

x2

Work

1

r

c3x3
c2x2

R4,2(m,x1)

T4

ch

Checkpoint

F6(x2,x4)

T6c
r

p4

T7

p5

h

t10

x2

Time

1

c4x4

T5

c rh

r

c

k

h

R1,15(m,x1)

p11

T15

F15(m,x1)

T14

F14(m,x1)

p10
a

t13

x1

Figure 1. FSPN model of a server system
with rejuvenation and checkpoints and self-
restoration

reasons:i)- the system is not available due to a rejuvenation
(no tokens in placep2) or a crash (no tokens in placep9); ii)
- the buffer is full (k tokens in placep1).

The expected response time of a customer,Tres can be
defined as the expected time that a customer spends in the
system, and can be evaluated from a combination of adis-
crete statemeasure and athroughputmeasure. Indeed, ap-
plying the Little’s law,Tres can be obtained by computing
the average number of tokens in placep1 and the throughput
of transitionT17. If the firing rate ofT17 is marking inde-
pendent, or it depends on the discrete part of the marking
only, this measure can be computed by standard techniques.
If, instead, the firing rate ofT17 depends on the continuous
component of the marking, the underlying marking process
is no more a Markov chain, but computation ofTres can still
be obtained in the FSPN formalism with a reasonable effort
(computation of the probability of the complete markings).

Another measure which can be evaluated based ondis-
crete statemeasures is the completion time, i.e., the time
needed to complete a given amount of work. The possibil-
ity of evaluating thecdf of the completion time enables us
to evaluate other related performance measures such as the
probability of completing a task by a given deadline which
is a fundamental performance characterization for real-time
systems. This last result represents an improvement with
respect to the measures that can be computed using the ap-
proach described in [10].

The set ofcontinuous performanceindices that can be
computed for systems with rejuvenation and checkpointing

Transictions Activities
T1 Increase of degradation level
T2 Beginning of a rejuvenation (preceded by a

forced checkpoint)
T3 End of a rejuvenation
T4 Increase of work and the time spent since

last renewal event
T5 Increasing of the time spent since last checkpoint
T6 Beginning of a checkpoint (independentof

a rejuvenation)
T7 End of a checkpoint
T8 Occurrence of a crash
T9 Recovery from a crash
t10 Crash during a checkpoint
t11 Crash independentof a checkpoint
t12 Crash independentof self restoration
t13 Crash during a self restoration
T14 Beginning of a self restoration
T15 End of a self restoration
T16 Arrival of customers to the system
T17 Service of customers
Fluid Place Meaning
c1 Degradation level
c2 Work not saved yet
c3 Time spent since last renewal event
c4 Time spent since last checkpoint

Table 1. Description of the FSPN of Figure 1

is based on measures that are related to the continuous com-
ponent of the FSPN. In the proposed formalism, it is possi-
ble to compute the flow rates along fluid arcs, the flow rates
along flush-out arcs and the service rates of timed transi-
tions with firing rates dependent from both the discrete and
the continuous component of the marking. An example for
these measures is the portion of “useful” work done per the
total work performed by the system. This measure can be
obtained by computing the flow rate along flush-out arcs (as
it will be shown in Section 5).

4 FSPN models of special systems

In this section we provide a detailed model of degrad-
ing systems where only checkpointing and rollback recov-
ery are applied. Further, detailed models of fault tolerance
schemes are introduced in [2].

System with checkpointing and rollback recovery
only

A FSPN model of a system with checkpointing and roll-
back recovery is depicted in Figure 2. Note that thecrash
subnet of this model is more detailed than thecrashsubnet
of original FSPN in Figure 1.

In the case of a crash failure (T8 fires), a token reachesp7
and system repair starts. When the repair completes (firing
of transitionT12) the rollback recovery phase starts whose
time depends on the amount of logged transactions since the
last checkpoint (fluid level ofc2).
Common assumptions of some papers dealing with check-
pointing are that the system fails at a constant rate (expo-
nentially distributed failure time), and that the system re-
news after every checkpoint. This case can be captured by

F8(x3)

T8 p6

p9

T9
t11

p8 p7

c
Crash

x2
x3 x4

T12

Checkpoint

F6(x2,x4)

T6c

p4

T7

p5

h

t10

x2

F9(x2)

x4

Work

1

c3 x3c2
x2

R4,2(m)

Time

1

c4x4

c

Workload

c

c

T16

T17 F17 (m)

p1 m

k

h

t18

ch

T5
T4

ch

Figure 2. FSPN modeling a system with only
checkpointing

eliminatingT5 andc4, and the associated arcs from Figure
2.

