
Exploiting Petri Nets to Support Fault Tree Based Dependability Analysis

Andrea Bobbio1, Giuliana Franceschinis1, Rossano Gaeta2, Luigi Portinale1
1Dipartimento di Scienze e di Tecnologie Avanzate, Universit`a del Piemonte Orientale

Corso Borsalino 54, 15100 Alessandria, Italy
2Dipartimento di Informatica, Universit`a di Torino

Corso Svizzera 185, 10149 Torino, Italy
fbobbio,giuliana,rossano,portinalg@di.unito.it

Abstract

This paper explores the possibility of convertingFault
Trees (FT) into the Generalized Stochastic Petri Net
(GSPN)formalism. Starting from a slightly modified ver-
sion of a conversion algorithm already appeared in the lit-
erature, the aim of the paper is to exploit the modeling and
decision power of GSPN for both the qualitative and the
quantitative analysis of the modeled system. The qualitative
analysis resorts to structural properties and is based on a
T-invariant analysis. In order to alleviate the state space
explosion problem deriving from the quantitative analysis,
the paper proposes a new formalism for FT, that is referred
to asHigh Level FT (HLFT), in which replicated redundant
units are folded and indexed. Starting from the HLFT for-
malism, a new conversion algorithm is provided that trans-
lates a HLFT into aStochastic Well-formed Net (SWN).
The computational saving of using SWN with respect to
GSPN is carefully examined considering an example of a
fault-tolerant multiprocessor system.

1. Introduction

Model types used in dependability analysis can be di-
vided in two classes: combinatorial models and state-space
based models. Combinatorial models assume that compo-
nents are statistically independent and have a poor modeling
power coupled with higher analytical tractability. Among
combinatorial models,Fault Trees (FT)have become very
popular in the dependability analysis of large safety-critical
systems [1, 2]. The goal of FT analysis (FTA) is to repre-
sent the combination of elementary causes that lead to the
occurrence of an undesired catastrophic event, denoted as
the Top Event (TE). In FTA the analysis is carried out in
two steps: a qualitative step in which the list of all the pos-
sible combinations of events (theminimal cut setsMCS)
that give rise to the TE is determined. If probability values

can be assigned to all the events appearing in the tree, the
quantification step can be undertaken and the probability of
occurrence of the TE, and of the other nodes of the tree, can
also be calculated.

The qualitative analysis step is considered of crucial im-
portance in dependability analysis and safety studies, since
it allows the analyst to enumerate all the possible causes of
failure for the system and to rank them according to a very
simple severity measure given by the order of the cutset.

The major weak point of the FTA methodology (as well
as of any combinatorial technique), is the fact that the events
must be considered as statistically independent. State space
based approaches (like Markov models) overcome this lim-
itation, but require the solution to be computed over a set
of equations whose number increases exponentially with
the number of components. Moreover, the generation of
the state space and of the associated infinitesimal genera-
tor, needs to be supported by automatic tools. The language
of Generalized Stochastic Petri Nets (GSPN) can be conve-
niently used for this purpose [3] since it allows to describe
large state spaces by a restricted number of model primi-
tives (places, transitions and tokens).

Hura and Atwood in [4] have proposed the use of PN
to analyze coherent fault trees; Malhotra and Trivedi have
provided in [5], an algorithm to convert a fault tree into a
GSPN or its variant Stochastic Reward Nets (SRN), and
have shown how various kinds of dependencies can be ac-
commodated into the so obtained model. However, in the
methodology proposed in [5], two peculiarities of the FTA
are lost:i) the qualitative analysis is not considered;ii) the
quantitative analysis requires the generation of the complete
state space (incurring easily in the space explosion prob-
lem).

The purpose of the present paper is twofold. First we
want to show how to respond to the first point (the qual-
itative analysis), by exploiting structural properties of the
GSPN. In particular, it is shown how the MCS can be gen-
erated resorting to a T-invariant analysis.

The second goal aims at alleviating the state explosion
problem by observing that high dependability is obtained
through replication that induces symmetries in the system
layout. Toaccount for symmetries, a new formalism for FT,
referred to as High Level FT (HLFT), is proposed in which
replicated units are folded and indexed. Starting from the
new HLFT formalism, an algorithm is provided that trans-
lates a HLFT into a Stochastic Well-formed Net (SWN).
The computational saving of using SWN with respect to
GSPN is carefully examined. Moreover, using the wider
modeling flexibility of SWN, we can include in the model
dependencies that could not have been accommodated into
the corresponding FT.

In order to illustrate the new achievements, the paper
considers an example of a fault-tolerant multiprocessor sys-
tem taken from [5]. The conversion from the FT to the
GSPN representation is carried on in Section 2, while the
qualitative analysis based on T-invariants is discussed in
Section 3. Section 4 introduces the new HLFT formalism
and its conversion into a SWN. Finally, Section 5 presents
some numerical results, considering also the case where sta-
tistical dependencies, due to the presence of a coverage fac-
tor, are included into the model.

2. Conversion of a FT into a GSPN

In order to present the extension of HLFT, a formal def-
inition of a FT is provided. The definition does not include
the possibility that the FT contains theNOTgate and related
gates (e.g.XOR).

Definition 1 (Fault Tree) A fault tree (FT) is a tree com-
prising four types of nodes:basic events, events, and two
types of elementary logical gates, theAND and theORgate
(see Figure 1).

The root of a FT is an event called the Top Event (TE).
Each event has exactly one successor which can be either
a basic event or a gate. A gate has two or more successor
events. The leaves of the tree are all basic events.

