PROGRAMMAZIONE LINEARE A NUMERI INTERI

N.B. Nei seguenti esercizi vengono utilizzate, salvo diversa indicazione, le seguenti notazioni:

PLO programma lineare ordinario

S_a insieme delle soluzioni ammissibili del PLO

Sott insieme delle soluzioni ottimali del PLO

PLI programma lineare a numeri interi

S_a* insieme delle soluzioni ammissibili del PLI

Sott* insieme delle soluzioni ottimali del PLI

1) Sia dato il seguente PLI:

min
$$\mathbf{x}_1 + 2 \mathbf{x}_2 + 3 \mathbf{x}_3$$

s.t. $3 \mathbf{x}_1 + 2 \mathbf{x}_2 - 3 \mathbf{x}_3 \le 10$
 $\mathbf{x}_1 - \mathbf{x}_2 + 3 \mathbf{x}_3 \ge 1$
 $\mathbf{x}_1 + 3 \mathbf{x}_2 + \mathbf{x}_3 \ge 5$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge 0; \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \text{ interior}$

Il punto P(1, 1, 1) è una soluzione ammissibile? Si può affermare che S_{ott}^* non è vuota?

2) Sia dato il seguente PLI:

max
$$3 \mathbf{x}_1 - 4 \mathbf{x}_2 + 5 \mathbf{x}_3$$

s.t. $\sqrt{2} \mathbf{x}_1 + \mathbf{x}_2 + 3.5 \mathbf{x}_3 \le 20$
 $\pi \mathbf{x}_1 + 2 \mathbf{x}_2 + 4 \mathbf{x}_3 \le 320.4$
 $\mathbf{x}_1 + \mathbf{e} \mathbf{x}_2 + \mathbf{x}_3 \le 280.5$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge 0; \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \text{ interior}$

Ha soluzioni ottimali?

Determinare la tabella iniziale dell'algoritmo di Gomory.

- 3) Quali delle seguenti affermazioni sono vere:
 - A Se un PLI non ha soluzioni ottimali non ne ha neanche il corrispondente PLO.
 - B Dato un problema di massimo risolubile col metodo Branch and Bound, se L è la massima limitazione superiore dei vertici pendenti ad una generica iterazione, allora L ≥ M, dove M è il massimo cercato.
 - C Dato un problema di massimo che può essere risolto col metodo Branch and Bound, se uno dei vertici pendenti ad una generica iterazione consiste di un solo punto A, allora A è un punto di massimo.
- 4) Fare esempi di PLI in cui il punto di ottimo sia ottenibile mediante approssimazione del corrispondente PLO ed esempi in cui ciò non sia possibile.
- 5) Fare esempi di PLI in cui S_a^* sia vuota, ma non lo sia S_a .
- 6) E' possibile che la funzione obiettivo di un PLI sia superiormente illimitata e quella del corrispondente PLO non lo sia? E viceversa?
- 7) E' possibile che un PLI abbia un numero finito di soluzioni ottimali e il corrispondente PLO ne abbia un numero infinito? E viceversa?

- 8) E' possibile che un PLI abbia una sola soluzione ottimale e il corrispondente PLO ne abbia più di una? E viceversa?
- 9) E' possibile che S_{ott}^* sia strettamente contenuta in S_{ott} del corrispondente PLO? E viceversa?
- 10) E' possibile che un PLI e il corrispondente PLO abbiano entrambi:
 - A Regione ammissibile vuota?
 - B La stessa regione ammissibile (non vuota)?
 - C Funzione obiettivo superiormente illimitata?
 - D Una sola soluzione ottimale?
 - E Infinite soluzioni ottimali?
- 11) Risolvere i seguenti PLI, completando la risoluzione con un grafico che permetta di evidenziare gli spostamenti della soluzione e gli iperpiani secanti introdotti:

A -
$$\max x_1 + 2x_2$$
 B - $\max x_1 + x_2 \le 3$ s.t. $10x_1 + 4x_2 \le 35$ s.t.