As long as the system failures were mainly caused by
hardware failures the exponential failure time assumption
was widely accepted. When the software problems become
dominant in system failures the exponential failure time as-
sumption was relaxed. Some models still assumed system
renewal at checkpoints [9], while some others assumed that
system degradation is accumulatedtill the occurrence of a
crash failure [14]. Due to the independent “clocks” atc3
andc4, the FSPN model in Figure 2 can capture both as-
sumptions because the time spent since the last checkpoint
and the time spent since the last system failure are repre-
sented by the markings ofc4 andc3 respectively.
General failure time distributions (including exponential)
can be captured in our model by assigning appropriate rate
function,F8(�) to the transitionT8. The renewal of the fail-
ure process at checkpoint can be captured by makingF8(�)
a function of the fluid level inc4, which represents the time
spent since the last checkpoint. Moreover, by makingF8(�)
a function of fluid level inc3 (which represents the time
spent since the crash) the failure process may be assumed
to renew only upon a crash. In other words, degradation
continues through checkpointing. In some cases the real
system behavior is better captured assuming that the failure
rate is a function of the work done since the last checkpoint.
For instance, no degradation might occur if the CPU is idle.
This case can be easily captured by making the transition
rate ofT8 dependent on the fluid level inc2.

Another common assumption in previous models, for the
sake of analytical tractability, is that failures do not occur
during checkpointing. The FSPN model in Figure 2 allows
failures to occur during checkpointing which is closer to the
real behavior.

5 Numerical Experiments

x4 x4

F8(x1)

T8

r

p6

p9

T9 t11

p8
c

Crash

x2 x4

x1

Degradation

x1

1

c1 x2

Checkpoint

F6(x2,x4)

T6c
r

p4

T7

p5

h

t10

x2

Time

1

c4x4

T5

c rh

x1

Work

R4,2(x1)

T4

rch

c2x2

Rejuvenation
T3

p2

p3

T2

r

F2 (x1)
h

c

T1r

c

Figure 3. FSPN modeling a system with reju-
venations and checkpoints

In this section, numerical results are derived for the net
of Figure 3. We point out that these results, and also the
technique to obtain them, are included to show how some
performance measures can be obtained from a given FSPN.
The net of Figure 3 models a system with checkpointing
and rejuvenation. When the system performs a rejuvena-
tion a checkpoint is forced, on the other hand a checkpoint
does not imply a rejuvenation.
The rate of degradation is constant,R11 = 1, while the rate
at which the work is accumulated depends on the degra-
dation level (R4;2(x1)). The firing rates of the transitions
associated with rejuvenation and crash failure (T2 andT8,
respectively) also depend on the degradation level (F2(x1),
F8(x1)). The firing of transitionT6 represents the begin-
ning of a checkpoint and depends on theaccumulated work
and the time elapsed since the last checkpoint (F6(x2; x4)).
The firing rates of timed transitionT3, T7, andT9 are con-
stant and denoted by�, , and�, respectively.
In the following, we present the state equations describ-
ing the evolution of the marking process and some addi-
tional equations for the evaluation of specific performance
measures. The analytical description offlow measuresof
FSPN models were not discussed previously in thelitera-
ture, hence it can be considered as a contribution of this
paper.
The four tangible (discrete) markings of the net are as fol-
lows: m0 = fp2; p4; p9g denotes the working state (Nor-
mal) state of the system,m1 = fp3; p4; p9g is the marking
in which the system performs rejuvenation (Rejuvenation),
m2 = fp2; p5; p9g is the checkpointing state (Check-
point),m3 = fp2; p4; p8g denotes the system state reached

when a crash failure occurs (Crash). To describe the prob-
ability of a given marking(m;x) we will derive the appro-
priate density functions. Inm0 all the fluid levels may be
nonzero:

�0(�;x1;x2;x4)= lim
�1;�2 ;�3!0

Pr

�
m(�)=m0;