We apply the above definition to the following example
[5] that will be used throughout the paper. A fault-tolerant
multiprocessor system, whose block diagram is depicted in
the top part of Figure 1, comprises two independent subsys-
temsS1 andS2 with a shared common memoryMg. Each
subsystemSi (i = 1; 2) is composed by one processorPi

one local memoryMi and two replicated disk unitsDi1
andDi2. A single busN connects the two subsystems and
the shared common memory.

Assuming as the TE the complete system failure, the FT
modeling the system operation is given in the bottom part
of Figure 1. Standard qualitative analysis provides the fol-
lowing logical expression for the TE:

M1M1
S1

mem

D11D11

D12D12
S1

disks

D22D22

D21D21
S2

disks

M2M2

MgMg
S2

mem

MgMg

P2

P1P1

S1

S2

P2

S1 and S2

Network

System

N

Graphical notation

Basic
event Evente E

Or gateAnd gate

N

P2 M2
D21 D22

Mg

P1 M1
D11 D12

Figure 1. Diagram of the multiprocessor (top)
and corresponding FT (bottom).

TE = N +D11D12D21D22 +D11D12M2Mg+

+D11D12P2 +M1MgD21D22 +M1M2Mg+

+M1MgP2 + P1D21D22 + P1M2Mg + P1P2 (1)

whereC means the failure of the component whose label
is C. Each term in the right-hand side of (1) represents a
MCS i.e. a combination of basic events whose simultaneous
occurrence implies the TE.

A conversion algorithm from FT to GSPN has been pre-
sented in [5]. We propose slight variations that are summa-
rized in Figure 2. For each basic element of the FT (event,
ANDgate and ORgate), the top part of the figure shows the
conversion rule proposed in [5] while the bottom part the
new conversion rule. Applying the new rules, the FT of
Figure 1 is converted into the GSPN of Figure 3 (except
transitionS:f that will be needed later on). Places whose
names have the suffix:dn model components in the non-
working condition. A token in placeS:dn models the TE.
Transitions whose names have the suffix:f model the fault
of a component while all the other transitions model the
combinatorial logic derived from the conversion from FT
to GSPN. The initial marking of the net represents the mul-
tiprocessor having all working components.

The main advantage of the new rules is that the arc mul-
tiplicities required in [5] are no more needed. The elim-
ination of arc multiplicities simplifies both the qualitative

x.dnx.up

RC[x]

x.dn

x.dn

a1.dn

a2.dn

an.dn

RC[x]

x.dn

a1.dn

a2.dn

an.dn

Basic Event Or GateAnd Gate

x.dn

a1.dn

a2.dn

an.dn

RC[x]

an.dn

a2.dn

a1.dn

x.dn

Figure 2. Modified FT to GSPN translation.

analysis in Section 3 and the high level description in Sec-
tion 4. Other useful side-effects, not available in [5], are that
the resulting nets are 1-bounded, and the failure markings
encode the complete information on the subsystem failures
occurred so far (in fact once a placex:dn becomes marked,
it will never lose its token).

3. Minimal cutset determination by T-
invariant analysis

Qualitativeanalysis on FT is usually done by considering
theminimal cut sets(MCS), representing the prime impli-
cants of the TE (i.e. the system failure) expressed in terms
of basic events (i.e. the failure of elementary system com-
ponents).

Structural analysis of Petri nets offers a powerful tool for
checking qualitative properties of the model. In this section,
we will show that, the GSPN model obtained by the con-
version procedure introduced in the previous section can be
easily simplified in such a way that T-invariant analysis can
be performed, in order to characterize the MCS of the corre-
sponding fault tree. This exploits previous results obtained
in Petri net analysis of logic programs [7, 9] and in diagnos-
tic problem solving using Petri nets [8]. The basic idea is
that if the Petri net model describes the logical dependen-
cies among a set of entities, the transitive closure of such
dependencies can be obtained by considering the reachabil-
ity of certain markings; in particular, since T-invariant anal-
ysis deals with thereproducibilityof markings, the above
problems can be faced by considering how a given marking
(or a set of markings) may be reproduced.

In particular, the approach in [8] generalizes some re-
sults obtained in [7, 9] to diagnostic analysis, that is to the
computation of the primary causes that explain (in logi-
cal terms, thatentail or derive) a set of abnormal obser-
vations. The event corresponding to the occurrence of a
primary causeC is modeled by means of a source transition

tC with t�C = fPCg, wherePC is the place corresponding
to C; the occurrence of an abnormal observationF is, on
the contrary, modeled by means of a sink transitiontF with
�tF = fPFg, wherePF is the place corresponding toF .
The work in [8] shows that every set of source transitions
ftC1

; tC2
; : : : tCk

g contained in a T-invariant support also
containingtF is such thatC1 ^ C2 ^ : : :Ck j= F . Such
a result holds whenever the Petri net represents a particular
set of logical implications calleddefinite clauseshaving the
form A1 ^ A2 ^ : : :Ak ! B where eachAi andB are
logical propositions [8]. In particular,each logical proposi-
tion is associated with a place and each clause to a transition
having in the input the places corresponding to the left-hand
side of the clause and in the output the place corresponding
to the right-hand side. This means that every transitiont has
at most one outgoing arc (i.e.8t, jt�j � 1).

