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Abstract—We address the problem of managing cloud applica-
tions, consisting of a set of virtual machines (VMs), characterized
by bursty and dynamic workloads, in such a way to provide guar-
antees on their Quality-of-Services (QoS) and, at the same time, to
minimize the energy consumption of the physical infrastructure
running them.

We propose a fuzzy controller, Fuzzy-Q&E, that is able to
allocate to the VMs of each cloud application the minimum
amount of physical capacity needed to meet its QoS requirements.
In this way, the number of physical resources that must be
switched-on at any given time is reduced with respect to the
case in which physical machines are statically provisioned and,
consequently, less energy is required to run a given cloud
workload.

We implement a prototype of our controller on a Xen-based
testbed, and we perform a set of experiments using an E-
Commerce benchmark in which we compare Fuzzy-Q&E against
DynaQoS, a state-of-the-art fuzzy controller for virtualized re-
sources. Experimental results show that Fuzzy-Q&E outperforms
DynaQoS both in terms of the ability of meeting the QoS level of
the application, and of the amount of physical capacity allocated
to each VM.

I. INTRODUCTION

Many modern Internet services are implemented as cloud
applications, that consist of a set of Virtual Machines (VMs)
allocated and run on a physical infrastructure, typically owned
by an Infrastructure Provider (IP), managed by a virtualization
platform (e.g., Xen [1]). These applications typically require
that specific levels of user-perceived Quality-of-Service (QoS),
usually expressed as a high-level Service Level Objective
(SLO), are guaranteed; failing to do so results in a money
penalty for the IP.

A possible approach to fulfill the SLOs of an application,
especially in presence of time-varying workloads (a charac-
teristic common to many cloud applications [2]), consists in
estimating and allocating to the application the amount of
physical capacity it requires to meet its SLO under peak
workload demand. In order to avoid that competing VMs,
sharing the same physical resource(s), “steal” to each other
the capacity allocated them, suitable non work-conserving
scheduling mechanisms are used by the hypervisor: in general,
each VM is associated with a CAP (a real number, usually
taking values in the range between 0 and 100), that fixes
the maximum amount of CPU that the VM will be able to
consume, even if the host system has idle CPU cycles.

Provisioning for peak demand, however, implies that for
off-peak workloads the CAP is over-allocated to the VMs of
the applications. Consequently, less VMs can be placed on the
same physical machine, and more physical machines must be
switched on to run the workload that, in turn, induces a higher
power consumption. To maximize profit, the IP must instead
dynamically adjust the amount of physical capacity allocated
to each VM to match the current workload demand, so that
it can balance the need of reducing the number of switched-
on physical machines with the one of ensuring that the VM
receives enough physical resource capacity to meet its SLOs
(so that money penalties are avoided).

In this paper, we propose Fuzzy-Q&E (where “Q” and “E”
stand for “QoS” and “Energy”, respectively), a fuzzy feedback
control system [3], [4] that is able to meet the SLOs of
cloud applications by dynamically allocating to their VMs just
the amount of physical capacity that is needed to reach the
SLOs for current workload conditions. In this way, Fuzzy-
Q&E reduces the average CAP allocated to the various VMs
of an application, thus enabling a greater consolidation level
on the machines of the physical infrastructure and, hence, to
reduce the number of switched-on machines.

We implement a prototype of Fuzzy-Q&E on a Xen-
based testbed, and we perform a set of experiments using
an E-Commerce benchmark [5], subject to a bursty and time-
varying workload, in which we compare our controller against
DynaQoS [6], a state-of-the-art fuzzy controller for virtualized
resources that has been shown to outperform classical model-
based controllers. Experimental results show that Fuzzy-Q&E
outperforms DynaQoS both in terms of the ability of achieving
application SLOs, and of the amount of physical capacity
allocated to each VM. This, in turn, enables the achievement
of a higher consolidation level (and hence greater energy
savings) on a given physical infrastructure than existing fuzzy
controllers.

