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The scenario

EEC directive 440/91 and EC directives 18/95 and 19/95 → reorganization of the railway sector in Europe, via

separation between infrastructure management and transport operations

• Track capacity allocation

Nilsson (1995), Brewer and Plott (1996), Bassanini and Nastasi (1998), Caprara, Fischetti, Guida, Monaci,

Sacco and Toth (2001), Caprara, Fischetti and Toth (2002)

• Access tariff for the railway transport operators

based on profitability and social utility of the journey, congestion issues, number of passengers and/or goods

transported, services required, infrastructure costs, etc.
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The problem

Hypotheses:

• A railway path is used by different types of trains belonging to several operators

• The infrastructure costs have to be divided among these trains (joint cost allocation problem)

• The infrastructure consists of some “facilities” (track, signalling system, stations, etc.)

• Different groups of trains need these facilities at different levels (fast trains need a more sophisticated track

and signalling system; for local trains station services are more important)

The infrastructure is the “sum” of different facilities, required by the trains at different levels of cost

Infrastructure costs are sum of:

• “building” costs (independent from number of users) → “airport game” (Littlechild and Thompson, 1977)

• “maintenance” costs (dependent on the number of users)

Related problems:

• bridge used by small and big cars

• glasses for a restaurant chain
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The game theoretical model - I

Definition 1 Suppose we are given k groups of players g1, . . . , gk with n1, . . . , nk players respectively and

k non-negative numbers b1, . . . , bk. The building cost game corresponding to g1, . . . , gk and b1, . . . , bk is the

cooperative (cost) game 〈N, cb〉 with N = ∪k
i=1gi and cost function cb defined by

cb(S) = b1 + · · · + bj(S) S ⊆ N

where j(S) = max{j : S ∩ gj �= ∅}

Definition 2 Suppose we are given k groups of players g1, . . . , gk with n1, . . . , nk players respectively and

k(k+1)/2 non-negative numbers {αi,j}i,j∈{1,...,k},j≥i. The maintenance cost game corresponding to g1, . . . , gk

and {αi,j}i,j∈{1,...,k},j≥i is the cooperative (cost) game 〈N, cm〉 with N = ∪k
i=1gi and cost function cm defined

by

cm(S) =

j(S)∑
i=1

|S ∩ gi|Aij(S) S ⊆ N

where Aij = αi,i + ... + αi,j for all i, j ∈ {1, ..., k} with j ≥ i

Interpretation:

If one player in gi used the facility, to restore it up to level i the maintenance costs are Aii = αi,i; to restore the

facility up to level i + 1, then extra maintenance costs αi,i+1 will be made. So, in order to restore the facility up

to level j (with j ≥ i) the maintenance costs are Aij = αi,i + αi,i+1 + .... + αi,j
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The game theoretical model - II

Theorem 1 Let 〈N, cm〉 be the maintenance cost game corresponding to g1, . . . , gk and {αi,j}i,j∈{1,...,k},j≥i.

Then the following four statements are equivalent:

1. 〈N, cm〉 is concave

2. 〈N, cm〉 is balanced

3.
∑

i∈N cm(i) ≥ cm(N)

4. αi,j = 0 for every j > i

Other theoretical properties are in Norde, Fragnelli, Garćıa-Jurado, Patrone, Tijs (2000)

Definition 3 A one facility infrastructure cost game with groups of players g1, . . . , gk is the cooperative

(cost) game 〈N, c〉 with N = ∪k
i=1gi and cost function c = cb + cm. An infrastructure cost game with groups

of players g1, . . . , gk is the cooperative (cost) game 〈N, c〉 with N = ∪k
i=1gi and cost function c = c1 + ...+cl

such that, for every r ∈ {1, ..., l}, 〈N, cr〉 is a one facility infrastructure cost game with groups of players

gπr(1), . . . , gπr(k), where πr is a permutation of {1, ..., k}.
A one facility infrastructure cost game is the sum of a building cost game plus a maintenance cost game with

the same groups of players ordered in the same way

An infrastructure cost game is the sum of a finite set of one facility infrastructure cost games with the same

groups of players, not necessarily in the same order



Alcune applicazioni della Teoria dei Giochi al trasporto ferroviario 6

The solution - I

Shapley value

φi(v) =
1

n!