In FTA, the abnormal observation is the TE while pri-
mary causes are identified with basic events; determining
the basic events that entail TE means to determine the cut
sets of the fault tree. By considering now a fault tree, it
is easy to see that eachboolean gate can be modeled as a
definite clause; in particular, AND gates will correspond to
a single clause having its input events in the left-hand side
and the output event in the right-hand side, while an OR
gate will correspond ton clauses, each one having one of
then input events in the left-hand side and the same output
event in the right-hand side. If we now consider the GSPN
model of a FT obtained by the conversion rules discussed in
Section 2, it is easy to see that it can be simplified, in order
to obtain a model like the one discussed above.
In fact, the following simplifications can be adopted:i)
eliminate inhibitor arcs;ii) eliminate self-loops (i.e. trans-
form bi-directional arcs into input arcs to transitions). The
system failure is modeled by a transition having as input
the failure events of some sub-systems and in the output
the placeS:dn corresponding to the TE. In order to exploit
T-invariant analysis as done in [7, 8], a further model ad-
justment is needed: the sink placeS:dn is transformed in a
non-sink place by adding a sink transitionS:f in the output
(see Figure 3).

The model obtained satisfies the conditions of theorem 4
of [8] and the following proposition can then be stated as
a corollary of the above theorem (which is in turn derived
from two theorems proved in [7] and [9] respectively).

Proposition 1 Given a fault treeFT , let�FT be the GSPN
model obtained by: (i) applying the conversion procedure of
Section 2; (ii) deleting inhibitor arcs; (iii) substituting self-
loops with arcs from the place to the transition; (iv) adding
a sink transitionS:f such that�S:f = fS:dng.

A setE of basic events is a cut set forFT (i.e. E j= TE)
iff there exists a positive T-invariantX of �FT such that
X(S:f) 6= 0 and the set restriction of the support ofX to
source transitions is equal toE.

The intuitive reason of the above result is that, as shown in
[8], T-invariants model the reproduction of the empty mark-
ing, i.e. the firing of the system failure transition as a con-
sequence of the firing of component failure transitions. In
other words, T-invariants represent the sequence of transi-
tions that, starting from the empty marking (i.e. the marking
with every place having zero tokens), will bring the net to
the empty marking again; because of the acyclic net struc-
ture, the only way of getting such a result is to suitably fire
source transitions (corresponding to basic events), in order
to fire the sink transition (corresponding to TE) at the end.
The supports of such invariants are actually the derivational
trace of the TE from basic events, so restricting one of such
supports to source transitions will give us a set of basic
events entailing TE (i.e. a cut set).

Property 1 holds for every cut set of the fault tree, how-
ever one is usually interested in MCS, i.e. cut sets that do
not contain a subset of events that is still a cut set. It is well-
known that the same notion of minimality is defined for T-
invariants with respect to their support (minimal support T-
invariantsor MST). However, MST are not guaranteed to
correspond to MCS; the reason is that the notion of mini-
mality in MST is defined with respect to all involved tran-
sitions, while for having a minimal cut-set we need to have
minimality with respect to source transitions. For example,
if t1 andt2 are two source transitions, sets�1 = ft1; t3; t5g
and�2 = ft1; t2; t4; t5g can represent two minimal sup-
ports of T-invariants, but�2 is not minimal if restricted to
source transitions1.

In order to determine MCS from the net model we have
then to perform two separate steps: (i) compute MST of the
net and extract from their supports the subset of source tran-
sitions; (ii) filtering out from the sets of transitions obtained
in the previous step, non minimal ones.

Example. Consider the GSPN for the multiprocessor
system described in Figure 3; the net model for T-invariant
analysis is obtained from that net by deleting inhibitor arcs
and self-loops and by adding the circled transitionS:f . The
minimal supports for T-invariants of this net (computed by
means of theGreatSPNpackage [14]) are the following:
fP1:f;M2:f;Mg:f; S12:f; S:f; t6;M2g:f; t3g

fP1:f;D21:f;D22:f;S12:f; S:f; t6;D2:f; t2g

fP1:f;P2:f; S12:f; S:f; t6; t1g

fD11:f;D12:f;Mg:f;M2:f; S12:f; S:f; t5;D1:f;M2g:f; t3g

fD11:f;D12:f;D21:f;D22:f; S12:f; S:f; t5;D1:f;D2:f; t2g

fD11:f;D12:f; P2:f;S12:f; S:f; t5;D1:f; t1g

fM1:f;Mg:f;M2:f;S12:f; S:f; t4;M1g:f;M2g:f; t3g

fM1:f;Mg:f;D21:f;D22:f; S12:f; S:f; t4;M1g:f;D2:f; t2g

fM1:f;Mg:f; P2:f;S12:f; S:f; t4;M1g:f; t1g

fN:f;S:f; t7g

By restricting the above supports to source transitions

1This example corresponds to a very simple fault tree where theTE =

E1 + E1E2, beingE1; E2 two basic events.

Mg.dn
Mg.f

S1.dn

S12.f
S.dn S.f

D21.dn

D22.dn

M2.dn

M2.f

D22.f

D21.f

M2g.dnM2g.f t3

D2.dnD2.f t2 S2.dn

M1.dn

D11.dn

D12.dn

D12.f

D11.f

M1.f
M1g.dn t4M1g.f

D1.dn t5D1.f

N.dnN.f t7

P1.dnP1.f t6

P2.dnP2.f t1

Figure 3. GSPN Model of the multiprocessor.

we obtain:
fP1:f;M2:f;Mg:fg fP1:f;D21; f;D22:fg

fP1:f;P2:fg fD11:f;D12:f;Mg:f;M2:fg

fD11:f;D12:f;D21:f;D22:fg fD11:f;D12:f; P2:fg

fM1:f;Mg:f;M2:fg fM1:f;Mg:f;D21:f;D22:fg

fM1:f;Mg:f; P2:fg fN:fg

No further elaboration is then needed, since in this case it
is easy to see that they actually correspond to the MCS i.e.
to the terms of Equation 1.