The rest of the paper is organized as follows. In Section II,
we define the context for the problem that we tackle in this
paper. In Section III-B, we illustrate the design of the Fuzzy-
Q&E control system. In Section IV, we present the results
obtained from an experimental evaluation. Related works are
discussed in Section V. Finally, in Section VI, we conclude
the paper and discuss possible future works.



II. BACKGROUND AND MOTIVATION

We consider a physical computing infrastructure, managed
by a virtualization platform that provides a CAP-based mech-
anism to specify and enforce limitations on the maximum
amount of CPU capacity allocated to each VM running on
it.

We assume that this infrastructure hosts a set of multi-tier
cloud applications (each one consisting of a set of VMs), that
provide services to a population of clients issuing streams of
requests. We also assume that the number of VMs composing
each application is statically fixed (i.e., it is not varied at run
time to track changes in the intensity of the workload), and that
the capacity available on each physical machine is sufficient
to accommodate the aggregate demand of all the VMs it hosts.
In case the aggregate demand exceeds the available capacity,
either some VMs have to be migrated, or further VMs must
be spawned, on other physical machines. We assume, however,
that the initial placement of the VMs on the physical machines,
as well as their migration or the spawning of additional VMs,
is performed by the IP by using a suitable algorithm (e.g., [7]—
[10D).

Each application is associated with a SLO, expressed as
a bound r of the 95" percentile of the response time of the
requests it completes (using percentile-based SLOs is consid-
ered preferable for many applications than simpler metrics like
average [11]). This means that 95% of the response time of the
various requests must be smaller than, or equal to, the value
r, during a prescribed time interval.

As typical in real production environments, we assume that
the value of r, henceforth referred to as the SLO value, is
provided by the customer (i.e., the owner of the application),
as it usually depends on the expected maximum workload and
by other factors like the quality of experience that the IP cannot
know in advance. Once the IP knows the SLO value and the
details about the maximum workload intensity W, expected
for the application, (s)he allocates to the various VMs the CAP
needed to guarantee that the 95" percentile of the response
time does not exceed r. Of course, it is clear that, when the
workload intensity is lower than Wy, the IP is free to reduce
the above CAP value, as less physical resources are required
to meet the SLO of the application.

Fuzzy control has been already used to tackle the problem
described above. However, to the best of our knowledge,
existing fuzzy controllers, unlike ours, base their decisions
on the values of the error ¢ = (RT — SLO) between the
measured (R7T) and the SLO (SLO) values of response time
and on the values of its first-order difference (Ae), and react
to these values by increasing (when e > 0) or decreasing
(when e < 0) the amount of CPU capacity allocated to
the application. Unfortunately, this approach suffers from the
following drawback.

Indeed, for practical reasons, controllers are typically de-
signed to work with average values RT of response times,
that are computed considering a suitable number of observed
values. Unfortunately, the usage of RT as the only control
parameter makes very hard for the controller to track abrupt
changes in the workload intensity of the controlled application.
As a matter of fact, consider a scenario in which the workload
suddenly increases. In this case, a queue of requests waiting
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Fig. 1: Fuzzy-Q&E — The system architecture.

to be served builds up, and the lower the position of a request
in the queue, the higher its waiting time and, consequently, its
response time. However, RT' (being an average value) grows
slowly, especially if the system has operated under a lower
workload intensity for a long time. Consequently, although
the right control decision would be to abruptly increase the
CPU capacity allocated to the application, the controller would
increase it smoothly. Consider now a scenario in which the
workload suddenly decreases, so that the queue of waiting
requests drains. In this case, the value of RT decreases slowly
even after the queue empties (as effect of the average), so
the controller slowly reduces the capacity allocated to the
application, although the correct control decision would be to
decrease it abruptly.