12) Risolvere i seguenti PLI, completando la risoluzione con un grafico che permetta di evidenziare gli spostamenti della soluzione e gli iperpiani secanti introdotti:

A -
$$\max 3 \mathbf{x}_1 + 4 \mathbf{x}_2$$

s.t. $3 \mathbf{x}_1 + 2 \mathbf{x}_2 \le 8$
 $\mathbf{x}_1 + 4 \mathbf{x}_2 \le 10$
 $\mathbf{x}_1, \mathbf{x}_2 \ge 0; \mathbf{x}_1, \mathbf{x}_2 \text{ interi}$
B - $\max 8 \mathbf{x}_1 + 6 \mathbf{x}_2$
s.t. $3 \mathbf{x}_1 + 5 \mathbf{x}_2 \le 11$
 $4 \mathbf{x}_1 + \mathbf{x}_2 \le 8$
 $\mathbf{x}_1, \mathbf{x}_2 \ge 0; \mathbf{x}_1, \mathbf{x}_2 \text{ interi}$
 $\mathbf{x}_1, \mathbf{x}_2 \ge 0; \mathbf{x}_1, \mathbf{x}_2 \text{ interi}$

13) Risolvere i seguenti PLI misti con il metodo Branch and Bound:

A -
$$\max x_1 - 3x_2 - 3x_3$$

s.t. $2x_1 - 6x_3x_3 \le 5$
 $1/2x_2 - x_3 \le 2$
 $x_1, x_2, x_3 \ge 0; x_1, x_2 \text{ interi}$
B - $\max 3x_1 - x_3 - 8x_3$
s.t. $2x_1 + 1/2x_2 - 4x_3 \le 3$
 $-2x_1 + x_2 - x_3 + 3/2x_4 \le 2$
 $x_1, x_2, x_3 \ge 0; x_1, x_2 \text{ interi}$

14) Risolvere con l'algoritmo di Gomory il seguente PLI:

$$\begin{array}{ll} \max & 2 \; \mathbf{x}_1 + 2 \; \mathbf{x}_2 \\ \text{s.t.} & \; \mathbf{x}_1 \leq 2 \\ & \; \mathbf{x}_2 \leq 3/2 \\ & \; \mathbf{x}_1 + \mathbf{x}_2 \leq 3 \\ & \; \mathbf{x}_1, \; \mathbf{x}_2 \geq 0 \; ; \; \mathbf{x}_1, \; \mathbf{x}_2 \; \text{interi} \end{array}$$

Determinare Sott*.

15) Determinare le S_a dei PLO associati ai seguenti PLI e gli S_{ott}^* dei PLI:

A -
$$\max x_1 - 3x_2$$

s.t. $x_1 - x_2 + 2 \ge 0$
 $-x_1 + 2x_2 + 2 \ge 0$
 $-x_1 - x_2 + 2 \ge 0$
 $x_1, x_2 \ge 0; x_1, x_2 \text{ interi}$
B - $\max x_1 - 3x_2$
s.t. $x_1 - x_2 + 2 \ge 0$
 $-x_1 + 2x_2 + 2 \ge 0$
 $x_1 + x_2 - 2 \ge 0$
 $x_1, x_2 \ge 0; x_1, x_2 \text{ interi}$

16) Risolvere con l'algoritmo di Gomory i seguenti PLI:

A -
$$\max 2 \mathbf{x}_1 - \mathbf{x}_2$$

s.t. $1/2 \mathbf{x}_1 + \mathbf{x}_2 \le 3/2$
 $\mathbf{x}_1 - \mathbf{x}_2 \le 5/2$
 $\mathbf{x}_1, \mathbf{x}_2 \ge 0$; $\mathbf{x}_1, \mathbf{x}_2$ interi
B - $\min -2 \mathbf{x}_1 + \mathbf{x}_2$
s.t. $\mathbf{x}_1 + 3 \mathbf{x}_2 \le 8$
 $2 \mathbf{x}_1 - 3 \mathbf{x}_2 \le 1$
 $\mathbf{x}_1, \mathbf{x}_2 \ge 0$; $\mathbf{x}_1, \mathbf{x}_2$ interi
 $\mathbf{x}_1, \mathbf{x}_2 \ge 0$; $\mathbf{x}_1, \mathbf{x}_2$ interi

Completare la risoluzione con un grafico, evidenziando di volta in volta la soluzione corrente e gli iperpiani secanti generati dall'algoritmo.

17) Risolvere con l'algoritmo di Gomory i seguenti PLI:

Dimostrare che i PLO associati ai due PLI hanno la stessa S_a e che essa è un troncone.

18) Risolvere con l'algoritmo di Gomory i seguenti PLI, determinando Sott* di entrambi:

A -
$$\max 12 \mathbf{x}_1 - 22 \mathbf{x}_2 - 3 \mathbf{x}_3$$
 B - $\max \mathbf{x}_1 - \mathbf{x}_2$
s.t. $6 \mathbf{x}_1 - 4 \mathbf{x}_2 + 3/2 \mathbf{x}_3 \le 3$ s.t. $\mathbf{x}_1 - \mathbf{x}_2 \le 3/2$
 $3 \mathbf{x}_1 - 2 \mathbf{x}_2 - 3/4 \mathbf{x}_3 \le 3$ $2 \mathbf{x}_1 + 2 \mathbf{x}_2 \ge 3$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge 0; \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \text{ interi}$ $\mathbf{x}_1, \mathbf{x}_2 \ge 0; \mathbf{x}_1, \mathbf{x}_2 \text{ interi}$

- 19) Se la tabella finale di un PLI risolto con l'algoritmo di Gomory presenta un coefficiente nullo nella riga della funzione obiettivo si può affermare che esistono altre soluzioni ottimali?
- 20) Un PLO ammette la forma normale e S_{ott} non è vuoto. Il relativo PLI ha soluzioni ottimali?
- 21) Un PLI **Q** si rivela impossibile (cioè non ammette soluzioni ottimali) dopo la terza iterazione dell'algoritmo di Gomory (cioè dopo che si è aggiunto un terzo vincolo) perchè il PLO **P**₃ associato in quel momento a **Q** è a sua volta impossibile.

Quale caso di impossibilità ($S_a = \emptyset$ o sup $z = +\infty$) presenta P_3 ?

22) Un PLI viene risolto con l'algoritmo di Gomory; ad un certo punto si ha la seguente tabella:

Commentare la tabella.

23) Risolvere per $\mathbf{K} = 0$, 1, 2 il seguente PLI:

$$\max \ \mathbf{x}_1 + \mathbf{x}_2$$

s. t.
$$2 \mathbf{x}_1 - \mathbf{x}_2 \ge 1/2$$

$$\mathbf{K} \mathbf{x}_1 + \mathbf{x}_2 \le 1$$

$$\mathbf{x}_1$$
, $\mathbf{x}_2 \ge 0$; \mathbf{x}_1 , \mathbf{x}_2 interi

24) Risolvere i seguenti problemi dello zaino:

A -	oggetto	Α	В	C	D	Е	
	peso	10	8	5	7	12	
	valore	7	2	6	4	5	
	naga maggima tragnartahila = 20						

	peso masi	iiiio tit	isportat	110 2	9	
В-	oggetto	A	В	C	D	E
	peso	5	5	6	7	9
	valore	8	1	2	10	3

peso massimo trasportabile =
$$20$$

D -	oggetto	A	В	C	D	E		
	peso	2	3	5	6	7		
	valore	2	4	3	6	3		
	peso massimo trasportabile = 8							

25) Risolvere i seguenti problemi dello zaino, determinando tutte le soluzioni ottimali:

A -	oggetto	A	В	C	D
	peso	11	13	13	15
	valore	1	4	2	5
	neso mas	simo tra	sportal	pile = 27	

26) Risolvere il seguente problema dello zaino:

oggetto	Α	В	C	D	E	F
peso	6	9	11	13	14	16
valore	2	2	3	3	4	4

sapendo che il peso massimo trasportabile con lo zaino è 30.