4. High level fault trees

The basic idea behind HLFTs stems from the observation
that often, due to the use of redundancy, a FT may contain
several similar subtrees. In our running example we have
two similar subtrees corresponding to the two subsystems
S1 andS2, moreover, within each subsystem, there are two
similar subtrees corresponding to the replicated disks.

To make the description more compact, we mayfold the
similar subtrees so that only onerepresentativeis explicitly
included in the model. Such representative must abstract
out from the identities of the events appearing in it: this can
be done by usingparametric event identifiers. For exam-
ple, we may useS(i), P (i), M (i), D(i; j) as parametric
identifiers forS1 andS2, P1 andP2, M1 andM2, D11,
D12, D21 andD22. The information on how many copies
of each subtree were present in the original FT can be ex-
pressed using an annotation associated with the root ofeach
representative. To this purpose, we define a new type of
node, called eventreplicatornode.

Each eventreplicatornode identifies a subtree represent-
ing several folded subtrees; such node is annotated with
thedeclarationof one or more parameters, specifying their
type. A parameter typeis simply a finite, not empty set
defining the range of possible values for the parameter.
From the cardinality of parameter types declared in a given
replicator noder, it is possible to derive the number of sub-
trees represented by the subtree of rootr.

In our running example, the subtrees of rootS1 andS2
can be folded into a subtree whose root isS(i): this is an
event replicator node where parameteri is declared, its type
is type(i) = C1 = fs1; s2g. Then we can fold the subtrees
corresponding to eventsD1(i) andD2(i) obtaining a rep-
resentative subtree whose rootD(i; j) is an event replicator
node, including the declaration of parameterj whose type
is type(j) = C2 = fd1; d2g.

Observe that there might be basic events that areshared
by some replicated subtrees, for example the same event
Mg appears in both subsystemsS1 andS2. The fact that
thesameshared memory appears in each subtree folded into
the representative of rootS(i), is made explicit because the
corresponding basic event node in the HLFT isnot para-
metric. In Figure 4 the folded FT (i.e., the HLFT) of our
running example is depicted.

Definition 2 (High Level Fault Tree) A high level fault
tree (HLFT) is a tree comprising five types of nodes:basic
events, events, event replicators, and two types of logical
gates, namelyAND andOR gates.

Basic events can be grouped into classes (of sim-
ilar basic events): the generic basic event of a
class can be expressed in parametric form using
the notation nameof class(listof parameters), where
(list of parameters)is a list of (typed) parameters.

An event is defined as in FTs. Anevent replicator node
is an event node which is annotated with the declaration of
one or more parameters: an event replicator node is the
root of a subtree representing several similar subtrees. Ifm

parametersv1; : : : ; vm are declared in a given event repli-
cator, then it representsjtype(v1)j : : : jtype(vm)j events,
one for each possible assignment of values to parameters.
Without loss of generality we assume that a given parame-
ter is declared in one and only one event replicator within a
HLFT.

Basic events, events and event replicators have an as-
sociated label that is used to uniquely identify them in the
tree structure. This label can beparametric: in this case it
is expressed as a prefix followed by a list of parameters in
brackets. A parameterv can be used in the label of some ba-
sic event, event or event replicatore only if v is declared in
some event replicator on the path from the root of the HLFT
to e (and in this case we say that the node corresponding to

S(i)
[i:C1]

D(i,j)
[j:C2]

P(i)P(i)

MgMg

M(i) M(i)

D(i,j)

Sdisks(i)
Sm

em
(i)

N

N
etw

ork
S1andS2 System

Graphical notation

Event replicator

Basic event in a class

e(i; j; k)

E[v1 : C1; : : : ; vm : C
m

]

Figure 4. HLFT modeling the multiprocessor.

e is in the scope2 of parameterv).
We define theset of free variables of a noden of a HLFT,

as the setFVn of all parametersv such thatn is in the scope
of v.

Logical gates in HLFT have the same notation and
meaning as in FTs.

The root of a HLFT is an event, representing the TE.
Each event in the tree has exactly one successor which can
be either a basic event or a logical gate. In case the succes-
sor of an event is a basic event, the two nodes will have the
same label and will be often considered as a unique indivis-
ible basic event nodehereafter. The successor of an event
replicator can be either a gate or a basic event. A logi-
cal gate has two or more successors, which are all events
(possibly represented in a compact way by means of event
replicator). The leaves of the tree are all basic events.

In the HLFT of Figure 4 there are two event replicator
nodes:S(i) (subsystemi down), where parameteri is de-
clared andD(i; j), where parameterj is declared. The dot-
ted area shows the scope of parameteri, while the dashed
area shows the scope of parameterj.

HLFT unfolding. A HLFT can beunfoldedinto a FT by
repeatedly applying a replication and substitutionprocedure
to all subtrees whose root is an event replicator node. The
unfolding algorithm first searches a subtree starting with
an event replicator nodee and such that it does not con-
tain any other event replicator node; this subtree is repli-
cated as many times as the possible assignments of val-
ues to the parameters declared ine. Each replica must
be appendedto the predecessor ofe and is characterized
by a specific assignment of values to the parameters, e.g.
v1 = value1; : : : ; vm = valuem . All basic event leaves of
a given subtree replica that contain some parameter declared

2The event replicatore where a given parameterv is declared, is in-
cluded in the scope ofv.

in e, must be modified by substituting such parameters with
the corresponding values characterizing the replica.

The above procedure must be iteratively repeated until
no more event replicator nodes exist in the representation.

