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4

Finitary/static semantics in the form of intersection type assignments have become a paradigm for5

analysing the fine structure of all sorts of λ -models. The key step is the construction of a filter model6

isomorphic to a given λ -model. A property of great interest of filter λ -models is sensibility, i.e. the7

interpretation of all unsolvable terms in the least element. The flexibility of intersection type assign-8

ments derives from their parametrisation on intersection type theories. We construe intersection type9

theories as special meet-semilattices and show that appropriate morphisms, in the opposite category10

of meet-semilattices, preserve sensibility of the induced λ -models. Interestingly the set of saturated11

sets together with the set of λ -terms is such a meet-semilattice, thus showing that arguments based on12

Tait-Girards’s computability amount to the construction of a morphism. We characterise two classes13

of intersection type theories which induce sensible filter models. The first is non-effective while the14

second is effective and it amounts to the generalisation of Mendler’s criterion to intersection types15

and head normalising terms. The complete characterisation of sensible filter models however still16

escapes.17

1 Introduction18

The present paper addresses the problem of head normalisation for intersection type theories. Intersec-19

tion type theories [10] were invented in Torino by the first author, together with Mario Coppo, in the late20

’70’s of the last century of the previous millennium. As already noticed in [11] intersection types are in-21

formation systems in the sense of [36]. Since then, intersection types have been widely generalised and22

utilised for providing useful characterisations for several classes of λ -terms, most notably weak head23

normalising [16], head normalising [12], normalising [12] and their persistent versions [16], strongly24

normalising [33], closable [25], and invertible λ -terms [39, 40]. The flexibility of intersection types lies25

in their correspondence with clopen sets in Scott’s topological models of λ -calculus, which can thus26

be understood as models whose points are, in fact, filters of properties of programs. Intersection type27

theories therefore permit to express the dynamics of programs as filters of their static properties [7, 11].28

This correspondence has been nicely expressed categorically as a duality in [1]. Since their introduction,29

intersection types have become a paradigm for expressing statically all sorts of execution properties of30

programming languages [8, Part III].31

Intersection type theories being so flexible, which in fact is the very reason which makes them suc-32

cessful, are far from having a complete theory. More specifically, in the present paper we address the33

problem of characterising sensible intersection type theories, namely type theories which generate sensi-34

ble filter models, i.e. models which assign only the trivial intersection type to an unsolvable term. To this35

end we construe intersection type theories as meet-semilattices, enriched with an arrow constructor, and36
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2 Sensible Intersection Type Theories

show that appropriate morphisms in the opposite category of meet-semilattices preserve sensibility of the37

induced λ -models. This permits us to transfer profusely sensibility results between filter models, thus38

providing alternatives to the existing proofs of sensibility for many models [16]. The very set of saturated39

sets, together with the set of λ -terms, being such a meet-semilattice, permits us to reduce to the existence40

of a morphism all arguments based on Tait-Girards’s computability. This is in effect a generalisation of41

Girard’s reducibility candidates. We characterise two classes of sensible intersection type theories. The42

first is non-effective and it applies to the special class of →-sound intersection type theories. The second43

is effective and it amounts to the generalisation of Mendler’s criterion [30], originally given for recursive44

second order λ -calculus and strong normalisation, to intersection types and head normalisation. The45

complete characterisation of sensible filter models however still escapes.46

The present paper is a follow up of [14], where the complementary problem of studying non-sensible47

intersection type theories was addressed. Reading both papers can be beneficial since the two papers48

have a number, albeit small, of cross-references.49

Synopsis50

In Sections 2 and 3 we recall basic facts on λ -calculus and the theory of intersection types and filter51

models. In Section 4 we introduce the algebraic setting of meet-semilattices and establish the transfer52

results of sensibility between theories and give examples. In Section 5 we characterise two classes53

of intersection type theories which are sensible. Difficulties in providing complete characterisation of54

sensible intersection type theories appear in Section 6, where we also discuss the λ -theories of sensible55

filter models and raise some open questions. Concluding remarks appear in Section 7.56

2 λ -calculus57

In this section we recall some basic notions and properties of untyped λ -calculus following Chapters 2,58

3, and 8 of [6]. Readers familiar with λ -calculus can skip this subsection.59

We start by defining λ -terms and β -reduction.60

Definition 2.1 (λ -terms [6, Definition 2.1.1]) The set Λ of pure λ -terms is defined by:

M ::= x | λx.M | MM.

We write λ -terms with the usual notational conventions. In particular we write λ
−→x .M as short for61

λx1 · · ·xn.M assuming −→x = x1 · · ·xn for n ∈ N. Free and bound occurrences of variables are defined in62

the standard way. In particular we assume Barendregt’s convention, i.e. that different variables have63

different names [6, Convention 2.1.12]. It is handy and standard to associate names to some closed64

λ -terms (combinators) [6, Definition 2.1.17(ii)].65

Definition 2.2 (β -rule and β -reduction [6, Definitions 2.1.15, 3.1.3 and 3.1.5])66

1. The β -rule replaces (λx.M)N with M[x := N], where M[x := N] denotes the λ -term obtained by67

the (capture free) substitution of x by N in M.68

2. The one step β -reduction →β is defined as the contextual closure of the β -rule.69

3. The β -reduction →∗
β

is defined as the reflexive and transitive closure of →β .70

4. The β -convertibility =β is defined as the equivalence relation generated by →∗
β

.71



Dezani-Ciancaglini, Dundua, Giannini, Honsell 3

Crucial to our development are the notions of solvability and unsolvability of λ -terms.72

Definition 2.3 (Solvable and unsolvable λ -terms [6, Definition 2.2.10])73

1. A λ -term M is solvable if there are n λ -terms N1, . . . ,Nn such that

(λ−→x .M)N1 . . .Nn →∗
β

I,

where −→x are the variables which occur free in M and I = λx.x is the identity combinator.74

2. A λ -term is unsolvable if it is not solvable.75

As in [26] our study of unsolvable terms is based on the notion of head reduction.76

Definition 2.4 (Head normal form and head redex [6, Definition 8.3.9])77

1. If M = λ
−→x .xM1 · · ·Mm, then M is in head normal form and x is the head variable of M.78

2. If M = λ
−→x .(λx.N)PM1 · · ·Mm, then (λx.N)P is the head redex of M.79

Every λ -term either is in head normal form or has a head redex.80

Proposition 2.5 (Shape of λ -terms [6, Corollary 8.3.8]) Every λ -term is either of the form λ
−→x .xM1 · · ·Mm81

or of the form λ
−→x .(λx.N)PM1 · · ·Mm, where m ≥ 0.82

Definition 2.6 (Head reduction [6, Definition 8.3.10]) We write M →h N if N is obtained from M by83

reducing its head redex. The head reduction of M is the finite or infinite sequence of terms M0, . . . , Mn,84

. . . such that M = M0 and Mn →h Mn+1 with n ∈ N.85

We use →∗
h to denote the reflexive and transitive closure of →h.86

In our development we take advantage of the characterisation of unsolvability by means of head87

reduction.88

Theorem 2.7 ([6, Fact 2.2.12]) A λ -term M is unsolvable iff its head reduction is infinite.89