∑
π

(v(P (π; i) ∪ {i}) − v(P (π; i))

where P (π; i) are the predecessors of i in permutation π

Properties:

• additive solution

• infrastructure access tariff based on the Shapley value can be computed very easily for a player i ∈ gs, s =

1, ..., k:

φi(cb) =
∑

l=1,...,s

bl

Glk

φi(cm) = αs,s +
∑

l=s+1,...,k

αs,l
Glk

Glk + 1
+

∑
l=2,...,s

∑
j=1,...,l−1

αj,l
|gj|

(Glk)(Glk + 1)

where Glk =
∣∣∣⋃h=l,...,k gh

∣∣∣
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The solution - II

N = g1 ∪ g2 ∪ g3; g1 = {1}; g2 = {2, 3}; g3 = {4}

Building cost game
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b1 b2 b3

φ1(cb) = 1
4
b1

φ2(cb) = φ3(cb) = 1
4b1 + 1

3b2

φ4(cb) = 1
4
b1 + 1

3
b2 + b3

Maintenance cost game
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α1,1 α1,2 α1,3

α2,2 α2,3

α2,2 α2,3

α3,3

φ1(cm) = α1,1 + 3
4
α1,2 + 1

2
α1,3

φ2(cm) = φ3(cm) = α2,2 + 1
2
α2,3 + 1

3
× 1

4
α1,2

φ4(cm) = α3,3 + 1
3
× 1

4
α1,2 + 1

2
α1,3 + 2 × 1

2
α2,3
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An example - I

Data taken from Baumgartner (1997) - Fees are in swiss francs

The costs for one facility can be decomposed into:

• a fixed part (in the sense that it does not depend on the number of players), that corresponds to the building

cost game associated with this facility

• a variable part (in the sense that it is proportional to the number of players), that corresponds to the

maintenance cost game part

For each kilometer of track, there are two kind of costs: renewal costs (RWC) and repairing costs (RPC)

Accordingly the track is divided into two facilities: “track renewal” and “track repairing”

Renewal costs per kilometer and per year can be approximated by the following formula:

RWC = 0.001125X + 11, 250

where X measures the “number” of trains, expressed in yearly TGCK (Tons Gross and Complete per Kilometer);

we assume that all of the trains are of the same weight

Repairing costs per kilometer and per year can be given by the formulas:

RPCs = 0.001X + 10, 000 for slow trains

RPCf = 0.00125X + 12, 500 for fast trains
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An example - II

One kilometer of line used by a total weight of 107 TGCK (about 20,000 trains)

15,000 slow trains and 5,000 fast trains

〈N, c〉 is given by:

• N = g1 ∪ g2, where g1 is the set of slow trains (n1 = 15,000) and g2 is the set of fast trains (n2 = 5,000)

• c = c1 + c2, where c1 and c2 are one facility infrastructure cost games both having the groups of players

ordered as g1, g2, characterized by the following parameters:

c1 b1
1 = 11, 250 b1

2 = 0 α1
11 = 0.5625 α1

12 = 0 α1
22 = 0.5625

c2 b2
1 = 10, 000 b2

2 = 2, 500 α2
11 = 0.5 α2

12 = 0.125 α2
22 = 0.625

For a slow and a fast train respectively, we have:

• φs(c) =
b1
1

n1 + n2
+ α1

11 +
b2
1

n1 + n2
+ α2

11 + α2
12

n2

n2 + 1
= 2.25

• φf(c) =
b1
1

n1 + n2
+ α1

22 +
b2
1

n1 + n2
+

b2
2

n2
+ α2

22 + α2
12

n1

n2(n2 + 1)
= 2.75
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The problem

A good timetable is a difficult task, as it have to take into account the service request of the users, the technical

characteristics both of the network and of the trains and the costs for managing the system

It is a very large problem

In Italy:

• 16,000 Km. of tracks

• 3,500 stations

• 30,000 trains per day (technically)
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Current approaches

• Manual scheduling

• Mathematical programming problem (Hooghiemstra, Kroon, Odijk, Salomon and Zwaneveld, 1998)
INPUT - topology of the network (lines and stations)

- technical characteristics of the tracks and of the trains

- demand for transportation

- utility functions of the trains

- headway times between train (safety)

OUTPUT - leaving time and travel time of each train

- utility of the trains
Dutch railways (2,800 Km. of tracks, 400 stations and 5,000 trains per day; regular intervals → one tenth

of the trains)

• Graph theory (Caprara, Fischetti, Guida, Monaci, Sacco and Toth, 2001 and Caprara, Fischetti and Toth,

2002)

They consider a network whose nodes represent the different stations in different instants and the arcs

correspond to the movements of the trains between two stations or to the stops of the trains in the stations.