Applying the unfolding procedure to the HLFT of Fig-
ure 4, first the subtree within the dashed area is replicated
twice, with the two replicas identified by the assignments
j = d1 andj = d2. To complete this first step all variables
j appearing in the leaves of the first (second) replica must be
substituted with valued1 (d2). Then the procedure must be
repeated for the subtree in the dotted area, that will be again
duplicated, with the two replicas identified by the assign-
mentsi = s1 andi = s2. The result of the unfolding gives
the FT of Figure 1, up to a relabeling adopted for the sake of
labels readability (M (s1) !M1,D(s1; d2)! D12, etc.).

Compact representation of minimal cut sets. The ad-
vantage of using HLFT representations is not only due to
the more compact representation of the system structure, but
also the possibility of performing a more efficient analysis
by exploiting the symmetries made explicit by the HLFT
representation.

In Section 5 we shall see how quantitative analysis can
be made more efficient thanks to the high level representa-
tion. Here we discuss on our running example how qualita-
tive analysis can take advantage of the system symmetries,
that in our example are due to the presence of two similar
subsystems,S1 andS2, and, within each subsystem, of two
similar disks.

Equation 1 in Section 2 lists the ten MCS of the multipro-
cessor system, the same MCS have been obtained by using
T-invariants in Section 3; however the ten MCS can be rep-
resented in a more compact way, reducing to seven. The dif-
ference is that in this case MCS can be parametric: (1)N ,
(2) D11; D12; D21; D22, (3) M1;M2;Mg, (4) P1; P2,
(5)P (i);M (k);Mg; i 6= k, (6)P (i); D1(k); D2(k); i 6=
k, (7)Mi;Mg;D1(k); D2(k); i 6= k. The last three MCS
are parametric, and in fact they represent six ordinary MCS,
that can be obtained by instantiating the parametersi andk
(both of typeC1).

By allowing a parametric MCS representation, the list
of MCS can reduce considerably, especially with highly re-
dundant systems (if our system had three subsystems in-
stead of two, the set of MCS would have 28 elements,
while the set of parametric MCS would contain only 11 ele-
ments). The advantage, from the point of view of the user, is
twofold: (1) a parametric representation allows to concen-
trate on the meaningfulpatterns of system failure, grouping
all similar MCS into equivalence classes, (2) a shorter list
of MCS can be understood and handled more easily. In our
example the user is interested in knowing that one possible
system breakdown cause is the simultaneous failure of the
processor of one subsystem and of the two disks of the other

x.dn

<i1,..,in>

<i1,..,in>

<v1,..,vk>
f1

f2

fn

f1

f2

fn

type(v1) x .. x type(vk)

<v1,..,vk>

<v1,..,vk>

<v1,..,vk>
c1.dn

c2.dn

cn.dn cn.dn

c2.dn

c1.dn

e(i1,..,in).dn
x.dn

type(v1) x .. x type(vk)

(b) (c)(a)

type(i1) x .. x type(in)

Figure 5. Translation rules.

subsystem, regardless the actual identity of the subsystem
whose processor is down.

In the next section we shall describe a translation al-
gorithm from HLFT to a high level Petri net formalism,
namely Stochastic Well-Formed Nets (SWN): since para-
metric T-invariants have been defined for High level PNs
[19, 18, 17], it is possible to apply the same structural anal-
ysis technique presented in Section 3 to the SWN models
representing the HLFTs to obtain a parametric MCS repre-
sentation.

4.1. Translating a HLFT into a SWN

In this section we present a new algorithm to generate
SWN models from HLFTs, extending the algorithm in [5]
(actually we extend the variant of the algorithm presented in
Section 2). For space reasons we do not include the SWN
definition here, the interested reader can find it in [16].

The definition of a SWN model starts with the defini-
tion of its basic color classes: the basic classes of a SWN
model corresponding to a given HLFT are the typesCi of
the HLFT parameters.

We now present the translation steps that allow to build
the SWN model structure from the HLFT structure. When-
ever a tuple of variableshv1; : : : ; vmi will appear as an arc
labeling function in the SWN model, we assume, without
loss of generality, that the variables appear in lexicographi-
cal order in the tuple.

The translation algorithm works in the same way as the
one in [5], i.e., the HLFT is visited in postorder, and each
node is then translated by applying the following rules.

Case of a basic event node
Rule BE1: If the event belongs to a class of basic events,
and the class has not been translated yet, construct the sub-
net in Figure 5(a). Observe that the place has an associ-
atedcolor domainbecause the subnet represents in a com-
pact way the possibility of a failure inany basic event in
the class; the color domain, which defines the possible val-
ues that can be associated with the tokens contained in that
place, corresponds to the set of all possible identifiers of the
basic events in the class. Since the generic identifier of a ba-
sic event is described by a tuple of parametershi1; : : : ; ini,
then the colour domain of the place corresponding to the ba-

sic event class will betype(i1)� : : :� type(in). The func-
tion on the transition output and inhibition arcs are simply
identity functions.
Rule BE2: Basic event nodes that do not belong to a class
are represented as in the FT to GSPN translation (Figure 2,
bottom part of first rule).