Determinare e discutere tutte le soluzioni ottimali.

27) Risolvere i seguenti problemi dello zaino:

A -	oggetto	A	В	C	D	E	F	G
	peso	40	40	30	30	10	8	2
	valore	80	70	50	45	16	7	1
		. ,	. 1	1 1/	00			

peso massimo trasportabile = 190

Risolvere il seguente problema dello zaino: 28)

oggetto	Α	В	C	D	E	F	G	Н	I	L
peso	8	12	3	10	5	13	9	7	14	9
valore	10	11	5	8	5	10	8	6	12	9

peso massimo trasportabile = 30.

Determinare tutte le soluzioni ottimali.

Analizzare altre strategie risolutive.

29) Risolvere il seguente problema dello zaino:

oggetto	Α	В	C	D	Е
peso	5	7	8	9	12
valore	4	3	3	6	5
	. ,	4 1	1 20	`	

peso massimo trasportabile = 20.

Determinare tutte le soluzioni ottimali.

Si considerino i seguenti problemi dello zaino: 30)

```
A -
     oggetto
                   Α
                           В
                                   \mathbf{C}
                            9
                                  10
                                          11
                    8
      peso
                   K
                            5
                                            2
      valore
      peso massimo trasportabile = 20.
```

Per quali valori di **K** l' oggetto A viene portato?

peso massimo trasportabile = 20.

Per quali valori di **K** l' oggetto D viene portato?

- 31) Dato un problema dello zaino per il quale esiste un oggetto che ha valore strettamente maggiore degli altri e peso minore del peso massimo trasportabile e strettamente minore degli altri, dimostrare che questo oggetto viene necessariamente preso.
- Risolvere il seguente problema dello zaino: 32)

oggetto	Α	В	C	D	Е
peso	6	10	8	11	5
valore	5	7	9	10	3

peso massimo trasportabile = 25.

Dopo averlo risolto si supponga che gli oggetti abbiano rispettivamente volume:

e il volume massimo trasportabile sia 20.

Risolvere considerando sia il vincolo sul volume che il vincolo sul peso.

- Analizzare il problema dello zaino nel caso in cui il peso massimo trasportabile è l'unico vincolo e si vuole massimizzare il peso trasportato.
- Utilizzando il metodo Branch and Bound, risolvere i seguenti problemi di assegnazione di cui sono date le matrici dei costi C (l'elemento C_{ij} rappresenta il costo che si ha se l'operaio ilavora sulla macchina \mathbf{j} ; se $\mathbf{C}_{ii} = \mathbf{M}$ allora l'operaio \mathbf{i} non può lavorare sulla macchina \mathbf{j}).

B -		a	b	c	d		
	A	18	24	21	27		
	B	M	16	28	26		
	\mathbf{C}	21	23	14	19		
	D	23	17	25	M		
C -		a	b	c	d	e	f
	A	76	27	43	16	30	26
	B	15	72	16	1	30	25
	\mathbf{C}	20	13	65	35	5	1
	D	21	16	25	68	18	18
	E	12	46	27	48	62	5
	F	23	5	5	9	5	58

35) Utilizzando il metodo Branch and Bound, risolvere il seguente problema di assegnazione, tenendo conto che ad una macchina non potrà essere assegnato alcun operaio.

	a	b	c	d	e
A	27	21	23	24	27
B	25	27	21	26	24
\mathbf{C}	27	26	25	24	28
D	23	25	22	24	24