The solution is a collection of paths from the departure station of each train to the arrival one, satisfying

some feasibility constraints and minimizing a utility function related to the ideal scheduling of the trains

Milano-Bologna, 200 trains
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Competitive scenario

In Europe, after the EEC Directive 440/91, different transport operators (TOs) can operate different trains on

the same infrastructure for overlapping slots so that they prefer not to communicate their strategies:

• The infrastructure manager (IM) builds up the timetable taking into account the requests, needs and utilities

of different agents

The TOs communicate the ideal departure time and a time window in which it is still profitable to schedule

the departure of the train

• TOs may decide to cooperate in order to improve their utilities so they set available more details about their

utility functions

Using better information it is possible to modify their scheduling (without influencing the timetable of the

other trains), increasing the profits

The utility function of a train can be affected if the final timetable does not respect the forecast about other

trains: suppose that the train A considers its best choice to leave from a given station 10 minutes after the

arrival of the train B; in this situation the maximum of the utility is defined according to the arrival time of

train B in the previous timetable, that can be no longer valid in the new one.
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Game theoretical approach - I

• each player decides to cooperate with other players not for the worth of the coalition but on the basis of its

own payoff (see Hart and Kurz, 1983 and Greenberg, 1994)

• C-Solution (Gerber, 2000) → coalition formation and numerical solution

Definition 4 A cooperative game without transferable utility is a couple G = (N, V), where N = {1,
..., n} is the player set and V is the characteristic function that maps each coalition S in the set of its

feasible payoffs, s.t.:

• V (S) ⊂ R
S

• V(S) is closed and non-empty

• V(S) = V(S) - R
S≥ (comprehensiveness)

Definition 5 A bargaining problem is a couple (F, d), where F is the feasibility set, i.e. the closed,

convex, bounded and non-empty set of payoffs which players can agreed on after bargaining and d =

(d1, ..., dn), d ∈ R
n is the disagreement point, i.e. the starting payoff or the minimum that players can

guarantee if they do not reach an agreement.
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Game theoretical approach - II

Solutions for a bargaining problem:

• the Nash solution (1950):

N(F, d) = argmax

{∏
i∈N

(xi − di) | x ∈ F, x ≥ d

}

• the Kalai-Smorodinsky solution (1975):

KS(F, d) = argmax

{
x1 − d1

a1 − d1
= ... =

xn − dn

an − dn
| x ∈ F, x ≥ d

}

where ai = max{xi ∈ R | x ∈ F, x ≥ d}, i ∈ N

• the Egalitarian solution (cfr. Roth, 1979):

Eg(F, d) = argmax{x1 − d1 = ... = xn − dn | x ∈ F, x ≥ d}
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C-Solution - I

A nice characteristic of this process is that the final numerical solution specifies not only which coalitions form,

but assign a payoff to each player, starting from its ”power” in the other coalitions

Abstract Games (Shenoy, 1980)

• An abstract game is a couple (X, dom) where X is an arbitrary set and dom ⊂ X ×X is a binary relation

on X , called domination; given x, y ∈ X, x is accessible from y, or y → x, if there exist z1, . . . , zm ∈ X s.t.

x = z1 dom z2 dom . . . dom zm−1 dom zm = y

• An elementary dynamic solution is a set S ⊆ X that satisfies the following conditions:

1. x ∈ S, y ∈ X \ S ⇒ x →/ y (elements not in S are not accessible from elements of S)

2. x, y ∈ S ⇒ x ↔ y (two elements of S are accessible one another)

• A dynamic solution is a set P that is union of elementary dynamic solutions

• For dynamic solutions the following theorem holds: If X is finite, then P is non-empty
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C-Solution - II

Assumptions

• An NTU-game is a ”menu” of pure bargaining games HS = {(FS, dS)} for every coalition S, where FS is

the feasible region and dS is the disagreement point

• Each player can join to one coalition

• The players bargain over utility distribution in each game

The players have to face two intertwined decision problems:

• which coalition to form

• which payoff vector to choose from the bargaining region for the members of each coalition
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C-Solution - III

Tools - I

• A bargaining function is a function φS : HS → R
N
S that assigns a payoff vector as a solution for each

bargaining problem for S, and satisfies the following properties:

Feasibility : φS(FS, dS) ∈ FS

Individual rationality : φS(FS, dS) ≥ dS

Pareto Optimality : x ∈ R
N
S , x > φS(FS, dS) ⇒ x /∈ FS

• A payoff configuration is a couple (P, x) ∈ ⋃
P∈Π({P}×FV (P )) where P ∈ Π is a coalition structure, i.e.

a partition of the player set N , and FV (P ) is the set: {x ∈ R
N | x ∈ V (S), ∀ S ∈ P}.