Case of anAND gate
Rule AG1: The AND gate is translated as shown in Fig-
ure 5(b). The prefixx in the label of the subnet output place
name, is the label identifying the event immediately preced-
ing the AND node in the tree. The color domain of place,
x:dn, is obtained from the setFVAND = v1; : : : ; vk of the
free variables of the AND gate node, i.e., the color domain
of x:dn is type(v1)� : : :� type(vk). The function onx:dn
input and inhibition arcs is the identity function. There are
as many input placesci:dn in the subnet as event nodes (of
any kind) appended to the AND gate: letc1; : : : ; cn be the
labels of such nodes. Functionsfi associated with the in-
put/output arcs of the subnet input placesci:dn are defined
as follows:
Rule AGf1: if the node with labelci is a basic event node,
fi is a tuple equal to the (possibly parametric) identifier of
the event, labeling the node. If the basic event associated
with the node does not belong to a class, then there is no
need to associate a function with the arc (meaning that the
arc has an associated constant function always resulting in
one neutral token).
Rule AGf2: if the node with labelci is an event,fi is a tu-
ple containing all the free variables of the event.
Rule AGf3: if the node with labelci is an event replica-
tor, and ifFVci = v1; : : : ; vk are the free variables of the
node, which shall include the setVci of the parameters de-
clared in it, thenfi = hfv1 ; : : : ; fvki wherefvi = vi if
vi 2 FVcinVci elsefvi = S type(vi) (S Ci denotes the
synchronization function on basic classCi defined in the
SWN arc expression syntax.)

Case of anORgate
Rule OG1: The translation rule for the OR gate is shown
in Figure 5(c). The output place color domain and arc func-
tions are defined in the same way as for the AND gate. The
input/output arcs of the subnet input placesci:dn have an
associated functionfi which is exactly the same as in the
AND gate for places representing failure of basic events or
events, (i.e., Rules AGf1 and AGf2 are also used as Rules
OGf1 and OGf2) while it changes for the event replicators.
Rule OGf3: In this casefi = hv1; : : : ; vki, vi 2 FVci .

Applying the above translation rules to the nodes of our
running example (the translation order is determined by a
postorder visit of the HLFT nodes) as summarized by the
table in Figure 6 we obtain the SWN shown in Figure 7(a) .
This model is constructedgluingthe subnets in Figure 6 by
superposing the places with same label.

Step HLFT Node Rules applied Subnet
1 D(i; j) BE1 (a)-left
2 Sdisks(i) AG1,AGf3 (b)
3 Mg BE2 (a)-right
4 M (i) BE1 (a)-middle
5 Smem(i) AG1,AGf1 (c)
6 P (i) BE1 (a)-middle
7 S(i) OR gate OG1,OGf1,OGf2 (d)
8 S1andS2 AG1,AGf3 (e)
9 N BE2 (a)-right
10 System OG1,OGf1,OGf2 (f)

S(i)disks.dn
C1 x C2

D(i,j).dn
<i>

<i>

C1

<i,S C2>

Mg.dn

M(i).dn
C1

C1
S(i)mem.dn

<i>

<i><i>
(b) (c)

S(i)mem.dn

S(i)disks.dn

P(i).dn

C1

C1

C1

<i>

<i>

<i>

C1

S(i).dn

<i>

<i>

<i>

<i>

<i>

<i>

C1

S(i).dn

<S C1>

S1andS2.dn
S1andS2.dn

N.dn

S.dn

(d) (e) (f)

(a)
<i>

<i> C1
M(i).dn

(or P(i).dn)

Mg.dn
(or N.dn)

<i,j>

<i,j> C1 x C2
D(i,j).dn

Figure 6. Summary of the example HLFT
translation steps.

5. Fault tolerant multiprocessor analysis

In this section, we apply the proposed technique to the
running example presented in Section 4.

For the sake of readability, we omit the drawing of the in-
hibitor arcs from placeS:dn to each transition, as discussed
in [5]. Furthermore, we explicitly name only the places that
model the state of components and the transitions represent-
ing a fault event. All the other places and transitions are left
without names.

5.1. Model structural complexity

The SWN model obtained by applying the algorithm of
Section 4 to the HLFT representing the fault tolerant mul-
tiprocessor is depicted in Figure 7(a). Two color classes
namedC1 andC2 have been defined; the former represents
the subsystem objects while the latter represents the disk
objects.

It can be easily noted that the SWN model is parametric
in the number of subsystems and in the number of disks as-
sociated to each subsystem. The model has been obtained
with the assumption of having exactly one shared memory
and one single bus, but it can be easily modified to be para-
metric with respect to these two components as well. This
observation leads to the first nice property of the proposed
technique: the structural complexity of the resulting model,
i.e., the number of places and transitions, does not depend
on the number of replica inside each class. The number of

Mg.dn

Dik.dn

C1

Mi.dn
C1

Mi.f
<i>

<i>

Dik.f
<i>

|C2|<i>

Mg.f

<i>

<i> <i>

<i>

|C2|<i>

<i>

Di.f

Si.dn

C1 S.dn

N.f

<S C1>

Mg.dn

Dik.dn

C1 x C2

Mi.dn
C1

C1

C1

Si.dn

C1 S.dn
N.dn

Mi.f
<i>

<i>

Dik.f
<i,j>

<i,j>

N.f

Mg.f

<S C1><i> <i>

<i>

<i>

<i><i>

<i> <i>

<i>

<i,S C2> <i>

<i>

Di.f Di.dn

(b)(a)Pi.dn

Pi.f

<i>

C1
<i> <i>

<i>
<i>

Pi.f
<i>

<i>

Figure 7. SWN model resulting from the application of the conversion algorithm of Section 4.

subsystems is reflected only in the cardinality of the corre-
sponding color class. This is in sharp contrast with the con-
version technique presented in [5] where the model com-
plexity is highly dependent on the system size. The SWN
model of Figure 7(a) comprises10 places and13 transitions.
There are6 places whose color domain isC1 and one place
whose color domain isC1�C2 therefore the corresponding
GSPN model would havejC1j � jC2j + 6 � jC1j + 3 places
andjC1j � jC2j+ 7 � jC1j+ 5 transitions (wherejCij is the
cardinality of classCi).