36) Utilizzando il metodo Branch and Bound, risolvere il seguente problema di assegnazione, tenendo conto che un operaio non potrà essere assegnato ad alcuna macchina.

	a	b	c	d
A	18	12	15	17
B	16	13	15	18
C	17	16	12	13
D	13	15	17	16
\mathbf{E}	17	14	13	15

Utilizzando il metodo Branch and Bound, risolvere il seguente problema di assegnazione di cui è data la matrice dei rendimenti \mathbf{R} (in questo caso l'elemento \mathbf{R}_{ij} rappresenta il guadagno che si ha se l'operaio i lavora sulla macchina j):

	a	b	c	d
A	7	8	3	10
B	6	5	0	11
C	5	6	2	12
D	6	5	1	9

Risolvere numericamente, col metodo Branch and Bound, i problemi del commesso viaggiatore, con le seguenti tabelle dei costi C (se $C_{ij} = M$ non è possibile andare dalla città i alla città j):

A -		1	2	3	4	
	1	M	5	8	9	
	2	3	M	7	2	
	3	9	7	M	5	
	4	3	3	5	M	
B -		1	2	3	4	5
	1	M	8	4	9	5
	2	6	M	5	5	9
	3	4	5	M	6	4
	4	9	3	7	M	10
	5	6	9	4	10	M
C -		1	2	3	4	5
	1	M	7	12	8	10
	2	5	M	7	10	4
	3	9	9	M	7	5
	4	9	7	7	M	8
	5	6	9	10	8	M

39) Risolvere numericamente, col metodo Branch and Bound, il problema del commesso viaggiatore, determinando tutti i circuiti ottimali dalla città $\bf A$ alla città $\bf A$, avendo la seguente tabella dei costi $\bf C$ (se $\bf C_{ii}$ = M non è possibile andare dalla città $\bf i$ alla città $\bf j$):

	\mathbf{A}	В	\mathbf{C}	D
A	M	3	6	7
B	3	M	4	3
\mathbf{C}	6	4	M	7
D	6	4	7	M

40) Dato il PLI **P**:

$$\begin{aligned} \text{max} \quad & z = 10 \; \mathbf{x}_1 + 5 \; \mathbf{x}_2 + 8 \; \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 \\ \text{s.t.} \quad & \mathbf{x}_1 - 5 \; \mathbf{x}_2 + \mathbf{x}_3 + 2 \; \mathbf{x}_4 + 2 \; \mathbf{x}_5 \leq 3 \\ & 2 \; \mathbf{x}_1 + 7 \; \mathbf{x}_2 + \mathbf{x}_3 - \mathbf{x}_4 + \mathbf{x}_5 \leq 8 \\ & \mathbf{x}_1, \; \mathbf{x}_2, \; \mathbf{x}_3, \; \mathbf{x}_4, \; \mathbf{x}_5 \in \{0, 1\} \end{aligned}$$

- A Definire il rilassamento surrogato $S(\mathbf{P})$ con moltiplicatori $\pi_1 = 7$ e $\pi_2 = 5$.
- B Determinare una limitazione superiore L_S risolvendo S(P) per ispezione.
- C Dire se tale valore è ottimo per **P** e perchè.
- D Definire il rilassamento lagrangiano L(**P**) del primo vincolo con moltiplicatore $\lambda_1 = 1$.
- E Determinare una limitazione superiore L_L risolvendo L(P) con semplici considerazioni.
- F Dire se tale valore è ottimo per **P** e perchè.
- 41) Dato il PLI P:

max
$$6 \mathbf{x}_1 + 5 \mathbf{x}_2 + 6 \mathbf{x}_3 + 9 \mathbf{x}_4$$

s.t. $2 \mathbf{x}_1 + \mathbf{x}_2 + 3 \mathbf{x}_3 + \mathbf{x}_4 \le 8$
 $6 \mathbf{x}_1 + \mathbf{x}_2 + 4 \mathbf{x}_3 + 2 \mathbf{x}_4 \le 14$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \ge 0$ e interi