• The domination relation between two different payoff configurations (P 1, x1), (P 2, x2) is:

(P 1, x1) dom (P 2, x2) ⇔ ∃ R ∈ P 1 | x1
i > x2

i , ∀ i ∈ R

• The set of decisive coalitions for a game V , or εV , is the set of coalitions S, |S| ≥ 2, s.t.:

∃ y ∈ V (S) | y > xS

where xS = (xi)i∈S and xi = sup {t ∈ R | tei ∈ V (i)}
• A reduced game w.r.t. the coalition S, or V −S, is the game:

V −S(T ) =

{
V (T ) if T �= S

{y ∈ R
N
T | y ≤ xT} if T = S
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C-Solution - IV

Tools - II

• A feasibility function is a function dS
V : {x ∈ R

N
S | x ≥ xS} → V (S) that returns a feasible disagreement

point if the given one is infeasible; it has to satisfy the following properties:

1. dS
V (x) ≥ xS

2. dS
V (x) = x, if x ∈ V (S)

A possible choice is:

(dS
V (x))i =




0 if i /∈ S

xi if i ∈ S and x ∈ V (S)

max {xi, max {t ∈ R | (t, xi) ∈ V (S)}} if i ∈ S and x /∈ V (S)
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C-Solution - V

Computation

By induction on the cardinality of the set of decisive coalitions εV

Initial step |εV | = 0 ⇒ εV = ∅
The C-Solution is ({{1}, {2}, . . . , {n}}, (x1, x2, . . . , xn))

Iterative step |εV | = m ≥ 1

The C-Solution is the dynamic solution of the abstract game (X, dom) where:

X =
{

(P, x) ∈ Π × R
N | T ∈ P ⇒




T ∈ εV and xT = φT (V (T ), dT
V (yT ))|T

or

T = {i} and xi = xi

}

and dom is the domination defined above

yT is the average payoff of the players in the C-Solution {(P 1, x1), . . . , (PK(T ), xK(T ))} of the reduced game

V −T , i.e. the opportunities of the players in the other coalitions:

yT
j =

{
1

K(T )

∑K(T )
h=1 xh

j if j ∈ T

0 if j /∈ T

V −T is originated according to the current εV , so by the inductive hypothesis the C-Solution was computed in

the previous step; as X is finite, the dynamic solution is always non-empty
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Examples

Assumptions:

• headway time = two minutes

• fixed travel time → determine only the departure time

Example 1 - Trains with transferable utilities

Requirement of TOs:

p1 = 9.58 t1 = 32 a1 = 10.30 f1 = [−30, 30]

p2 = 10.00 t2 = 86 a2 = 11.26 f2 = [−30, 30]

p3 = 10.30 t3 = 43 a3 = 11.13 f3 = [−30, 30]
10.00 10.30 11.00 11.30
�

�
�

�
�

�
�

�
��

���������������������������

��������������

�

Standard utility function:

û(xi) =

{
1 − |xi|

30
if |xi| ≤ 30

0 otherwise ���������

-30 0
���������

30

1

IM scheduling

p1 = 9.58

p2 = 10.00

p3 = 10.45
10.00 10.30 11.00 11.30
�

�
�

�
�

�
�

�
��

���������������������������

�������������
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Real utility functions of TOs:

ui(xi) =

{
30 + xi

30
if − 30 ≤ xi ≤ 0

30 − xi if 0 < xi ≤ 30
-30

29

0
���������

30

30

Actual payoffs: 30,30,15

New optimal scheduling:

p1 = 9.43

p2 = 9.45

p3 = 10.30
9.30 10.00 10.30 11.00 11.30

�
�

�
�

�
�

�
�

��

���������������������������

��������������

Interpretation:

Train Departure Utility Compensation Final payoff

1 15 minutes early 29.50 1.16 from player 3 30.66

2 15 minutes early 29.50 7.16 from player 3 36.66

3 ideal departure time 30.00 8.83 to players 1 and 2 21.66

All the players have increased their payoffs
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Example 2 - Trains without transferable utilities

The disagreement point is the utility in the IM scheduling

Requirements of TOs:

p1 = 10.00 t1 = 60 a1 = 11.00 f1 = [−30, 30]

p2 = 10.20 t2 = 22 a2 = 10.42 f2 = [−30, 30]
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IM scheduling: p1 = 9.50; p2 = 10.30
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Real utility functions of the two TOs and related bargaining problem:
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Corresponding scheduling:
N p1 = 10.08(.30) ≈ 10.08

p2 = 10.06(.30) ≈ 10.06

KS p1 = 10.10.00 = 10.10

p2 = 10.08.00 = 10.08

Eg p1 = 10.12(.20) ≈ 10.12

p2 = 10.10(.20) ≈ 10.10
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Example 3 - Pareto optimal disagreement point

Real utility functions of the two TOs and related bargaining problem:
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Example 4 - Non-convex bargaining region

Real utility functions of the two TOs and related bargaining problem:
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In the space of strategies the segment B̂Ĝ corresponds to infeasible strategies

• correlated strategies are impossible because the timetable cannot be varied on the basis of a probabilistic

event

• lotteries of the two (feasible) events B and G if players accept the risk of a result that can be worse

of the solution of the IM

• side payments between the players, but in this case they choose G coming back to the situation of

Example 1

• restrict to consider only the individually rational Pareto boundary B̄Ḡ, returning to a usual bargaining

problem, as in Example 2
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