5.2. Model simplification

We can simplify the model of Figure 7(a) by realiz-
ing that it satisfies all the constraints imposed to perform
the model decolorization technique as proposed in [13].
Roughly speaking, decolorization of the SWN model means
stripping away all the informations about redundant color
classes. In this case, color classC2 that represents the disks
used by each processor is redundant since the relevant in-
formation about this type of entities is their number. In this
case, the decolorization requires a redefinition of the rate of
transitionDik:f that must be dependent on the marking of
placeDik:dn [15].

A further simplification is obtained by a structural reduc-
tion based on the elimination of “useless” pairs of places
and transitions whose purpose is only to “pass forward” the
tokens without affecting the global model behavior. The re-
sulting model is depicted in Figure 7(b).

A similar simplification can be adopted also for the T-
invariant computation mentioned in Section 3. Indeed, a
simplification of the GSPN results into a simplification of
its incidence matrix thus reducing the effort for computing
the T-invariants.

5.3. Including dependencies: imperfect coverage

The main reason for converting a combinatorial model
like a FT into a GSPN based model, is to exploit the larger
modeling power of the last. A typical situation that forces
to include dependencies into the model is the presence of an
imperfectcoverage. By this we mean that the failure of the
i-th redundant subsystem may cause the failure of the entire
system with probabilityPcoverage (> 0).

In order to model an imperfect coverage at the subsystem
level, one place and two immediate transitions (with prior-
ity higher than the priority of all the other immediate tran-
sitions) must be added. These transitions are namedPcov

andPnocov and are enabled whenever a new token is put in
placeSi:dn. Their weights arePcoverage and1�Pcoverage
respectively. WhenPcov fires a token is deposited in place
S:dn thus modeling the occurrence of the TE. On the con-
trary, the firing of the conflicting transitionPnocov models
the situation where the fault of theith replica does not af-
fect the failure of the entire system (unless theith was the
last working component). The resulting SWN model is not
shown due to space constraints.

5.4. Results

The number of aggregated states generated by the SWN
models, that are used in the computation of the state proba-
bilities, is extraordinarily smaller than the number of states
generated by the corresponding GSPN model obtained by
unfolding the SWN model. This induces drastic reductions
of the computational complexity of the solution, and allows
a much wider set of system configurations to be studied.

As an example, Table 1 compares the number of states
for the SWN model of Figure 7(b) with the number of states
of the corresponding unfolded GSPN model. The bottom
part of Table 1 compares the number of states for the SWN
model with imperfect coverage with the number of states of
the corresponding GSPN. The table considers multiproces-

Table 1. Number of states of the SWN model and of the GSPN model of the multiprocessor (with and
without coverage) for a variable number of subsystems, with two disks per processor.

Tangible states Vanishing states Absorbing states
N SWN GSPN SWN GSPN SWN GSPN

2 49 92 88 163 90 163
4 793 11,504 1,196 18,543 1,044 14,095
8 28,171 113,417,984 46,760 263,359,231 30,744 116,777,251

Data for the imperfect coverage SWN model
2 49 92 192 371 94 171
4 793 11,504 3,316 56,687 1,225 17,199
8 28,171 113,417,984 148,576 953,690,879 43,471 184,902,399

sor systems with an increasing number of subsystems (Col-
umn 1) with a single bus, a single shared memory and two
disks per processor.

It is quite evident that the degree of aggregation (that we
define as the ratio between the number of GSPN states and
the number of aggregated SWN states) is very high: for the
data presented in Table 1, it ranges from1:87 (for N = 2)
to about4026 (for N = 8) for the tangible states, from
1:85 to about5632 for the vanishing states, and from1:81
to about3798 for the absorbing states. Similar numbers de-
rive from the data of the imperfect coverage. Table 1 shows
another nice property of the proposed conversion technique:
the state space is automatically aggregated and its compact-
ness allows the investigation of systems of a larger number
of elements. Given the numbers shown in Table 1, an ap-
proach based on the conversion of FT into GSPN models
would not allow the investigation of systems with more than
five subsystems due the exceedingly large number of states
generated by the resulting model.

As an example of the numerical results that can be ob-
tained from the SWN models, we have evaluated the sys-
tem unreliability as a function of time for different config-
urations. The time domain computations have been per-
formed by resorting to a randomization technique for the
transient solution of the Markov chain, associated with the
SWN model. The system unreliability, i.e. the probabil-
ity of occurrence of the TE is defined, in SWN models, as
PfM (S:dn) = 1g.

For all the components, the failure distribution is as-
sumed to be exponential with the following failure rates (in
h�1): processor =5 � 10�7, disk =8 � 10�5, local memory
= 3 � 10�8, shared memory =3 � 10�8, bus =2 � 10�9.
Figure 8 plots the unreliability of the multiprocessor system
with 7 subsystems and two or three disks per subsystem. In
the same figure this measure is plotted when an imperfect
coverage probabilityPcoverage = 0:01 is included at the
subsystem level.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 2000 4000 6000 8000 10000 12000
Time (in hours)

Probability of TE

two disks (coverage)
three disks (coverage)

two disks
three disks

Figure 8. Probability of system fault as a func-
tion of time with and without coverage.

The observation of the numerical results leads to remark
that increasing the number of disks per processor, that are
the components with the highest failure rate, has a beneficial
impact on the system reliability, especially for increasing
mission times.

All numerical results were obtained with theGreatSPN
package [14] running on a PC Pentium with 64 MBytes of
main memory and running Solaris operating system. The
computational cost for the derivation of the numerical re-
sults is rather small: each curve is composed of9 points
and the average CPU time needed for the computation of
each point ranges from the minimum of20 seconds (for the
model with two disks) to a maximum of300 seconds (for
the model with three disks per processor and the imperfect
coverage).