X1(�) 2 (x1; x1 + �1);
X2(�) 2 (x2; x2 + �2);
X4(�) 2 (x4; x4 + �3)

�
�1 �2 �3

;

in statem1 all the fluid levels are 0:

�1(�) = Pr(m(�) =m1);

in statem2 the degradation level and the accumulated work
may be nonzero:

�2(�; x1; x2)= lim
�1 ;�2!0

Pr

�
m(�)=m2;

X1(�) 2 (x1; x1 + �1);
X2(�) 2 (x2; x2 + �2)

�
�1 �2

;

inm3 all the fluid levels are 0:

�3(�) = Pr(m(�) =m3):

Using the above notations the evolution of the process is de-
scribed by the following partial differential equations (the
equations may be derived using a generalization of the
method presented in [19]):

@�0(�; x1; x2; x4)

@�
+

@�0(�; x1; x2; x4)

@x1
+

@(�0(�; x1; x2; x4)R4;2(x1))

@x2
+

@�0(�; x1; x2; x4)

@x4
=

= ��0(�; x1; x2; x4) [F2(x1) + F6(x2; x4) + F8(x1)]

@�1(�)

@�
=���1(�)+

Z
1

0

Z
1

0

Z
1

0

�0(�; x1; x2; x4)F2(x1)dx1dx2dx4

@�2(�; x1; x2)

@�
+

@�2(�; x1; x2)

@x1
=

= � (+ F8(x1))�2(�; x1; x2) +

Z
1

0

�0(�; x1; x2; x4)F6(x2; x4)dx4

@�3(�)

@�
= ���3(�)+

+

Z
1

0

Z
1

0

�Z
1

0

�0(�; x1; x2; x4)dx4+�2(�; x1; x2)

�
F8(x1)dx1dx2;

with initial conditions

�0(�; 0; 0; 0) = ��1(�) + ��3(�)

�0(�; x1; 0; 0) =

Z
1

0

�2(�; x1; x2)dx2:

The probabilities of the discrete markings are obtained
by integrating the densities

Pr(m(�)=m0) =
R
1

0

R
1

0

R
1

0
�0(�; x1; x2; x4)dx1dx2dx4;

and

Pr(m(�)=m2) =
R
1

0

R
1

0
�2(�; x1; x2)dx1dx2:

To compute the average rateC(�) at which work is check-
pointed at time� we have to take into account both the

checkpoints caused by rejuvenation and those occurring in-
dependently of a rejuvenation. It may be expressed as:

C(�)=

Z
1

0

Z
1

0

Z
1

0

x2(�2(�; x1; x2)+�0(�; x1; x2 ; x4)F2(x1))dx1dx2dx4:

From which we have that the average checkpointed work
until a given time� is Wc(�) =

R �
0
C(�)d� . In a similar

way, the average rate at which work is lost due to a crash
failure is:

L(�) =

Z
1

0

Z
1

0

Z
1

0

x2 �0(�; x1; x2; x4) F8(x1)dx1dx2dx4;

and the average work lost until� is: Wl(�) =
R �
0 L(�)d� .

An interesting performance measure of the system which is
obtained as aflow measureis the ratio of the average check-
pointed work and the average work done by the system (i.e.,
the sum of work checkpointed and lost until time�). Effi-
ciency may be computed as

E(�) =
Wc(�)

Wc(�) +Wl(�)
(1)

The set of parameters used in the calculations are the fol-
lowing:
� The work-rate is given by

R4;2(x1) =

(
rmax � (rmax � rmin)

x1

�min

x1 < �min

rmin x1 � �min

So that the work-rate is linearly decreasing until�min,
and after this level of degradation remains constant. In
our examplermax = 10, rmin = 0:5, �min = 480.

� The firing rate of the transitionT6 associated with the
checkpointing is

F6(x2; x4) = �(x2 � �work) + �(x4 � �time);

where�(x � �) is the Dirac-impulse at time� . As
a result checkpoint occurs if the level ofaccumulated
work reaches�work or the time elapsed since the last
checkpoint is�time. The example will be evaluated for
different values of�work. The parameter�time is equal
to 120.