In order to deal with workloads exhibiting strong intensity
variations, we use percentile-based response time metrics and
we introduce an additional control parameter, namely the
difference Cies between the CPU capacity allocated to a VM,
and the capacity that is actually used by that VM. Under
stationary workload conditions, we expect that Cys =2 0, i.e.
the system has received approximately the capacity it needs to
meet its SLO. However, when the workload intensity abruptly
increases, we expect to observe that Cies = 0 (i.e., the system
is saturated), while when it decreases we expect to observe
that Cies > 0.

We base the design of Fuzzy-Q&E on the idea that, by
combining the information coming from the response time and
Ches, better control decisions are possible, and our experimental
results, discussed in Section IV, confirm our intuition.

III. THE FuzzY-Q&E SYSTEM

In this section, we present Fuzzy-Q&E, a fuzzy control
system that, given a set of VMs running the tiers of an
application, is able to respect the application SLO and, at
the same time, to reduce as much as possible the CAP of
physical CPUs assigned to each of such VMs. In the rest of this
section, we first present the overall architecture of our system
(Section III-A), and then we illustrate in detail the design of
our fuzzy controller component (Section III-B).

A. System Architecture

The overall architecture of the Fuzzy-Q&E system is
depicted in Fig. 1. As can be observed in the figure, a set of
one or more Fuzzy-Q&E Controller components act on a group
of VMs (each of which runs a tier of a multi-tier application)
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Fig. 2: Fuzzy-Q&E — The fuzzy controller.

to dynamically assign fractions of CPU capacity to them, in
order to meet application SLOs. There is one Fuzzy-Q&E
controller component for each VM. Note that the figure does
not intentionally include details about the physical machines
hosting the VMs of a given application, to stress that these
VMs may run either on the same or on different machines.

The system also includes other auxiliary components,
mainly used for collecting performance measures, namely the
VCPU Utilization Collector and the Response Time Collector
components. The VCPU Utilization Collector periodically
measures the virtual CPU (VCPU) utilization of a VM, while
the Response Time Collector periodically measures the re-
sponse time of an application. Both values are “sent” to the
related Fuzzy-Q&E controller, which, in turn, computes the
new CPU CAP value for the controlled VM to meet the SLO of
the associated application. The Fuzzy-Q&E controller enforces
this new CAP to adjust (and to limit, if possible) the CPU
usage of each VM.

In the rest of this section, we describe in detail the design
of the Fuzzy-Q&E controller component.

B. The Fuzzy-Q&E Controller Component

The Fuzzy-Q&E Controller component is a feedback con-
troller based on the fuzzy logic [3], [4]. The design of the
controller is presented in Fig. 2. As can be observed in the
figure, there are two control inputs and one control output. The
control inputs are the response time gain Ry, and the residual
capacity Cres. Rgain is the normalized difference between the
reference value r (i.e., the SLO value, in our case) and the
incremental estimate Y of the 95" percentile of the observed
response times Y, obtained by means of the P? algorithm [12].
Specifically, for each sampling period k, Rg,n is computed as
follows:

r—Y(k)

Rgain(k ) = ,

ey
Cles 1s the difference between the actual available CPU CAP
value C and_a smoothed value U of the observed VCPU
utilizations. U is obtained by means of the exponentially
weighted moving average (EWMA) method [13]. Specifically,
for each sampling period k, Cis is computed as follows:

Cres(k) = C(k — 1) — U (k) )

The EWMA value U of the observed VCPU utilizations is
computed as follows:

Uk) =B -ulk)+(1-B)-Uk—1) ©)
where (k) is the current observed VCPU utilization and 0 <
B < 1 is the smoothing factor, which represents the weight
assigned to the most recently observed VCPU utilization u(k).