6. Conclusions and future works

Starting from the idea of converting a FT into a GSPN,
this paper has reached several new achievements:i) the
qualitative analysis of the system (i.e. MCS determination)
through structural analysis (i.e. T-invariants) of the GSPN
model; ii) the definition of a more compact FT representa-
tion calledHigh Level FT (HLFT); iii) automatic conversion
of a HLFT into a SWN.

This last point has several consequences:

� converting a combinatorial model into a state-space
based model increases the modeling and analytical
power (at the cost of more expensive computations);

� current research in the area of FT is to find ways to
include dependencies (see for instance [11, 12]); the
methodology proposed in this paper offers a cleaner
way to achieve the goal;

� the direct mapping of a HLFT into a SWN greatly al-
leviates the state explosion problem.

To prove some of the above assertions, we have carried
on an example of a multiprocessor system. The computa-
tional saving obtained by using a SWN model instead of the
corresponding unfolded GSPN model has been extensively
examined. Furthermore, we proposed some structural re-
ductions of the SWN model to further optimize the analysis
step. Finally, we have introduced into the model some sta-
tistical dependencies due to the inclusion of an imperfect
coverage.

Possible extensions to the present work are sketched in
the following:

� failure-time distributions, either with mass at time0 or
at time1 can be included, as in [5].

� Sources of dependency (other than coverage) can be
easily modeled, as for instance different repair poli-
cies, or dynamic dependencies like in [11] or adaptive
components as in [12].

� Firing rates can be marking dependent.

� In the paper, SWN models are used for quantitative
analysis, only: we are now working on the extension of
the qualitative analysis based on T-invariants to HLFT
SWN models.

References

[1] E.J. Henley, H. Kumamoto.Reliability Engineering and Risk
AssessmentPrentice Hall, 1981.

[2] N.G. Leveson. Safeware: System Safety and Computers
Addison-Wesley, 1995.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. Wiley Series in Parallel Computing, 1995.

[4] G.S. Hura, J.W. Atwood. The Use of Petri Nets to Analyze
Coherent Fault Trees.IEEE Transactions on Reliability, R-
37:469–474, 1988.

[5] M. Malhotra and K. Trivedi. Dependability modeling using
Petri nets.IEEE Transactions on Reliability, R-44:428–440,
1995.

[6] R. Sahner, K.S. Trivedi, and A. Puliafito.Performance and
Reliability Analysis of Computer Systems: An Example-based
Approach Using the SHARPE Software Package. Kluwer
Academic Publisher, 1996.

[7] G. Peterka and T. Murata. Proof procedure and answer extrac-
tion in Petri net model of logic programs.IEEE Transactions
on Software Engineering, 15(2):209–217, 1989.

[8] L. Portinale. Exploiting T-invariant analysis in diagnostic rea-
soning on a Petri net model. InProc. 14th Int. Conf. on Ap-
plication and Theory of Petri Nets, LNCS 691, pp. 339–356.
Springer Verlag, Chicago, 1993.

[9] D. Zhang and T. Murata. Fixpoint semantics for Petri net
model of definite clause logic programs. Technical Report
UIC-EECS-87-2, University of Illinois at Chicago, 1987.

[10] S.A. Doyle, J. Bechta Dugan, A. Patterson-Hine. A com-
binatorial approach to modeling imperfect coverage.IEEE
Transactions on Reliability, R-44:87–94, 1995.

[11] R. Manian, D.W. Coppit, K.J. Sullivan, J.B. Dugan. Bridg-
ing the gap between systems and dynamic fault tree models.
In Proc. of IEEE Annual Reliability and Maintainability Sym-
posium, pp. 105-111, 1999.

[12] G. Szab´o, P. Gáspár. Practical treatment methods for adap-
tive components in the fault tree analysis. InProc. of IEEE
Annual Reliability and Maintainability Symposium, pp. 97-
104, 1999.

[13] G. Chiola and G. Franceschinis. A structural colour simpli-
fication in Well-Formed coloured nets. InProc. 4th Intern.
Workshop on Petri Nets and Performance Models, pp. 144–
153, Melbourne, Australia, December 1991. IEEE-CS Press.

[14] G.Chiola, G.Franceschinis, R.Gaeta, M.Ribaudo, “Great-
SPN 1.7: GRaphical Editor and Analyzer for Timed and
Stochastic Petri Nets”,Performance Evaluation, Vol. 24,
n. 1,2, November 1995, pp. 47-68.

[15] M. Ajmone Marsan, S. Donatelli, G. Franceschinis, F. Neri,
Reductions in Generalized Stochastic Petri Nets and Stochas-
tic Well-formed Nets: An Overview and an Example of Ap-
plication Network Performance Modeling and Simulation, J.
Walrand, K. Bagchi and G. Zobrist (editors), 1997.

[16] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad.
Stochastic well-formed coloured nets for symmetric mod-
elling applications.IEEE Transactions on Computers,42(11),
November 1993.

[17] J.M. Couvreur. The general computation of flows for
coloured nets. InProc. 11th Intern. Conference on Appli-
cation and Theory of Petri Nets, Paris, France, June 1990.

[18] J.M. Couvreur, S. Haddad, and J.F. Peyre. Resolution
parametree d’une famille de systemes d’equations lineaires a
solutions positives. Technical Report 90–38, Universit´e Paris
6, 4 Place Jussieu, 75252 Paris Cedex 05, France, September
1990. IBP Tech. Report (in French).

[19] S. Haddad and J.M. Couvreur. Towards a general and pow-
erful computation of flows for parametrized coloured nets.
In Proc.9th Europ. Workshop on Application and Theory of
Petri Nets, Venezia, Italy, June 1988.