� The firing rate of transitionT2 is F2(x1) = �(x1 �
�rej), i.e., rejuvenation is initiated at a degradation
level �rej . The example will be evaluated for differ-
ent values of�rej .

� The Weibull hazard function is used for the firing rate
F8(x1) with shape parameter� = 2 and scale parame-
ter� = 2�10�6. So that the firing rate ofT8 is a linear
function of the degradation levelF8(x1) = � � x1.

� The rates of the exponential transitions are� = 1=6,
 = 1 and� = 1=60.

Equidistant discretization was applied for the calculations
(the time and fluid levels are discretized using the same step

size). The correctness of the discretization method was ver-
ified by comparing the discretization results with the results
given by a simulator. Both the simulator and the discretiza-
tion algorithm were specifically implemented for this ex-
ample and not for a general FSPN. The result given by dis-
cretization and the simulator are satisfactorily close to each
other.
Figures 4, 5, and 6 show the probabilities of the discrete
markings for the following 3 sets of parameters:case A:
�work = 200 and�rej = 200, case B: �work = 200 and
�rej = 400, case C: �work = 400 and�rej = 400. The
frequent small impulses are associated with checkpointing,
while the rare larger impulses represent rejuvenation. The
impulses are getting wider and smother as time elapses due
to the exponentially distributed events while the system un-
dergoes checkpointing and rejuvenation.
Figure 7 shows the efficiency, as defined in (1), of the 3
cases as a function of time. Efficiency is 0 before the first
checkpoint by definition.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

Figure 4. Probabilities of markings in case A

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

Figure 5. Probabilities of markings in case B

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

Figure 6. Probabilities of markings in case C

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500

E
ffi

ci
en

cy

time

A
B
C

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500

E
ffi

ci
en

cy

time

A
B
C

Figure 7. Efficiency

6 Conclusions and future works

In this paper, we extend the current FSPN formalism
with flush-outarcs which enable the fluid in a place to be in-
stantaneously removed. We presented a fairly general Fluid
stochastic Petri net, which uses this extension, to model sys-
tems with rejuvenation, restoration and checkpointing. We
showed that models previously reported in the literature for
such systems can be cast in the proposed FSPN framework.
Moreover, some of the assumptions made in these models
can be generalized and still be captured in ourFSPN frame-
work. We also showed that the FSPN formalism is effective,
in the sense that it can be solved using numerical and/or
simulation techniques to obtain state probabilitiesand to de-
rive measures of interest.

However, in order to make FSPNs to be a viable model-
ing formalism, several issues remain to be addressed. The
final goal is to provide a robust software tool which can
solve an FSPN model via numerical or simulation tech-
niques.

References

[1] H. Alla and R. David. Continuous and Hybrid Petri Nets.
Journal of Systems Circuits and Computers, 8(1), Feb 1998.

[2] A. Bobbio, S. Garg, M. Gribaudo, A. Horv´ath, M. Sereno, and
M. Telek. Modeling Software Systems with Rejuvenation,
Restoration and Checkpointing through Fluid Stochastic Petri
Nets. Technical report, Universit`a di Torino, 1999.

[3] A. Bobbio, A. Puliafito, M. Telek, and K. S. Trivedi. Recent
Developments in Non-Markovian Stochastic Petri Nets.Jour-
nal of Systems Circuits and Computers, 8(1):119–158, Feb
1998.

[4] A. Bobbio and M. Sereno. Fine Grained Software Rejuve-
nation Models. InProc. 3-th International Computer Per-
formance & Dependability Symposium (IPDS ’98), pages 4–
12, Durham, North Carolina, USA, September 1998. IEEE
Comp. Soc. Press.

[5] R. V. Campos and E. de Sousa e Silva. Availability and perfor-
mance evaluation of database systems under periodic check-
points. InProc. of the 25th IEEE Intnl. Symposium on Fault
Tolerant Computing (FTCS), pages 269–277, Pasadena, Cali-
fornia, 1995.

[6] G. Ciardo, J. K. Muppala, and K. S. Trivedi. On the so-
lution of GSPN reward models.Performance Evaluation,
12(4):237–253, 1991.

[7] G. Ciardo, D. M. Nicol, and K. S. Trivedi. Discrete-
event Simulation of Fluid Stochastic Petri Nets. InProc.
7th Int. Workshop on Petri Nets and Performance Models
(PNPM’97), pages 217–225, Saint Malo, France, June 1997.
IEEE Comp. Soc. Press.