3 Intersection Types and Filter Models90

This section is devoted to the definitions of intersection types, type theories, type assignment systems91

and filter models.92

Up to Definition 3.3 (included) we essentially follow Sections 13.1 and 13.2 of [8]. The only differ-93

ences are that, in defining intersection types and subtyping, we require the constant U, which is optional94

in [8], and our subtyping relation has the additional Axiom (Utop) and Rule (→∼).95

Definition 3.1 (Intersection Type Theories)96

1. Given a set of constants A and a distinguished constant U, the set TA of intersection types over
A∪{U} is generated by the grammar:

A ::= c | U | A → A | A∩A,

where c ∈ A.97
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2. A subtyping relation ≤ is a binary relation on TA closed under the following axioms and rules:

A ≤ A (Refl) B∩A ≤ B (IncL) B∩A ≤ A (IncR) A ≤ U (Utop)

B ≤ A B ≤ A′

(Glb)
B ≤ A∩A′

B ≤ A A ≤ A′

(Trans)
B ≤ A′

B′ ∼ B A ∼ A′

(→∼)
B → A ∼ B′ → A′

3. An intersection type theory (itt) T is determined by a set of type constants A and a subtyping98

relation on the set TA, i.e. T = ⟨A,≤T ⟩.99

We adopt the convention that ∩ has precedence over →. We write A ∼T B as short for A ≤T B and100

B ≤T A. The above rules permit to show that ∩ and → are congruences w.r.t. ∼T and moreover that ∩101

is idempotent, commutative and associative with neutral element U. We assume that
⋂

i∈ /0 Ai = U. We102

summarise this with a proposition which will be useful in Section 4.103

Proposition 3.2 The equivalence classes of an itt T w.r.t. the equivalence ∼T define a meet-semilattice104

enriched with a binary arrow constructor.105

Definition 3.3 (Type Assignment System) The intersection type assignment system induced by an itt
T = ⟨A,≤T ⟩ is a formal system deriving judgements of the shape Γ ⊢T M : A, where A ∈ TA and a basis
Γ is a finite mapping from term variables to types in TA:

Γ ::= /0 | Γ,x : A.

The axioms and rules of the type system are the following

(Ax)
Γ,x : A ⊢ x : A

(U)
Γ ⊢ M : U

Γ,x : B ⊢ M : A
(→I)

Γ ⊢ λx.M : B → A

Γ ⊢ M : B → A Γ ⊢ N : B
(→E)

Γ ⊢ MN : A

Γ ⊢ M : B Γ ⊢ M : A
(∩I)

Γ ⊢ M : B∩A

Γ ⊢ M : B B ≤T A
(≤)

Γ ⊢ M : A

It is easy to verify that the following rules are admissible

Γ,x : B ⊢ M : A C ≤T B
(≤-L)

Γ,x : C ⊢ M : A

Γ ⊢ M : A x ̸∈ Γ
(Weak)

Γ,x : B ⊢ M : A

where x ̸∈ Γ is short for x does not occur in Γ.106

The main properties of intersection type assignment systems are the Inversion Lemma and Subject107

Expansion, which are proved by induction on type derivations.108

Lemma 3.4 (Inversion Lemma [8, Theorem 14.1.1])109

1. If Γ ⊢T x : A and A ≁T U, then Γ(x)≤T A;110

2. If Γ ⊢T MN : A and A ≁T U, then there are I and Bi, Ci for i ∈ I such that
⋂

i∈I Ci ≤T A and111

Γ ⊢T M : Bi →Ci and Γ ⊢T N : Bi for all i ∈ I;112
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U∼ A → U (→ U) (B → A)∩ (B → A′)∼ B → A∩A′ (→∩)

B′ ≤ B A ≤ A′
(→)

B → A ≤ B′ → A′
U≤ B → A

(U≤)
U≤ A

Figure 1: Some axioms and rules for itt’s.

3. If Γ ⊢T λx.M : A, then there are I and Bi, Ci for i ∈ I such that
⋂

i∈I(Bi → Ci) ≤T A and113

Γ,x : Bi ⊢T M : Ci for all i ∈ I.114

Theorem 3.5 (Subject Expansion [8, Corollary 14.2.5(ii)]) M →β M′ and Γ ⊢T M′ : A imply

Γ ⊢T M : A.

Also crucial is the property of Subject Reduction, which however holds only with a proviso.115

Theorem 3.6 (Subject Reduction [8, Proposition 14.2.1(ii)])

M →β M′ and Γ ⊢T M : A imply Γ ⊢T M′ : A

if and only if116

Γ ⊢T λx.N : B →C implies Γ,x : B ⊢T N : C.

In fact, not all type systems induced by itt’s enjoy Subject Reduction. Consider T0 = ⟨{c0,c1},≤T0⟩,117

where T0 has only the axiom c0 → c0 ≤ c1 → c0, then ⊢T0 λx.x : c1 → c0, but x : c1 ̸⊢T0 x : c0. Subject118

Reduction fails since y : c1 ⊢T0 (λx.x)y : c0, but y : c1 ̸⊢T0 y : c0.119

A sufficient but not necessary condition for Subject Reduction is β -soundness.120

Definition 3.7 (β -soundness [8, Definition 14.1.4]) An itt T is β -sound if A≁T U and
⋂

i∈I(Bi →Ai)≤T121

B → A imply that there is J ⊆ I such that B ≤T
⋂

j∈J B j and
⋂

j∈J A j ≤T A.122

For example the itt T1 = ⟨{c0,c1},≤T1⟩, where ≤T1 has no other axioms and rules, is β -sound. In123

contrast, the itt T0 defined above is not β -sound. The itt T0 can be made β -sound by adding the axiom124

c1 ≤ c0. Two itt’s which are not β -sound but still satisfy Subject Reduction are defined in [11, 4].125

Following [14] we consider two important classes of itt’s.126

Definition 3.8 (Set condition) An itt T = ⟨A,≤T ⟩ satisfies the set condition if⋂
i∈I

Ai ≤T B1 → . . .→ Bn →C with C ≁T U implies A j ∼T B1 → . . .→ Bn → D

for some j ∈ I and some D ≁T U such that C∩D ∼T C.127

Definition 3.9 Consider axioms and rules in Figure 1.128

1. An itt is set-like if it satisfies the set condition and at least Axioms (→ U) and (→∩) hold.129

2. An itt is →-sound if it satisfies at least Axioms (→ U), (→∩), and Rules (→), (U≤) hold.130

In order to discuss λ -models over itt’s we recall the definition of λ -model. An environment in the set131

D is a total mapping from term variables to elements of D . Let ρ range over environments. As usual, we132

denote by ρ[x := d] the environment which returns d when applied to x and ρ(y) when applied to y ̸= x.133
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Definition 3.10 (λ -model [8, Definition 16.1.2]) A λ -model is a triple ⟨D , ·,J KD⟩, where · is a binary134

operation on D (application), J KD is a mapping from λ -terms and environments in D to elements of D135