For what regards the control output, it is represented by the
CPU CAP offset AC, that is the adjustment to the CPU CAP
to apply to the VM in order to satisfy the reference response
time. Thus, the final CPU CAP value C(k 4 1) to allocate to
a VM during the (k + 1)™ control period is computed as:

Ck+1)=C(k)+ AC(k) 4

As shown in Fig. 2, the fuzzy controller consists of four
components, namely:

e the rule base component, that contains a set of rules
through which fuzzy control decisions are taken;

e the fuzzifier component, that converts numeric values
of control inputs into equivalent fuzzy values by
means of the input membership functions;

e the inference system component, that applies the rules
of the rule base according to the “fuzzified inputs”
(i.e., the output of the fuzzifier component) and gen-
erates fuzzy conclusions;

o the defuzzifier component, that combines the fuzzy
conclusions and converts them to a single numerical
output value.

The details concerning the way how a fuzzy logic system
works is out of the scope of this paper. The interested reader
can refer to [3], [14], [15] for more details.

In the rest of this section, we describe in detail how we
implemented each of the above components.

1) The Rule Base Component: The rule base component
contains a set of rules that are in the form of “IF-THEN”
statements, and are defined by means of linguistic variables,
that take linguistic values and represent the control inputs and
outputs. Rules translate the control knowledge into a form that
can be used by the inference system component. In particular,
each rule defines the conditions under which it can be applied
(the “IF” part, or premise), and the output deriving from its
application (the “THEN” part, or consequent). Given that in
fuzzy controllers these rules are based on “heuristic” (i.e.,
expert) control knowledge [3], to gain this knowledge we
carried out several experiments (this is considered standard
practice in the literature [6], [9]) to come up with a good
set of rules. First of all, we defined a preliminary rule base
and then we run the controlled application under different
workloads to study the reactivity of Fuzzy-Q&E. If Fuzzy-
Q&E was too aggressive, we modified the rule base in order
to reduce the magnitude of the variations produced by Fuzzy-
Q&E. Conversely, we acted on the rule base to increase these
magnitudes. Once we came up with a well-defined rule base,
we run again the controlled application to tune the certainty
of each membership function.

For the design of our rule base, we use the following
linguistic variables and values:



TABLE I: Fuzzy-Q&E — The rule base.

« - “Rgain”
AC ‘ LOW  FINE  HIGH
LOW | BUP  UP UP
“Cws” FINE | UP STY DWN
HIGH | STY DWN BDW
o  “Rgn” and “Cr”, which are the linguistic counter-

parts of Rgn and Cres control inputs, that can take
LOW, FINE, or HIGH as linguistic values;

e  “AC”, which is the linguistic counterpart of the AC
control output, that can take BUP, UP, STY, DWN, or
BDW as linguistic values (which stand for “big up”,
“up”, “stay”, “down” and “big down”, respectively).
The rules used by Fuzzy-Q&E are reported in Table 1. Each
cell of the table defines a particular rule. For instance, cell
(LOW,LOW) corresponds to the rule: if “Ch.,” is LOW and
“Rgain” is LOW then “AC” is BUP. This rule encodes the
control knowledge stating that if the CPU CAP value used by
the VM is close to that allocated by the controller (encoded by
the “Cles” is LOW condition), and the 95t percentile of the
observed response times is close to or higher than the reference
one (encoded by the “R,;,” is LOW condition), then the fuzzy
controller has to significantly increase the allocated CPU CAP
value (encoded by “AC” is BUP condition).

2) The Fuzzifier Component: The fuzzifier component car-
ries out the so called fuzzification process, which assigns
linguistic values to numeric inputs and determines their cer-
tainties u (also referred to as degrees of membership) by using
the input membership functions. A membership function is a
graphical representation of the magnitude of participation of
each input. As shown in Fig. 3, we decide to quantify the
linguistic values by means of triangular-shaped membership
functions, which are one of the most commonly used mem-
bership functions in practice. In particular, Fig. 3a and Fig. 3b
show the membership functions for the fuzzy control inputs
Rgain and Cre, respectively.

To denote the certainty of a linguistic value m (assumed by
a specific input linguistic variable), we use the notation p(m).
For example, if Ry is 20, the corresponding value of the
associated linguistic variable “Rg,;,” is FINE, and its certainty
w(FINE) is 1, since the numeric value of Rgin projects up
to a peak of the membership function corresponding to the
linguistic value FINE (see Fig. 3a).