[8] E. G. Coffman and E. N. Gilbert. Optimal strategies for
scheduling checkpoints and preventive maintenance.IEEE
Transactions on Reliability, 39(1):9–18, April 1990.

[9] A. Duda. The effects of checkpointing on program execution
time. Information Processing Letters, 16:221–229, 1983.

[10] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Minimiz-
ing completion time of a program by checkpoint and rejuve-
nation. InProc. 1996 ACM SIGMETRICS Conference, pages
252–261, Philadelphia, PA, May 1996.

[11] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Analysis
of software rejuvenation using Markov regenerative stochas-
tic Petri net. InProc. of6th Int. Symposium on Software Re-
liability Engineering (ISSRE95), Toulouse, France, October
1995.

[12] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Analy-
sis of preventive maintenance in transaction based software
systems. IEEE Trans. on Computers, 47(1):96–107, 1998.
Special issue on Dependability of Computing Systems.

[13] S. Garg, A. van Moorsel, K. S. Trivedi, and K. Vaidyanathan.
A methodology for detection and estimation of software ag-
ing. In Proc. of the Ninth International Symposium on
Software Reliability Engineering, pages 282–292, Paderborn,
Germany, November 4-7 1998.

[14] E. Gelenbe and M. Hernandez. Optimum checkpoints with
age dependent failures.Acta Informatica, 27:519–531, 1990.

[15] J. Gray. Why do computers stop and what can be done about
it? InProc. of 5th Symp. on Reliability in Distributed Software
and Database Systems, pages 3–12, January 1986.

[16] J. Gray and D. P. Siewiorek. High-availability computer sys-
tems.IEEE Computer, pages 39–48, September 1991.

[17] B. O. A. Grey. Making SDI software reliable through fault-
tolerant techniques.Defense Electronics, pages 77–80,85–86,
August 1987.

[18] M. Gribaudo, M. Sereno, and A. Bobbio. Fluid Stochas-
tic Petri Nets: An Extended Formalism to Include non-
Markovian Models. InProc. 8th Intern. Workshop on Petri
Nets and Performance Models, Zaragoza, Spain, Sep 1999.
IEEE-CS Press.

[19] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi.
Fluid stochastic Petri Nets: Theory, Application, and Solu-
tion Techniques.European Journal of Operations Research,
105(1):184–201, Feb 1998.

[20] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. InProc. of
25th Int. Symposium on Fault-Tolerance Computing (FTCS-
25), Pasadena, CA, USA, June 1995.

[21] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. Effects of
checkpointing and queuing on program performance.Com-
munications on Statistics- Stochastic Models, 6(4):615–648,
1990.

[22] E. Marshall. Fatal error: how Patriot overlooked a Scud.
Science, 13:1347, March 1992.

[23] A. Pfening, S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi.
Optimal rejuvenation for tolerating soft failures.Performance
Evaluation, 27 & 28:491–506, October 1996.

[24] K. G. Shin, T. Lin, and Y. Lee. Optimal checkpointing of
real-time tasks.IEEE Transactions on Computers, C-36(11),
November 1987.

[25] M. Sullivan and R. Chillarege. Software defects and their im-
pact on system availability - a study of field failures in oper-
ating systems. InProc. 21st IEEE Intnl. Symposium on Fault-
Tolerant Computing, pages 2–9, 1991.

[26] A. T. Tai, S. N. Chau, L. Alkalaj, and H. Hecht. On-board
preventive maintenace: analysis of effectiveness and optimal
duty period. InProc. of 3rd Intnl. Worskshop on Object-
oriented Real-time Dependable Systems, Newport Beach,
California, February 1997.

[27] K. Trivedi and V. Kulkarni. FSPNs: Fluid Stochastic Petri
nets. InApplication and Theory of Petri Nets 1993, Proc.
14th Intern. Conference, LNCS, Chicago, USA, June 1993.
Springer Verlag.

[28] K. Wolter. Second order fluid stochastic petri nets: an exten-
sion of gspns for approximate and continuous modelling. In
Proc. of World Congress on System Simulation, pages 328–
332, Singapore, Sep 1997.