(term interpretation), and J KD satisfies:136

1. JxKD
ρ = ρ(x);137

2. JMNKD
ρ = JMKD

ρ · JNKD
ρ ;138

3. Jλx.MKD
ρ = Jλy.M[x := y]KD

ρ ;139

4. ∀d ∈ D .JMKD
ρ[x:=d] = JNKD

ρ[x:=d] implies Jλx.MKD
ρ = Jλx.NKD

ρ ;140

5. ρ(x) = ρ ′(x) for all variables x which occur free in M implies JMKD
ρ = JMKD

ρ ′;141

6. Jλx.MKD
ρ ·d= JMKD

ρ[x:=d].142

This definition of λ -model was first formulated by Hindley and Longo [22].143

We can build λ -models whose domains are sets of filters of types according to the following defini-144

tion.145

Definition 3.11 (Filter [8, Definition 13.4.1]) Let T = ⟨A,≤T ⟩ be an itt and F ⊆ TA. The set F is a146

T -filter if:147

• U ∈ F;148

• A,B ∈ F imply A∩B ∈ F;149

• A ∈ F and A ≤T B imply B ∈ F.150

We use F and G as metavariables for filters and FT to denote the set of T -filters. If X ⊆ TA we denote151

by ↑T X the smallest T -filter which contains X . If X = {A} we use ↑T A as short for ↑T {A}.152

Filters can be endowed with an applicative structure as follows:153

Definition 3.12 (Filter Structure) Let ET be the set of environments in FT . The filter structure over T154

is the triple ⟨FT , ·,J KFT ⟩ where155

• application, · : FT ×FT → FT , is defined by

F ·G = {A | ∃B ∈ G. B → A ∈ F};

• term interpretation, J KFT : Λ×ET → FT , is defined by

JMKFT
ρ = {A ∈ TA | ∃Γ |= ρ. Γ ⊢T M : A},

where ρ ranges over ET and Γ |= ρ if and only if x : A ∈ Γ implies A ∈ ρ(x).156

It is easy to verify that J KFT satisfies all conditions required to be a λ -model (Definition 3.10), but157

the last one, which is essential when d is the interpretation of a λ -term. We always have J(λx.M)NKFT
ρ ⊆158

JM[x := N]KFT
ρ , since Subject Expansion always holds by Theorem 3.5.159

Theorem 3.13 ([8, Proposition 16.2.4]) The filter structure over T is a λ -model (dubbed filter model)
iff

J(λx.M)NKFT
ρ ⊇ JM[x := N]KFT

ρ

for all λ -terms M,N ∈ Λ, all variables x and all environments ρ in FT .160
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The condition J(λx.M)NKFT
ρ ⊇ JM[x := N]KFT

ρ means that all types of (λx.M)N are also types of161

M[x := N], i.e. that the type system ⊢T enjoys Subject Reduction. Then the following theorem follows162

naturally, being β -soundness a sufficient condition for Subject Reduction.163

Theorem 3.14 ([8, Corollary 16.2.9(i)]) If T is a β -sound itt, then the filter structure over T is a filter164

model.165

All set-like itt’s generate filter models, since the set condition implies β -soundness.166

As mentioned after Definition 3.7, in [11, 4] there are filter models over itt’s which are not β -sound.167

It is interesting to notice that all continuous functions are representable in a filter model over a β -168

sound itt. This generalises Theorem 2.13(iii) in [11].169

Notably graph models [?, ?] are isomorphic to filter models over set-like itt’s and inverse limit mod-170

els [?] are isomorphic to filter models over →-sound itt’s, see Example 35 in [14].171

We conclude this section giving a crucial definition in this paper:172

Definition 3.15 (Sensible Itt, Sensible Filter Model) An itt T is sensible if all unsolvable terms are173

typed only by types equivalent to U. A filter model FT is sensible if T is sensible, i.e. all unsolvable174

terms are interpreted in the bottom filter, ↑T U. Otherwise the itt and the filter model are said to be175

non-sensible.176

4 Transfer Theorems177

To the best of our knowledge the original proofs of head-normalisation for itt’s, either historically and178

logically, are based on three methodologies: proof-normalisation [34, 32, 37], indexed reductions [29],179

or Tait-Girard reducibility arguments [38, 20]. For the purposes of studying when itt’s are sensible,180

once a given itt is proved to be sensible it is sensible to try and design a setting where this result can181

be transferred easily to similar itt’s. To this end it appears convenient to take a more abstract, and182

less language-dependent, view of itt’s. We therefore introduce below a notion of type structure, called183

generalised intersection type theory (gitt), together with a notion of morphism between such structures,184

which will allow for transferring directly properties, such as sensibility, between type systems. We185

reckon this extension satisfactory, since the very proofs by Tait-Girard reducibility will appear as transfer186

results from the set of reducibility candidates viewed as generalised types, as will become apparent in187

Theorem 4.6 and in the next Section.188

Definition 4.1 (Generalised Intersection Type Theory) A generalised intersection type theory (shortly189

gitt) is a meet-semilattice ⟨Θ,⊑Θ⟩ with a top ⊤Θ and closed under an arrow type constructor⇝Θ. We190

denote by ⊓Θ the meet, by ∼Θ the equivalence induced by ⊑Θ, and we use α , β to range over the191

elements of Θ.192

Proposition 3.2 shows that an itt yields naturally a gitt.193

We introduce the following notion of morphism between gitt’s.194

Definition 4.2 (Embedding) Let ⟨Θ,⊑Θ⟩ and ⟨Θ′,⊑Θ′⟩ be two gitt’s, then ⟨Θ,⊑Θ⟩ is embeddable in195

⟨Θ′,⊑Θ′⟩ if there is a function κ : Θ → Θ′ such that:196

1. κ(α) =⊤Θ′ if and only if α =⊤Θ;197

2. κ(α ⇝Θ β ) = κ(α)⇝Θ′ κ(β );198
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3. κ(α ⊓Θ β ) = κ(α)⊓Θ′ κ(β );199

4. α ⊑Θ β implies κ(α)⊑Θ′ κ(β ).200

We can naturally extend the notion of Type Assignment Systems to gitt’s as follows:201

Definition 4.3 (Generalised Type Assignment System) The intersection type assignment system in-
duced by a gitt ⟨Θ,⊑Θ⟩ is a formal system deriving judgements of the shape ϒ ⊢Θ M : α , where α ∈ Θ

and a basis ϒ is a finite mapping from term variables to elements in Θ:

ϒ ::= /0 | ϒ,x : α.