3) The Inference System Component: The inference system
component determines which rules (from the rule base) should
be applied to reach fuzzy conclusions, according to the fuzzi-
fied inputs coming from the fuzzifier component. Let us denote
with p(m,n) the premise certainty of a rule (m,n) where m
and n are the membership functions. Following the Mandani’s
“max-min” inference mechanism [16], the rules to be activated
are defined as a set of rule (m,n) such that p(m,n) > 0,
where p(m,n) = min(p(m), u(n)). For example, if the input
variables Cles is 22 (i.e., “Cis” is either LOW or FINE)
and Rgin is 20 (i.e., “Rgan” is LOW), then the certainties
u(FINE, LOW) and u(FINE, FINE) of rule (FINE,LOW) and
rule (FINE,FINE) are 0.4 and 0.8, respectively.

4) The Defuzzifier Component: The defuzzifier component
combines the rules activated by the inference system using the
“center average” method [3] and calculates the control output.
The fuzzy rules activated by the inference system may generate
multiple fuzzy conclusions. In the center average method, the
numeric value of the control output is computed as a weighted
average of the certainty of the fuzzy conclusions, where the
weight of each conclusion is the center point of the output
membership function (see Fig. 3c). Similarly to what we do
for the fuzzifier component, we quantify the linguistic values
by means of triangular-shaped membership functions.

IV. EXPERIMENTAL EVALUATION

In order to asses the capability of our approach, we
performed an extensive performance evaluation on a testbed,
composed by a physical computing infrastructure running the
Xen hypervisor [1], on which we implemented a prototype
of Fuzzy-Q&E, as well as of DynaQoS [6], a state-of-the-
art fuzzy controller for cloud applications against which we
compared our approach.

In the rest of this section, we first describe the testbed, and
then we discuss the experimental scenario we considered for
our experiments and the experimental results we obtained.

A. Experimental Testbed

For our experiments, we considered a physical infrastruc-
ture consisting of two identical machines, each one equipped
with two 3.0 GHz Intel Xeon 5160 Dual-Core CPU and with
10GB of RAM, and running the Fedora 18 Linux distribution.
These machines are connected by a Gigabit Ethernet network.

The first physical machine was used to run virtualized
applications, and run the Xen hypervisor (version 4.2). On this
machine, we run both the virtualized applications, the VCPU
Utilization Collector component (see Section III-B), and one or
multiple instances of the Fuzzy-Q&E controller (one for each
application tier). We configured the Xen hypervisor to use the
Xen credit scheduler, that provides suitable mechanisms to
specify and enforce CAP allocations to the various VMs. The
VCPU Utilization Collector component was implemented as
a standalone program and was used to collect VCPU usage
statistics through the Xen API (inside the domO). Finally,
the Fuzzy-Q&E controller was implemented in C++ using the
Sfuzzylite library [17] and run on the virtualized server (inside
the dom0) as a standalone program, with one instance for each
hosted VM.

The second physical machine was instead used to run the
workload generator for the above virtualized applications (run-
ning on the first physical machine), and to run the Response
Time Collector components (see Section III-B). In particular,
for our experiments we considered the RUBIS application [18],
an auction site prototype modeled after eBay.com, which uses a
multi-tier setup consisting of a Web and a database tier. Among
the various incarnations of RUBIS, we opted for the one based
on Java Servlets from the OW2 Consortium [5] (version 1.4.3).
Each tier of RUBIS runs in its own VM, that we configured
with one virtual CPUs (VCPUs) and 1GB of RAM. We set up
the Xen hypervisor so that one physical CPU (two cores) were
pinned to dom0 and the other one (two cores) were pinned to
the two VMs running the RUBIS tiers.
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Fig. 3: Fuzzy-Q&E — The membership functions (MFs).

