
Section 2. Connection situations1

� A connection situation takes place in the presence of a group of 
agents N={1,2, …,n}, each of which needs to be connected directly 
or via other agents to a source. 

� If connections among agents are costly, then each agent will 
evaluate the opportunity of cooperating with other agents in order 
to reduce costs. 

� If a group of agents decides to cooperate, a configuration of links 
which minimizes the total cost of connection is provided by a 
minimum cost spanning tree (mcst). 

� The problem of finding a mcst may be easily solved thanks to 
different algorithms proposed in literature (Boruvka (1926), Kruskal
(1956), Prim (1957), Dijkstra (1959))



Minimum Cost Spanning Tree Situation

Consider a complete weighted graph

1

2

3

– whose vertices represent agents

source

– vertex 0 is the source

0
– edges represent connections between
agents or between an agent and the source

40

30

10

50

20

– numbers close to edges are connection costs

80



Minimum cost spanning tree (mcst) problem

Optimization problem:

How to connect each node to the source 0 in 

such a way that the cost of construction of a 

spanning network (which connects every node 

directly or indirectly to the source 0) is 

minimum?



ExampleN={1,2,3},EN’={{1,0},{2,0},{2,1},{3,0},{3,1},{3,2}}

cost function shown on graphs
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c(1)=24

c(3)=26

c(2)=24

c(1,3)=34

c(2,3)=44

c(1,2)=42

c(1,2,3)=52

Example: mcst cost game ({1,2,3},c) defined on the 
following connection situation:
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Example: The cost game ({1,2,3},c) is defined on the 

following connection situation:

The game ({1,2,3}, c) is said mcst game (Bird (1976))

c(1)=24

c(2)=24

c(3)=26

c(1,3)=34

c(1,2)=42

c(2,3)=44

c(1,2,3)=52
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• The predecessor of 1 is 0: the Bird

allocation gives to player 1 the cost of {0,1}. 

•The predecessor of 2 is 1: the Bird allocation 
gives to player 2 the cost of {1,2};

• The predecessor of 3 is 1: the Bird allocation 
gives to player 3 the cost of {1,3}.

w(Γ)=52

Bird allocation w.r.t. to Γ, (x1, x2, x3)=(24, 18 ,10) is in the 
core of ({1,2,3},c).

How to divide the total cost? (Bird 1976)



The Bird allocation w.r.t. this 
mcst is

(x1, x2, x3)=(18, 24 ,10)

The Bird allocation w.r.t .this 
mcst is

(x1, x2, x3)=(24, 18 ,10)
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Both allocations belong to the core of the mcst game (and 

also their convex combination).
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(24,24,4)

(2,24,26)(24,2,26)

I(N,c)

(x1,x2,x3) s.t.

x1+x2+x3=52

x1≤24

x2 ≤24

x3 ≤26
(18,24,10)(24,18,10)

(8,18,26)

Core(N,c)

(8,24,20)

x1+x2≤42

x2+x3≤44

x1+x2≤34

Bird 1 Bird 2



Bird allocation rule

�It always provides an allocation (given 
a connection situation).

�In general, not a unique allocation 
(each mcst determines a corresponding 
Bird allocation…).

�Bird allocations are in the core of mcst
games (but are extreme points)



What happens when the structure of the 

network changes?

�Imagine to use a certain rule to allocate costs.

�The cost of edges may increase: if the cost of an edge 

increases, nobody should be better off, according to such 

a rule (cost monotonicity);

�One or more players may leave the connection situation: 

nobody of the remaining players should be better off 

(population monotonicity).



Cost monotonicity: Bird allocation behaviour
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Bird allocation: (4, 3 ,3) Bird allocation: (3, 5 ,3)

Bird rule does not satisfy cost monotonicity.



Population monotonicity: Bird allocation 

behaviour

Bird allocation: (5, 5 ,3) Bird allocation: (3, * ,6)
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Bird rule does not satisfy population monotonicity



Construct & Charge rules

Are based on the following general cost allocation 

protocol:

� As soon as a link is constructed in the Kruskal algorithm 

procedure: 

1) it must be totally charged among agents which are not yet 

connected with the source (connection property)

2) Only agents that are on some path containing the new edge 

may be charged (involvement property) 

� when the construction of a mcst is completed, each agent 

has been charged for a total amount of fractions equal to 1 

(total aggregation property).
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P-value: Feltkamp (1994), Branzei et al. (2004), Moretti (2008)
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2 is connected to 1 and