- A Definire il rilassamento lagrangiano $L(\mathbf{P})$ del primo vincolo con moltiplicatore $\lambda = 2$ e determinare una limitazione superiore L risolvendo per ispezione il problema risultante.
- B Dire se la soluzione del problema rilassato è sicuramente ottima per il problema dato e perchè.
- 42) Dato il PLI P:

max
$$20 \mathbf{x}_1 + 8 \mathbf{x}_2 + 7 \mathbf{x}_3 + 17 \mathbf{x}_4 + \mathbf{x}_5$$

s.t. $3 \mathbf{x}_1 + \mathbf{x}_3 \le 5$
 $3 \mathbf{x}_1 + \mathbf{x}_2 + 2 \mathbf{x}_4 \le 4$
 $\mathbf{x}_1 + 2 \mathbf{x}_2 + 2 \mathbf{x}_3 + 5 \mathbf{x}_4 + 2 \mathbf{x}_5 \le 6$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5 \in \{0, 1\}$

- A Definire il rilassamento surrogato di **P** mediante moltiplicatori $\pi_1 = \pi_2 = \pi_3 = 1$.
- B Risolvere mediante Branch and Bound il problema rilassato.
- C Dire se la soluzione trovata è ammissibile per P e perchè.
- 43) Dato il PLI P:

max
$$z = 7 x_1 + 4 x_2 - 2 x_3$$

s.t. $4 x_1 + 3 x_2 - x_3 \le 3$
 $x_1 + x_2 + x_3 = 2$
 $x_1, x_2, x_3 \in \{0, 1\}$

- A Definire il rilassamento lagrangiano $L(\mathbf{P})$ del vincolo di disuguaglianza con moltiplicatore $\lambda=3$.
- B Determinare una limitazione superiore L risolvendo L(P) con semplici considerazioni.
- C Dire se tale valore è ottimo per **P** e perchè.
- 44) Dato il PLI P:

max
$$9 \mathbf{x}_1 + 7 \mathbf{x}_2 + 10 \mathbf{x}_3 + 5 \mathbf{x}_4$$

s.t. $3 \mathbf{x}_1 + 3 \mathbf{x}_3 + \mathbf{x}_4 \le 5$
 $2 \mathbf{x}_1 + 4 \mathbf{x}_2 + 2 \mathbf{x}_4 \le 5$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \{0, 1\}$

- A Definire il rilassamento surrogato con moltiplicatori $\pi_1 = \pi_2 = 1$ e risolvere il problema rilassato mediante Branch & Bound.
- B Dire se la soluzione trovata è ottima per P e perchè.
- 45) Dato il PLI **P**:

max
$$3 \mathbf{x}_1 + 2 \mathbf{x}_2 + 4 \mathbf{x}_3 + 5 \mathbf{x}_4$$

s.t. $2 \mathbf{x}_1 + 3 \mathbf{x}_3 + 3 \mathbf{x}_4 \le 3$
 $3 \mathbf{x}_1 + \mathbf{x}_2 + 3 \mathbf{x}_4 \le 4$
 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \{0, 1\}$

A - Definire il rilassamento lagrangiano L(P) con moltiplicatori $\lambda_1 = \lambda_2 = 1$, risolvere il

- problema rilassato per ispezione e dire se la soluzione ottenuta è ottima per P e perchè. Definire il rilassamento surrogato S(P) con moltiplicatori $\pi_1 = \pi_2 = 1$, risolvere il problema rilassato mediante Branch & Bound e dire se la soluzione ottenuta è ottima per P e perchè.