To generate the workload for RUBIS, we used the RAIN
workload generator toolkit [19], that emulates multiple con-
current RUBIS clients and that has been specifically extended
by us to support the RUBIS application [20]. The Response
Time Collector component was implemented as a standalone
program and was used to collect response time observations
from the RAIN toolkit.

B. Experimental results

RUBIS provides workloads of different mixes and time-
varying intensity; among them, we considered the so called
“browsing-mix”, that simulates a user browsing through an
auction site. To do so, we configured the RAIN toolkit with
the default RUBiS “browsing-mix” matrix and with a negative
exponentially distributed think-time with an average of 90
seconds.

To compute the SLO value to use in our experiments and
to fit with the available computing capacity of our testbed, we
used a benchmark-like approach similar to the one described
in [21], [22] for application profiling. From these benchmarks,
we obtained a SLO value of 0.58 seconds. Then, in order
to compute the maximum workload supported by our testbed
to let the SLO value be a feasible target (i.e., that the 95"
percentile does not exceed 0.58 seconds), we run another
series of RUBIiS benchmarks at full CPU capacity and by
progressively increasing the number of clients. From these
benchmarks, we found a maximum workload of 40 RUBIiS
clients.

To assess the capability of Fuzzy-Q&E to react to different
workload patterns while respecting the SLO and, at the same
time, improving server consolidation, we considered a scenario
with both variable number of RUBIS clients and different
CPU utilization patterns. Specifically, we performed a series
of runs, each of which lasted 2400 seconds, including 300
seconds of both ramp-up and ramp-down phase. For each
run, we executed an instance of RUBiS, by hosting the two
related VMs into the same physical machine, with a time-
varying workload characterized by a mean user think-time of
90 seconds and by a number of clients that increased from 10
to 40, and then decreased to 20, every 600 seconds (all of this
timings do not include the ramp-up and ramp-down phases).
We parameterized our components in the following way. For
the Fuzzy-Q&E controller, we set the control time to 10
seconds, while for the VCPU Utilization Collector component,
we set the sampling time to 3 seconds and the smoothing factor
£ to 0.9.

TABLE II: Experimental Results — Performance Summary.

Approach Response Time CPU CAP
PP 95" Pere.  Aesio Web VM DB VM
Fuzzy-Q&E 0.39 —0.33  76.50(17.50)  80.96 (17.57)
DynaQoS 0.65 0.12  50.36(24.30)  48.63 (21.70)

Furthermore, to understand how Fuzzy-Q&E compares to
current state-of-the-art solutions, we implemented the Dy-
naQoS approach [6], and run it against the same scenario, by
setting the following parameters. We set the control time to
10 seconds and the discount factor v to 0.8, as suggested by
the authors in their paper (see [6] for more details about the
meaning of these parameters).

For each of the above run, we collected the response
times of RUBIS operations, and the CPU CAP values of
the VMs running the RUBIS application. For each of these
quantities, we computed the mean and the standard deviation,
and averaged them over the number of runs. In addition, we
computed the 95" percentile of the response time empirical
distribution, and used its average over the number of runs
to compute the metric Aegrp, which represents the relative
deviation of the average 95" response time percentile from
the SLO value. The sign of Aegio gives indication on SLO
preservation; specifically, a negative sign means that the SLO
has been preserved since the average 95" response time
percentile is lower than the SLO value, while a positive sign
means that SLO has been violated. The magnitude of Aegio
indicates how far the average 95" response time percentile is
from the SLO value; specifically, a small value means that
the average 95" response time percentile is close to the SLO
value, while a large value means that it is far from the SLO
value.

The results of the experiments are reported in Table II,
where the column “Approach” indicates to what approach,
among Fuzzy-Q&E and DynaQoS, the statistics in the same
row refer; the column “Response Time” reports the 950
percentile and the Aegy o metric of the observed response time
of RUBIS operations; finally, the column “CPU CAP” shows
the mean and the standard deviation (inside parenthesis) of the
CPU CAP values assigned to the RUBiS VMs by the given
approach.