The axioms and rules of the type system are the following

(Ax)
ϒ,x : α ⊢ x : α

(⊤)
ϒ ⊢ M : ⊤Θ

ϒ,x : β ⊢ M : α
(⇝I)

ϒ ⊢ λx.M : β ⇝Θ α

ϒ ⊢ M : β ⇝Θ α ϒ ⊢ N : β
(⇝E)

ϒ ⊢ MN : α

ϒ ⊢ M : β ϒ ⊢ M : α
(⊓I)

ϒ ⊢ M : β ⊓Θ α

ϒ ⊢ M : β β ⊑Θ α
(⊑)

ϒ ⊢ M : α

It is now natural to extend to gitt’s also the notions of filter and filter model, and then it is straight-202

forward to extend all results on itt’s in Section 3 also to gitt’s.203

A gitt ⟨Θ,⊑Θ⟩ is sensible if any unsolvable term has only types equivalent to ⊤Θ.204

The following transfer theorem will prove very useful in the sequel:205

Theorem 4.4 (Transfer) Let ⟨Θ,⊑Θ⟩ be embeddable in ⟨Θ′,⊑Θ′⟩. We get:206

1. if ⟨Θ′,⊑Θ′⟩ is sensible, then ⟨Θ,⊑Θ⟩ is sensible.207

2. if ⟨Θ,⊑Θ⟩ is non-sensible, then ⟨Θ′,⊑Θ′⟩ is non-sensible.208

Proof. Let ϒ ⊢Θ M : α , where M is unsolvable and α ≁Θ ⊤Θ. Then κ(ϒ) ⊢Θ′ M : κ(α), where κ(ϒ) =209

{x : κ(β ) | x : β ∈ ϒ} by the conditions in Definition 4.2. Condition (1) of 4.2 and α ≁Θ ⊤Θ imply210

κ(α) ≁Θ′ ⊤Θ′ . Therefore ⟨Θ′,⊑Θ′⟩ sensible gives ⟨Θ,⊑Θ⟩ sensible and ⟨Θ,⊑Θ⟩ non-sensible gives211

⟨Θ′,⊑Θ′⟩ non-sensible. □212

We will now construe Tait-Girard reducibility candidates as a gitt. Let S denote the set of solvable213

terms.214

Definition 4.5 A set X ⊆ S is saturated if it is closed under β -conversion and x
−→
M ∈ X for all x,

−→
M.215

The set of saturated sets is a complete lattice w.r.t. set inclusion, with B = {M ∈ Λ | M →∗
β

x
−→
M} as216

bottom and S as top. We use SAT to denote this lattice and SAT op to denote SAT with the reverse217

order having bottom S and top B. Formally218

SAT = ⟨{X ⊆ S | X is saturated},⊆⟩ and SAT op = ⟨{X ⊆ S | X is saturated},⊇⟩.
We define

X ⇒ Y = {M ∈ Λ | ∀N ∈ X MN ∈ Y},
where X , Y range over saturated sets and Λ. It is easy to verify that Y saturated implies X ⇒ Y saturated219

and that X ⇒ Λ = Λ. Moreover X and Y saturated imply X ∩Y saturated and X ∩Λ = X for all X .220

The following result is crucial.221
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Theorem 4.6 The gitt SΛ, namely ⟨SAT ∪{Λ},⊆⟩ with top Λ, meet ∩ and arrow ⇒ is sensible.222

Proof. We use the index SΛ instead of the index SAT ∪{Λ}. We show that ϒ ⊢SΛ M : X with X ≁SΛ Λ

implies that M ∈ X hence solvable. Let ϒ = {xn : Yn | n ∈ N} and Nn ∈ Yn for all n ∈ N. By induction on
the type derivations we can prove that ϒ ⊢SΛ M : X with X ≁SΛ Λ implies

M[xn := Nn | n ∈ N] ∈ X .

The most interesting case is when the last applied rule is Rule (⇝I). In this case M = λx.M′ and X =
Y ⇒ X ′ and ϒ,x : Y ⊢SΛ M′ : X ′. Let N ∈ Y , then by induction hypothesis we have that

M′[xn := Nn | n ∈ N][x := N] ∈ X ′,

which implies M[xn := Nn | n ∈ N]N ∈ X ′, since saturated sets are closed under β -conversion. Since
N ∈ Y is arbitrary by definition we conclude

M[xn := Nn | n ∈ N] ∈ Y ⇒ X ′ = X . □

The rest of this Section is devoted to giving examples of how to apply Theorem 4.4, above, to some223

itt’s and gitt’s thereof. It gives a very flexible criterion which cuts both ways, since it can be used both224

for reducing the sensibility of a filter model to that of the embedded filter model, but also for extending225

the non-sensibility of the embedded filter model to that of the filter model in which it embeds.226

Example 4.7227

1. The itt TBCD, defined in [7], is shown to be sensible by normalising type derivations. The not β -228

sound itt’s defined in [11, 4] are sensible, since they can be embedded in the itt TBCD by equating229

the two distinguished constants in such a way that the resulting subtyping amounts precisely to230

≤BCD.231

2. The →-sound itt T∗ with the constant c and the axiom c≤ c→ c is defined in [3]. Similarly we can232

define the →-sound itt T ∗ with the constant c and the axiom c→ c ≤ c. These itt’s are sensible,233

since they can be appropriately embedded in the sensible itt TCDZ defined in [13]. The itt TCDZ234

has only two totally ordered constants. The embedding is realised by interpreting c as the smaller235

constant in the former case and as the bigger constant in the latter case.236

3. The →-sound itt T ♭ with the constant c and the axiom c∼ (c→ c)∩ c can be again embedded in237

the sensible itt TCDZ defined in 2. This embedding is realised by mapping c in the smaller constant.238

The next proposition makes it possible to build non-sensible filter models starting from sensible ones.239

Proposition 4.8 If T is a sensible itt we can define a non-sensible itt T ′ such that T is embeddable in240

T ′.241

Proof. Let T = ⟨AT ,≤T ⟩. We define T ′ by adding a constant c ̸∈ AT and the axiom c ∼ c→ c. The242

embedding is the identity. In this way T ′ is obtained from T essentially by adding the itt generating the243

filter model isomorphic to Park model [31] defined in [25]. □244

This proposition permits us to build non-sensible not β -sound filter models starting from the filter245

models defined in [11, 4].246
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5 Morphisms Engineering247

The power of the Transfer Theorem 4.4 in proving sensibility of itt’s, or more generally gitt’s, derives248

from the existence of appropriate embeddings in SAT . Historically, this was done implicitly by defining249

appropriate type interpretations based on Tait-Girard’s computability arguments in [38, 20, 13, 27, 23].250

In this section, we discuss two conditions on itt’s, or gitt’s derived thereof, which ensure that ap-251

propriate morphisms, yielding sensibility, exist. The first condition, Definition 5.2, is not effective and252

it is an almost trivial reformulation of the results in the previous section. Its interest lies in that it can253

be reversed, Theorem 5.5, for a very large class of itt’s, including inverse limit models, thus showing254

that SAT is somewhat universal. The second condition, Definition 5.7, is a reformulation of Mendler’s255

condition [30] to intersection type theories, and allows for showing constructively the sensibility of many256

itt’s.257

Since most of the gitt’s in this section arise from itt’s, we shall reason directly on itt’s.258

An A-environment is a mapping from a set of type constants, A, into SAT . We use ζA to range over259

A-environments.260

Definition 5.1 (Type Interpretation) The type interpretation of the set of intersection types TA induced
by the A-environment ζA, notation [A]ζA , is defined by:

[U]ζA = Λ [c]ζA = ζA(c) [A → B]ζA = [A]ζA ⇒ [B]ζA [A∩B]ζA = [A]ζA ∩ [B]ζA .