3 who were already

connected: 2 pays 2/3 
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remaining is shared
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3.
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P-value
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Make the sum of all edge-by-edge allocations:

(0, 0, 0) +

(5, 0, 5) +

(3,12,3) +
(0, 0, 0) +

(8, 8, 8) =

P-value = (16,20,16)



Algorithm to calculate the P-value

� At any step of the Kruskal algorithm where a component is 
connected to some agents, charge the cost of that edge among 
these agents in the following way:

� Proportionally to the cardinality_current_step-1 if  an agent 
is connected to a component which is connected to the 
source,

� Otherwise, charge it proportionally to the difference: 
cardinality_previous_step-1 - cardinality_current_step-1

IDEA: charge the cost of an edge constructed during the 

Kruskal algorithm only between agents involved, keeping into 

account the cardinality of the connected components at that step

and at the previous step of the algorithm:



P-value

�Always provides a unique allocation (given a 

mcst situation).

�It is in the core of the corresponding mcst game.

�Satisfies cost monotonicity.

�Satisfies population monotonicity.

�on a subclass of connection problems it coincides 

with the Shapley value of mcst games 

�…
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Proportional rule: (Feltkamp (1994))
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The proportional rule is a Construct & Charge rule

Construct & Charge rules are based on the following general cost 

allocation protocol:

As soon as a link is constructed in the Kruskal algorithm 

procedure: 

it must be totally charged among agents which are not yet connected 

with the source (connection property)

Only agents that are on some path containing the new edge may be

charged (involvement property) 

when the construction of a mcst is completed, each agent has 

been charged for a total amount of fractions equal to 1 

(total aggregation property).



Allocation provided by the 
proportional rule according to 

this ordering is(13.5, 13.5, 17)

Allocation provided by the 
proportional rule according to 

this ordering is (13.5, 17 ,13.5)
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Both allocations are in the core of the corresponding mcst game.

1

2

3

1

2 3



http://www.vrtuosi.com

Cost monotonicity: Proportional rule

Proportional rule: (14, 18 ,14) Proportional rule: (16, 16 ,20)

The Proportional rule is not cost monotonic.
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Axiomatic characterization of the P-value

Property 1. The solution F is efficient (EFF) if for each 'Nw∈W   

( ) ( ),i

i N

F w w

∈

= Γ∑  

where Γ is a minimum cost spanning network on N'.  

w(Γ)=52

( ) (16,20,16)
t

P w M w
σ σ

= =

Example:
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': N N
F → ℜWA solution for mcst situations



Example:

Property 2. The solution F has the Equal Treatment (ET) property if for each 'N
w∈W

and for each i,j∈N with ( ) ( )i jC w C w=   

( ) ( ).i jF w F w=  
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P(w)=(2,2,6)t



Example:

Property 3. The solution F has the Upper Bounded Contribution (UBC) property if 

for each 'N
w∈W  and every (w,N')-component C≠{0}  

\{0}
\{0}

( ) min ({ ,0}).i
i C

i C

F w w i
∈

∈

≤∑  
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Note that 1 is dummy
in the corresponding
mcst game



F(           )

Property 4. The solution F has the Cone-wise Positive Linearity (CPL) property if for 

each 
'NEσ ∈Σ , for each pair of mcst situations ˆ,w w Kσ∈  and for each pair ˆ, 0α α ≥ , we 

have  

 ˆ ˆˆ ˆ( ) ( ) ( ).F w w F w F wα α α α+ = +  
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Proposition 1. If '
w K K

σ σ
∈ ∩  with 

'
, '

NEσ σ ∈Σ , then '( ) ( )P w P w
σ σ= .  

Definition 3. The P-value is the map ': N N
P → ℜW , defined by  

 ( ) ( )P w P w M w
σ σ σ

= =  

for each 'N
w∈W  and 

'NEσ ∈Σ  such that w K
σ

∈ . 



� It is possible to prove that the P-value satisfies the four 
properties EFF, ET, UBC and CPL. 

�To prove the uniqueness consider a solution for mcst
situation F  which satisfies EFF, ET, UBC and CPL:

�first look at the simple mcst situations (0-1 cost of 
edges): on such simple situation, EFF, ET and UBC imply 
F=P-value;

�it is possible to decompose each mcst situation as a linear 
combination of simple mcst problems;

� by CPL it follows that the F=P-value on each mcst
situation.

Theorem 1. The P-value is the unique solution which 

 satisfies the properties EFF, ET, UBC and CPL on 

 the class 'N
W  of mcst situations. 