As can be observed from the table, Fuzzy-Q&E is able to
guarantee the SLO (i.e., Aeg; o is negative), while DynaQoS is
not, and indeed it exceeds the SLO value by more than 12%.
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Fig. 4: Experimental Results — Response times and CPU CAP values obtained with Fuzzy-Q&E and DynaQosS.

As a matter of fact, DynaQoS is unable to react in time to
workload changes, thus causing the response time to largely
increase in magnitude and to exhibit a higher variability. This
can also be seen both in Fig. 4 and in the box-plot presented
in Fig. 5.

Specifically, in Fig. 4a, we can observe that Fuzzy-Q&E
is able to readily adapt to current load conditions by varying
the CPU CAPs to suitable values. The same does not happen
for DynaQoS, which, as shown in Fig. 4b, becomes aware of
changes to load conditions too late to prevent too many SLO
violations. In fact, for DynaQoS, there are SLO violations for
all the duration of the experiment; while, for Fuzzy-Q&E, the
times that the response time exceeds the SLO value are nearly
concentrated in the high-load phase (i.e., when the number of
concurrent RUBIS users is 40).

From Fig. 5, we can instead have better insights on the
orders of magnitude of the response time obtained with the
two approaches. In particular, we can note that the observed
response times obtained with DynaQoS span several orders of
magnitude (by reaching values that are nearly 10 times larger
than the SLO value), while the ones obtained with Fuzzy-Q&E
grows moderately (which are no larger than 2.6 times the SLO
value).

Moreover, we want to point out that Fuzzy-Q&E is able
to better capture load variations and differences between the
various application tiers, and thus can improve server consoli-
dation. This can be observed in the lower plot of Fig. 4a, where
the trend exhibited by the CPU CAP curve for the Web tier is
different from the one related to the database tier. Conversely,
the CPU CAP assigned by DynaQoS to the two RUBIS tiers
is nearly the same (see the lower plot of Fig. 4b). This means
that Fuzzy-Q&E can potentially improve server consolidation

since, with respect to DynaQoS, it can better exploit different
load conditions inside the VMs hosted by the same physical
machine.

Finally, with respect to approaches based on static capac-
ity allocation, the gain obtained by Fuzzy-Q&E for server
consolidation increases as the fixed CAP, henceforth referred
to as static bound, assigned by a static approach increases.
This can be observed in the lower plot of Fig. 4b, where the
considered three possible static allocations corresponding to
a CAP of 70, 85, and 100, and represented them by three
red dashed horizontal lines. From the figure we can note that
the higher is the static bound, the lower is the opportunity to
consolidate several VMs on a same physical machine with the
static allocation approach, and thus the higher is the advantage
obtained by using Fuzzy-Q&E in server consolidation.

Let us now quantify the energy savings achieved by Fuzzy-
Q&E thanks to its ability of consolidating a set of VMs
on a smaller number of physical machines [23]. To do so,
we measured the energy consumed to run two instances of
the RUBiS applications, under the same workload and SLO
specifications considered before, in two distinct scenarios:

e  Static allocation: to respect SLO values, all the four
VMs (two for each RUBIS instance) were allocated a
CAP value equal to 100. Thus, to run the four VMs,
we needed to power on two physical machines since
the capacity provided by a single physical machine
was not enough to accommodate the aggregate CAP
value (i.e., 400), because a suitable share of physical
capacity had to be allocated to Xen services (otherwise
the system would have become unresponsive and,
eventually, would have crashed).
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Fig. 5: Experimental Results — Response time distribution
obtained with Fuzzy-Q&E and DynaQoS.

o Controlled allocation: all the four VMs were allocated
on the same physical machine, and the capacity allo-
cated to each one of them was set by using Fuzzy-
Q&E.

Power measurements, collected by means of a Watts Up? .NET
power meter connected to the physical machines, showed that
in the static allocation scenario 376 Wh were consumed, while
only 207.9 Wh were necessary in the controlled allocation
scenario, that represent nearly a 44.7% saving.