Notice that either [A]ζA is a saturated set or [A]ζA = Λ.261

Definition 5.2 (Saturation) An itt T is saturated if there is a type interpretation which gives rise to a262

morphism in the sense of Definition 4.2 between the gitt induced by T and SAT .263

It is easy to verify that all conditions of Definition 4.2 are satisfied by type interpretations, but for264

condition 1 which requires that Axiom (→ U) holds in T . Then, Theorems 4.4(1) and 4.6 immediately265

imply that:266

Theorem 5.3 A saturated itt is sensible.267

For →-sound itt’s, Theorem 5.3 can be reversed. For this we first need an easy auxiliary lemma.268

Lemma 5.4 If Γ,x : B ⊢T Mx : A where x does not occur in M and Γ′ ⊢T N : B, then Γ′′ ⊢T MN : A for269

some Γ′′.270

Proof. Define

Γ1⋓Γ2 = {y : C1∩C2 | y : C1 ∈Γ1 y : C2 ∈Γ2}∪{y : C1 | y : C1 ∈Γ1 y ̸∈Γ2}∪{y : C2 | y : C2 ∈Γ2 y ̸∈Γ1}.

We can build a derivation of Γ′′ ⊢T MN : A just by replacing the axioms Γ̂,x : B ⊢T x : B with derivations271

of Γ̂⋓Γ′ ⊢T N : B in a derivation of Γ,x : B ⊢T Mx : A. □272

Theorem 5.5 Each →-sound and sensible itt is saturated.273

Proof. Let T = ⟨A,≤T ⟩ be an →-sound and sensible itt. Define the type interpretation

ζ̂A(c) = {M | ∃Γ Γ ⊢T M : c}.
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[B → A]
ζ̂A

= [B]
ζ̂A

⇒ [A]
ζ̂A

by Definition 5.1
= {M | ∀N ∈ [B]

ζ̂A
MN ∈ [A]

ζ̂A
} by Definition of ⇒

= {M | ∀N ∃Γ Γ ⊢T N : B Γ ⊢T MN : A} by induction
= {M | ∃Γ Γ,x : B ⊢T Mx : A} where x is fresh by Lemma 5.4
= {M | ∃Γ Γ ⊢T M : Bi → Ai x : B ⊢T x : Bi ∀i ∈ I

⋂
i∈I Ai ≤T A}

by Lemma 3.4(2)
= {M | ∃Γ Γ ⊢T M : Bi → Ai B ≤T Bi ∀i ∈ I

⋂
i∈I Ai ≤T A}

by Lemma 3.4(1)
= {M | ∃Γ Γ ⊢T M : B → Ai ∀i ∈ I

⋂
i∈I Ai ≤T A}

by Rule (≤) using Rule (→)
= {M | ∃Γ Γ ⊢T M :

⋂
i∈I(B → Ai)

⋂
i∈I Ai ≤T A} by Rule (∩I)

= {M | ∃Γ Γ ⊢T M : B →
⋂

i∈I Ai
⋂

i∈I Ai ≤T A}
by Rule (≤) using Axiom (→∩)

= {M | ∃Γ Γ ⊢T M : B → A} by Rule (≤) using Rule (→).

[B → U]
ζ̂A

= [B]
ζ̂A

⇒ [U]
ζ̂A

by Definition 5.1
= {M | ∀N ∈ [B]

ζ̂A
MN ∈ [U]

ζ̂A
} by Definition of ⇒

= {M | ∀N ∃Γ Γ ⊢T N : B Γ ⊢T MN : U} by induction
= Λ by Rule (U)
= {M | ⊢T M : U} by Rule (U)
= {M | ⊢T M : B → U} by Rule (≤) using Axiom (→ U).

Figure 2: Proof of 5.5.

It is enough to show now that [A]
ζ̂A

= {M | ∃Γ Γ ⊢T M : A}, since all conditions of Definition 4.2 hold,
and in particular A ≤T B implies

{M | ∃Γ Γ ⊢T M : A} ⊆ {M | ∃Γ Γ ⊢T M : B}.

The proof is by induction on the definition of type interpretation. The only two interesting cases are274

proved in Figure 2, where we assume A ≁ U. □275

Notice that Theorem 5.2 does not provide an effective characterisation of sensibility for →-sound276

itt’s, since the definition of A-environment is not constructive per se.277

The rest of this section is devoted to showing that a special class of itt’s, satisfying the consistent278

polarity condition in Definition 5.7, is sensible. In any case, this class of itt’s, which we call natural,279

includes essentially all sensible itt’s ever used explicitly in the literature.280

Definition 5.6 (Natural Itt’s) An T = ⟨{ci}i∈I,≤T ⟩ is natural if ≤T satisfies some of the axioms and281

rules in Figure 1, possibly including the set condition, and is otherwise determined by a set of axioms282

of a very special form, namely A = {ci ∼ Ai}i∈I . Moreover we assume that each type constant occurs283

exactly once on the left hand side of an axiom in A , possibly vacuously as an identity. The set A is the284

characteristic set of T .285

We are now in the position of giving the following crucial definition.286
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Definition 5.7 (Positive Polarity Condition) A natural T = ⟨{ci}i∈I,≤T ⟩ satisfies the positive polarity
condition if in all equations of the form c ∼ A derivable in ≤T , from Pos(A) we cannot derive Neg(c)
applying the following rules:

Pos(A → B)

Neg(A)

Pos(A → B)

Pos(B)

Neg(A → B)

Pos(A)

Neg(A → B)

Neg(B)

Pos(A∩B)

Pos(A)

Pos(A∩B)

Pos(B)

Neg(A∩B)

Neg(A)

Neg(A∩B)

Neg(B)

It is easy to check that this condition essentially amounts to the fact that if c ∼T A, the constant c does287

not occur in A nested inside an odd number of arrows.288

From now on until the end of the section, unless otherwise stated, we will assume that itt’s are natural289

and satisfy the positive polarity condition in Definition 5.7. Moreover for simplicity, we consider only290

sets of axioms in which the axioms are of the following three forms: c∼ c, or c∼ c′ → c′′, or c∼ c′∩c′′.291

In fact we can always transform sets of axioms in this form by removing renamings and adding new292

constants and axioms to simplify the right-hand-side of the original axioms.293

To prove that T = ⟨{ci}i∈I,≤T ⟩ is saturated we have to find an A-environment ζA which induces a294

morphism. Since ⇒ on saturated sets is contra-variant on the domain and covariant on the co-domain,295

the set condition is harmless since it only allows for less set inclusions that those which hold in every296

type interpretation. Moreover we have the following proposition.297

Proposition 5.8 Every type interpretation satisfies the axioms and rules in Figure 1.298

Proof. We only consider two interesting cases. Rule (→) follows from the contra-variance/covariance of299