SOLUZIONI

- 1) SI; SI
- 2) SI
- 3) A NO
 - B SI
 - C NO
- 6) NO; SI
- 7) SI; NO
- 8) SI; SI
- 9) SI; NO
- 10) A SI
 - B SI
 - C SI
 - D- SI
 - E SI
- 11) A $\mathbf{x}^* = (2, 1), \mathbf{z}^* = 4$
 - B $\mathbf{x}^* = (2, 2), \mathbf{z}^* = 4$; $\mathbf{x}^* = (3, 1), \mathbf{z}^* = 4$
 - C $\mathbf{x}^* = (0, 1), \mathbf{z}^* = -2$
 - D $\mathbf{x}^* = (0, 2), \mathbf{z}^* = -2$
- 12) A $\mathbf{x}^* = (1, 2), \mathbf{z}^* = 11$
 - B $\mathbf{x}^* = (2, 0), \mathbf{z}^* = 16$
- 13) A $\mathbf{x}^* = (3, 0, 1/6), \mathbf{z}^* = 5/2$
 - B $\mathbf{x}^* = (2, 0, 0, 1/4), \mathbf{z}^* = 4$
- 14) $\mathbf{x}^* = (2, 1), \mathbf{z}^* = 6, \mathbf{S_{ott}}^* = \{(2, 1)\}$
- 15) A $\mathbf{x}^* = (2, 0), \mathbf{z}^* = 2$
 - B $\mathbf{x}^* = (2, 0), \mathbf{z}^* = 2$
- 16) $\mathbf{x}^* = (2, 0), \mathbf{z}^* = 4$
- 17) A $\mathbf{x}^* = (2, 0), \mathbf{z}^* = 1$
 - B $\sup z = +\infty$
- 18) A $\mathbf{x}^* = (0, 0, 0), \mathbf{z}^* = 0; \mathbf{S_{ott}}^* = \{(0, 0, 0)\}$
 - B $\mathbf{x}^* = (2, 1), \mathbf{z}^* = 1$; $\mathbf{S}_{ott}^* = \{\mathbf{x}_1 = \mathbf{x}_2 + 1, \mathbf{x}_2 \ge 1, \mathbf{x}_2 \text{ intero}\}$
- 20) SI

21)
$$S_a = \emptyset$$

23)
$$\mathbf{K} = 0$$
 sup $\mathbf{z} = +\infty$
 $\mathbf{K} = 1$ $\mathbf{x}^* = (1, 0)$; $\mathbf{z}^* = 1$
 $\mathbf{K} = 2$ $\mathbf{S}_{\mathbf{a}} = \emptyset$

D - A & D, valore =
$$8$$
, peso = 8

30)
$$A - K \ge 3$$

 $B - K \ge 13$

35)
$$A/b-B/c-C/d-D/a$$
, costo = 89

36) A/b-C/d-D/a-E/c,
$$costo = 51$$

37)
$$A/b-B/d-C/c-D/a$$
, rendimento = 27

- 39) A-B-D-C-A, costo = 19 A-C-B-D-A, costo = 19
- 40) B $L_S = 25 \text{ con } x_1 = x_2 = x_3 = x_4 = x_5 = 1$ E - $L_L = 21 \text{ con } x_1 = x_2 = x_4 = 1 \text{ e } x_3 = x_5 = 0$
- 41) A L = 65 con $\mathbf{x} = (0, 0, 0, 7)$ B - NO
- 42) B $\mathbf{x}^* = (1, 0, 0, 1, 0)$; $\mathbf{z}^* = 37$ C - NO
- 43) B L = 5 con $\mathbf{x}_1 = \mathbf{x}_3 = 1$ C - SI
- 44) A $\mathbf{x}^* = (0, 1, 1, 1)$; UB = 22 B - NO
- 45) A $\mathbf{x_L} = (0, 1, 1, 0)$; $\mathbf{z_L} = 9$; NO B - $\mathbf{x_S} = (0, 1, 0, 1)$; $\mathbf{z_S} = 7$; SI