⇒. Rule (U≤) follows from the fact that X ⇒ Y = Λ implies Y = Λ. □300

The natural idea to find a type interpretation for a natural itt in SAT , would be to define, out of301

the characteristic set, a monotone operator and use the fact that SAT is a complete lattice and hence302

by Knaster-Tarski’s Theorem each monotone operator has a complete lattice of fixed points. But the303

positive polarity condition, Definition 5.7, yields only an individual constraint on each type constant,304

which cannot be extended uniformly. Conflicting polarities would naturally arise as in the case of the305

itt’s in the following example.306

Example 5.9 Let A =A ′∪A ′′, where A ′= {c1 ∼ c2 → c1,c2 ∼ c1 → c2} and A ′′= {c3 ∼ c4∩c5,c4 ∼307

c1 → c3,c5 ∼ c2 → c3}. The axioms in A ′ require that c1 and c2 have opposite polarities, while the308

axioms in A ′′ require that c1 and c2 have the same polarity.309

In order to be able to define an appropriate type interpretation we need therefore to introduce an310

appropriate order on the constants appearing in the characteristic set, so that they can be progressively311

dealt with. To this end we need a number of definitions.312

Definition 5.10 (Completion, Closure, Equivalence Class) Consider an itt T = ⟨{c j} j∈J,≤T ⟩ and a313

subset A = {ci ∼ Ai}i∈I of its characteristic set.314

1. We say that axiom c∼ A defines the constant c. Hence the set of constants defined in A , notation315

C (A ), is {ci}i∈I .316

2. The completion of a full set of axioms A is A ∪{c∼ c | c′ ∼A∈A & c occurs in A & c ̸∈C (A )}.317

A set of axioms which coincides with its completion is complete.318

3. Let A be complete and c ∈ C (A ).319
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(a) The closure of c for A , notation γ(c,A ), is C (A ′), where A ′ is the smallest complete subset320

of A such that c ∈ C (A ′).321

(b) The equivalence class of c for A , notation [c]A , is defined by

{c′ ∈ C (A ) | γ(c,A ) = γ(c′,A )}.

Clearly equivalence classes for a complete A induce an equivalence relation on constants parameterised322

on A , namely, c≡A c′ if [c]A = [c′]A . We can thus define the following relation, which is a well-defined323

partial order.324

Definition 5.11 (Partial Order) Let A be complete and c,c′ ∈C (A ). The partial order between equiv-325

alence classes for A is defined by [c]A ⪯A [c′]A if γ(c′,A )∩ [c]A ̸= /0.326

Example 5.12 Let A , A ′ and A ′′ be as in Example 5.9. Both A and A ′ are complete, while A ′′
327

is not. Moreover γ(c1,A ) = γ(c2,A ) = C (A ′) and γ(c3,A ) = γ(c4,A ) = γ(c5,A ) = C (A ). So328

the axioms in A define two equivalence classes: [c1]
A = C (A ′) and [c3]

A = {c3,c4,c5}, ordered by329

[c1]
A ⪯A [c3]

A .330

We are now in the position of proving the main result, Theorem 5.17, namely that a natural itt whose331

characteristic set of axioms satisfies the positive polarity condition, in Definition 5.7, cannot type an332

unsolvable term. We do this in three steps.333

1. We restrict to natural type theories which are finite. That this kind of compactness result is enough334

for dealing even with infinite sets of axioms was first noticed by Mendler [30], since all but a335

number of constants are ever used in any type derivation. Moreover, if the defining equation of a336

constant is not used in a derivation where that constant appears, then that constant can be safely337

taken to be equal just to itself.338

2. We show how to give a type interpretation for a complete set of axioms A such that C (A ) consists339

of a single equivalence class for A , Proposition 5.15.340

3. We show how to extend a given type interpretation for a complete set of axioms A to a type341

interpretation for the larger complete set of axioms A ′ such that the added constants have all the342

identity axiom in A ′, Proposition 5.16.343

Both Propositions 5.15 and 5.16 are proved exploiting the fact that complete subsets of A define appro-344

priate monotone operators on the complete lattice Πi∈IXi, where Xi can be either SAT or SAT op. Then345

any fixed point of these operators, which we know to exist, provides the tuple of saturated sets giving346

rise to the ζA-environment which we need.347

In order to define the operators we first need to decorate constants in the axioms A = {ci ∼ Ai}i∈I348

with a polarity p∈ {+,−,±}. The intuition is that the axiom associated to a constant c+ should define an349

operator that is monotone in SAT on the variable corresponding to that constant, and the one associated350

to a constant c− should define an operator that is monotone in SAT op on the variable corresponding351

to that constant. The decoration ± is used for constants whose axiom is the identity. The polarity of352

constants can be extended in a natural way to all types built using them.353

Definition 5.13 (Polarity) The predicates Pos and Neg on types with polarised constants are defined
by:

Pos(c+) Pos(c±) Neg(c−) Neg(c±)

Neg(A) Pos(B)

Pos(A → B)

Pos(A) Neg(B)

Neg(A → B)

Pos(A) Pos(B)

Pos(A∩B)

Neg(A) Neg(B)

Neg(A∩B)
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Definition 5.14 A decoration of constants, {cpi
i }i∈I , agrees with a set of axioms A = {ci ∼ Ai}i∈I if354

c+i ∼ Ai implies Pos(Ai), c−i ∼ Ai implies Neg(Ai) and c±i ∼ Ai implies Ai = ci.355

Let B = {c̃i ∼Ai}i∈I be a complete set of axioms whose type constants are all in the same equivalence
class for B, and let {c̃pi

i }i∈I be a decoration of the constants which agrees with B. Let ⊆
⊇ denote ⊆ for

SAT and ⊇ for SAT op. It is easy to see that there exists a decoration, by the positive polarity condition
in Definition 5.7, where moreover no constant is decorated with ±. Consider the lattice (Πi∈IXi,

⊆
⊇)

where Xi =SAT if pi =+ and Xi =SAT op if pi =− and ⊆
⊇ is the order induced on the cartesian product

by the order on its components. That is ⟨Xi | i ∈ I⟩ ⊆
⊇⟨X ′

i | i ∈ I⟩, if, for all i ∈ I, Xi and X ′
i are saturated sets

and Xi
⊆
⊇X ′

i . Let X range over variables. Define the operator associated to B, OB : Πi∈IXi → Πi∈IXi, by

OB(⟨Xi | i ∈ I⟩) = ⟨A⋆
i | i ∈ I⟩

where the mapping _⋆ is defined by:

A⋆ =


Xi if A = c̃p

i

X j ⇒ Xk if A = c̃p
j → c̃p′

k

X j ∩Xk if A = c̃p
j ∩ c̃p′

k .

Then we can easily prove356

Proposition 5.15 Let B = {c̃i ∼ Ai}i∈I be a complete set of axioms whose type constants are all in the357

same equivalence class for B, then the operator OB defined above is monotone.358

Let B = {c̃i ∼ Ai}i∈I ⊆ A and let C (B) be an equivalence class for A such that the constants in B
are either defined in B (i.e. they belong to {c̃i}i∈I) or they belong to {c̃ j} j∈J with I ∩ J = /0 and we have
already a type interpretation in SAT for them given by X j with j ∈ J. Define BA =B∪{c̃ j ∼ c̃ j} j∈J . It
is easy to see that, by the positive polarity condition in Definition 5.7, there exists a decoration {c̃ph

h }h∈I∪J
of the constants in C (BA ) which agrees with BA , giving the polarity ± to all constants in {c̃ j} j∈J .
Consider the lattice (Πh∈I∪JXh,

⊆
⊇) where Xh = SAT if ph =+ or ph =± and Xh = SAT op if ph =−.

Let ⟨Xh | h ∈ I∪J⟩ ⊆
⊇⟨X ′

h | h ∈ I∪J⟩ and X be as in previous case. Define the operator associated to BA ,
OBA : Πh∈I∪JXh → Πh∈I∪JXh, by

OBA (⟨Xh | h ∈ I ∪ J⟩) = ⟨A⋆
h | h ∈ I ∪ J⟩

where the mapping _⋆ is defined by X j if A = c̃±j and X j is the solution for c̃ j with j ∈ J, and as in359

previous case otherwise. We easily get360

Proposition 5.16 Let B = {c̃i ∼ Ai}I∈I ⊆ A and let C (B) consist of an equivalence class for A such361

that all the constants appearing in B either are in C (B) or are such that we already have a type362

interpretation for them. Then the operator OBA defined above is monotone.363

We can now prove the main result.364

Theorem 5.17 A natural itt with a possibly infinite characteristic set satisfying the condition of positive365

polarity, in Definition 5.7, is sensible.366

Proof. Consider a finite derivation in a natural itt T . Without loss of generality we can restrict to the367

finite natural itt T ′ whose characteristic set involves only the constants actually used in that derivation,368

possibly assigning the identity to constants whose defining axioms have not been used in the derivation.369
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Now use Proposition 5.15 for one of the minimal equivalence classes, according to the partial order370

in Definition 5.11 on the constants in T ′, to derive a first partial type interpretation of the constants.371

Notice that the set of axioms defining the constants in a minimal equivalence class is complete. Use372

Proposition 5.16 to extend such a type interpretation to all the constants in T ′ adding incrementally an373

equivalence class such that the solutions for the constants not belonging to that equivalence class have374

already be found. Since T ′ is finite, we can always find such an equivalence class, namely one of the375

minimal classes in the partial order consisting of the equivalence classes which have not be yet dealt376

with. Finally, using Theorem 5.3 we conclude the proof. □377

We end this section with a few examples. The sensibility of the first theory follows directly by378

applying Propositions 5.15 and 5.16. The second example deals with a type theory, which was introduced379

in [14]. Its sensibility can be dealt with either using Theorem 5.17 or even directly taking the fixed380

points of a monotone operator defined on countable sequences of SAT ’s and SAT op’s. Finally, the381

third example deals with a theory whose sensibility, to our present knowledge, can be dealt with only382

using Theorem 5.17, through its finite approximations. This is somewhat puzzling because once we383

know that the theory is sensible, by Theorem 5.5, we can in principle define a type interpretion in SAT .384

Example 5.18385

1. Consider the axioms A of Example 5.9 and let A= C (A ).386

• We start from A′ = [c1]
A , which is the minimum class of A . Let ⟨X1,X2⟩ be a fixed point of

the operator
OA′ : SAT �SAT op → SAT �SAT op

defined by
OA′(⟨X1,X2⟩) = ⟨X2 ⇒ X1,X1 ⇒ X2⟩.

• We then analyse the class [c3]
A taking advantage from the solutions for c1, c2 already com-

puted. We take as ⟨X1,X2,X3,X4,X5⟩ the fixed point of the operator

OA : SAT �SAT �SAT �SAT �SAT → SAT �SAT �SAT �SAT �SAT

defined by

OA(⟨X1,X2,X3,X4,X5⟩) = (⟨X1,X2,X4 ∩X5,X1 ⇒ X3,X2 ⇒ X3⟩).

The sensibility of a natural itt with characteristic set A can be shown by taking ζA(ci) = Xi for387

1 ≤ i ≤ n.388

2. Consider the axioms A∞ = {c ∼ c}∪ {cn ∼ cn+1 → c | n ∈ N} and A∞ = C (A∞). The minimal
class of A∞ is [c]A∞ and we can take for ζA∞

(c) an arbitrary saturated set, for example B. But then
there is no finite minimal equivalence class from which we can start our procedure for defining a
type interpretation in SAT . We could consider the finite approximations of a such a theory, but
we can show also that a natural itt with characteristic set A∞ is sensible by defining directly the
operator

OA∞
: SAT � (SAT �SAT op)N → SAT � (SAT �SAT op)N

by
OA∞

(⟨X⟩ · ⟨Xn | n ∈ N⟩) = ⟨B⟩ · ⟨Xn+1 ⇒ X | n ∈ N⟩.

A fixed point of OA∞
exists, since it is monotone. Let ⟨B⟩ · ⟨Xn | n ∈ N⟩ be such a fixed point, then389

ζA∞
(c) = B and ζA∞

(cn) = Xn for n ∈ N is the A∞-environment we are looking for.390
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3. Consider the itt given by the set of axioms {c0,n ∼ c1,n → c0,n+1,c1,n ∼ c0,n → c1,n+1 | n ∈ N}. This391

theory can be taken to be →-sound and can be proved to be β -sound. Moreover finite approxima-392

tions of this theory can be used to show its sensibility using Theorem 5.5. We ignore how to define393

inductively an embedding of this theory in SAT .394

6 Towards a Complete Characterisation of Sensible Itt’s395

Mendler in [30] studied second order λ -calculus with minimal and maximal fixed point type equations.396

He proved that the system is strongly normalising if and only if the fixed point equations satisfy essen-397

tially the positive polarity condition in Definition 5.7. Theorems 5.3 and 5.5 are the analogues, albeit not398

effective, of Mendler’s result, for →-sound intersection type systems and solvable terms. The positive399

polarity condition on intersection type theories is only a sufficient condition for sensibility. We can in-400

deed build a type interpretation which is, or finitely approximates, an embedding into SΛ, for a natural401

itt’s whose characteristic set satisfies the positive polarity condition, but this is not a necessary condition402

as was the case in [30]. The intersection operator ∩ can, in fact, sterilises the contra-variant behaviour of403

the arrow constructor, as we can see in the following examples. All the itt’s considered in these example404

are assumed to be →-sound and moreover can be proved to be β -sound by induction on their subtypings.405

Example 6.1 (Elimination of negative occurrences)406

1. Let T2 be the itt with constants {c0,c1} and axiom

c0 ∼ c0 ∩ c1 → c0.

It is immediate to see that the characteristic set of T2 does not satisfy the positive polarity condi-407

tion, in Definition 5.7.408

Nevertheless T2 can be shown to be sensible by embedding it in the itt T ′
2 obtained by adding the

axiom c1 ≤ c0, which gives
c0 ∼T ′

2
c1 → c0

generating a sensible filter model by Proposition 4.4(1). Alternatively, instead of adding the axiom
c1 ≤ c0 we can obtain a sensible filter model, again by Proposition 4.4(1), by adding the axiom

c1 ∼ U→ c0

since this axiom implies c1 ≤ c0 by Rule (→).409

Notice, on the other hand, that if we add to T2 the axiom c0 ≤ c1 we get c0 ∼T2 c0 → c0. Then the410

resulting itt is non-sensible by Proposition 4.4(2), because the non-sensible itt generating the filter411

model isomorphic to Park model [31] defined in [25] is embeddable in it.412

2. Let T3 be the itt with constants {c0,c1,c2} together with the axiom

c0 ∼ c0 ∩ (c1 → c2)→ c1.

The itt TCDZ considered in Example 4.7(2) has constants {c3,c4} and the axioms

c3 ∼ c4 → c3 c4 ∼ c3 → c4 c3 ≤ c4.

We can show that T3 is sensible by embedding it in TCDZ via the structural extension ι̂ of ι defined
by:

ι(c0) = c4 ι(c1) = c4 ι(c2) = c3.
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Now, since ι(c0) = c4 and

ι̂(c0 ∩ (c1 → c2)) = ι(c0)∩ (ι(c1)→ ι(c2)) = c4 ∩ (c4 → c3)∼TCDZ c4 ∩ c3 ∼TCDZ c3

which implies ι̂(c0 ∩ (c1 → c2) → c1) = ι̂(c0 ∩ (c1 → c2)) → ι(c1) ∼TCDZ c3 → c4 ∼TCDZ c4, we
have as required that

ι(c0)∼TCDZ ι̂(c0 ∩ (c1 → c2)→ c1).

Achieving an effective Mendler-like completeness result appears critical even for natural intersection413

types and solvable terms, since there are cases where the intersection operator does not prevent the414

contra-variant behaviour of implication to have the upper hand, as we can see in the following example.415

Example 6.2 Let T4 be the →-sound itt with constants {c0,c1,c2,c3} and with the axiom

c0 ∼ c0 ∩ (c1 ∩ (c1 → c2)→ c2)→ c3.

We can type Ω2Ω2 with c3 since ⊢T4 Ω2 : c0 and ⊢T4 Ω2 : c1 ∩ (c1 → c2)→ c2. The β -soundness of T4416

can be shown by induction on ≤T4 and hence T4 generates a filter model.417

Theories of Sensible Filter Models418

Models give semantics. But what are semantics? In the philosophical tradition crystallised by Leibniz,419

ontological entities arise once we can tell them apart. So semantics are essentially congruences. Given420

that there is a plethora of sensible filter models, we could imagine that these would provide a corre-421

sponding plethora of semantics for λ -calculus, i.e. λ -theories. Formally a λ -theory is just a non-trivial422

congruence over λ -terms, closed under β -conversion. But this appears not to be immediately the case.423

All the λ -theories of sensible filter models which we have considered in this paper appear to equate424

all λ -terms which have the same Böhm tree, i.e. their λ -theories are at least B. We refer to [6, Chapter425

16] for more details on λ -theories and Böhm trees. This is the case for the filter model isomorphic to426

Scott’s inverse limit model [11], whose theory is the maximal sensible theory H ∗ [6, Definition 16.2.1],427

the filter model over TCDZ , defined in Example 4.7(2), whose theory is the weaker Bη [6, Definition428

4.1.4(iii)], and of course the filter model over TBCD, defined in Example 4.7(1), whose theory is B [6,429

Definition 16.4.1].430

We have not yet found any filter models whose theory is weaker than B. It appears that as soon as we
separate two terms with the same Böhm tree, we break the sensibility of the model. But there are many
filter models which we know to be sensible and for which we have not yet characterised the λ -theory
they define, for instance the filter model generated by the gitt SΛ in Section 4. On the other hand there
are itt’s which we do not know if they are sensible or not, but which separate fixed points. An interesting
example which separates Turing’s and Church’s fixed point, which we ignore if it is sensible, is the itt
given by the only axiom

c∩ (c→ A)→ B ≤ c∩ (c→ A),

where c is a constant and A and B are arbitrary types such that B ≤ A.431

The minimal sensible theory is H [6, Definition 4.1.6(ii)]. It is an intriguing open problem whether432

this theory is precisely the theory of some filter model, or whether filter models have hitherto unknown433

semantical implications. We hope that this paper will stimulate readers to taking up this intriguing open434

question, which parallels for sensible theories the open question discussed in [?] for general λ -theories.435
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We conclude this subsection with a last open question. There are two notions of sensible filter436

model. There is a weaker notion that expresses that all unsolvable terms are equated, and there is a437

stronger notion that expresses that all unsolvables are equated in the bottom element of the filter model.438

We ignore if they are equivalent.439

7 Related Work and Conclusion440

Since the invention in the late seventies, intersection types have revolutionised the approach to semantics441

of functional programming languages in multiple ways. Firstly, intersection types have reversed the442

traditional understanding of the relation of specifications to programs, justifying the correctness-oriented443

approach to program construction. Namely, we should use the specifications themselves to construct a444

program which meets them, rather than try to prove that an existant program is correct. This has been445

expressed categorically as a duality, see Abramsky [1], or by means of pointless topology [35]. Secondly,446

intersection types have made explicit the connection between static and dynamic semantics, namely,447

the former semantics provides a finitary approximation of the latter. Thirdly, intersection types have448

allowed for static specifications of a plethora of interesting classes of λ -terms [16]. But, more generally,449

intersection types have provided, in the past half century, the paradigm for expressing and studying450

all sorts of semantics of programming languages ranging from quantitative semantics [18, 9, 2, 5] to451

qualitative semantics [11, 1], from games [24, 17, 19] to power series [21], and for all sorts of domains.452

Among the vast number of presentations available today of intersection type theories, in this paper453

we have built upon the recent comprehensive discussion of filter models and unsolvable terms, which454

appears in [14]. Actually, the present paper is a counterpart to that paper in that we discuss sub specie455

typorum intersectionibus, sensible filter models or, what is its syntactic analogue, head normalising456

terms.457

Intersection type theories are very flexible and hence expressive, but this makes them also rather dif-458

ficult to classify exhaustively. For instance the nice characterisation given by Mendler [30], of recursive459

second order type theories which type only strongly normalising terms, cannot be paralleled in the con-460

text of itt’s and head normalising terms. There are plenty of itt’s which do not satisfy any straightforward461

polarity criterion but nonetheless type non-trivially only head normalising terms. In [15] we argue that462

this is the case even for intersection-free axioms, contradicting blatantly the simple minded analogue of463

Mendler’s condition. E.g., the theory with the single axiom c ∼ (((c → c0) → c1) → c2 for c0,c1,c2464

generic constants, can type only head-normalising terms [15].465

In this paper, we construe itt’s as special meet-semilattices and show that morphisms in the opposite466

category of meet-semilattices preserve sensibility, see Theorem 4.4(1). Moreover we show that the meet-467

semilattice SAT is universal in the sense that an →-sound itt types non-trivially only head-normalising468

terms if and only if it can be embedded, as a meet-semilattice in it, see Theorems 5.3 and 5.5. We provide469

a number of techniques for putting this result into action and give various examples. An immediate470

consequence is that sensibility transfers transitively in the op-category. Thus once we have a sensible471

itt, this can play the role of SAT , and sensibility can be easily transferred to all itt’s which embed in472

it. Lacking suitable sensible itt’s, we need to define a direct morphism between an itt and SAT . This473

can be achieved for a large class of natural itt’s whose characteristic axioms satisfy a positive polarity474

condition. This condition essentially amounts to the condition introduced by Mendler in [30] for second475

order λ -calculus. Thus, by repeatedly solving fixed point equations in SAT , which is a complete lattice,476

we can prove Theorem 5.17, which amounts to the “if” part of Mendler’s result.477

Providing a syntactical effective criterion for determining if an itt is sensible does not appear feasible,478
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however, since intersections can produce rather unanticipated consequences, already in natural itt’s. See479

the examples in Example 6.1. We have not studied itt’s whose axioms are not equivalences or both whose480

sides are types.481

In conclusion we have explored what was a “seasoned" problem area and provided some advance-482

ment both in terms of conjectures and in terms of results.483
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