We can therefore conclude that Fuzzy-Q&E not only is
able to preserve SLO, but, with respect to DynaQoS, is able
(1) to react in time to time-varying and bursty workloads,
and (2) to show a much smaller variability in response time.
Moreover, with respect to approaches based on static capacity
allocation, Fuzzy-Q&E is also able to improve server consol-
idation and thus energy-efficiency. Finally, since in [6] it has
been shown that DynaQoS outperforms other state-of-the-art
control-theoretic approaches, we believe that Fuzzy-Q&E has
the potential to outperform these approaches as well. Further
experimentation, carried out with a wider set of applications
and workloads, is necessary in order to gain confidence about
the generality of our approach.

V. RELATED WORKS

The provisioning of physical resources to guarantee appli-
cation QoS is an active research topic in the last years but, to
the best of our knowledge, only few works exploit the fuzzy
logic extensively. The approach taken by such works to the
fuzzy logic usually falls into two different categories, whereby
(1) the fuzzy logic is used to model the behavior of a system,
or (2) the fuzzy logic is used to design a controller to act on
the system at run-time in order to guarantee a specific QoS.
Works like [11], [24] belong to the first approach, while work
such as [6], [9], [25], [26] belong to the second approach.

Regarding the first approach, in [11], [24] the authors use
fuzzy logic to estimate the relationship between performance

and CPU utilization (and also energy consumption, in [24]).
These works use the output of the fuzzy logic to predict the
performance of the system. This approach may be inaccurate
since the performance of the application in a dynamic cloud
environment may vary significantly due to various measures
(CPU usage, memory usage, network bandwidth, hypervisor
load, and so on) that makes hard to obtain any accurate
performance forecast.

Concerning the second approach, in [6], [9], [26], the au-
thors propose a fuzzy controller for the allocation of virtualized
resources in order to respect the application response time.
Both works only consider the response time and its deviation
from the SLO value as input parameters to the controller.
Instead, in this paper, we combine the information regarding
the response time with the VCPU utilization. The combination
of these two parameters allows our Fuzzy-Q&E controller to
gain more knowledge on the system load, thus resulting in a
more accurate CPU capacity allocation. In [25], the authors
propose a novel load balancing algorithm using fuzzy logic in
cloud computing. In particular, the fuzzy controller requires
two input data like processor speed and assigned load of
VM and provides the balance load to reduce the application
response time. This approach can be exploited only for CPU-
intense applications where the response time is related to CPU
speed. Conversely, our approach is more general since it does
not make any assumption concerning the CPU speed of the
machines available.

As a final remark, we want to mention that the literature
provides various works that use model-based linear feedback
control (e.g., [27], [28]). To work, these approaches build
(either offline or online) a linear mathematical model to
describe the relationships between control inputs and control
outputs. There are some possible issues concerning these
approaches: (1) since a computing system (i.e., the system
they try to model) is inherently nonlinear [4], they have to use
linearization techniques around some operating region to make
locally linear the input-output relationships; (2) in dynamic
systems (like cloud computing systems are) characterized by
time-varying and bursty workloads, could be hard to know
such operating regions and thus might be impossible to build
accurate linear models (even if adaptive techniques are em-
ployed). With respect to such works, our approach does not
require the creation of mathematical models and thus it can
easily handle with nonlinear relationships.

VI. CONCLUSIONS

In this paper, we presented Fuzzy-Q&E, a fuzzy controller
that is able to allocate to the set of VMs associated to a cloud
applications the minimum amount of physical capacity needed
to meet the application SLO, even in the presence of time-
varying and bursty workloads.

The performance of Fuzzy-Q&E has been assessed by
means of an experimental evaluation on a real testbed. To
do so, we implemented a real prototype of Fuzzy-Q&E and
used it to control the RUBIS application. Furthermore, we
compared the obtained results with the ones achieved by
DynaQoS, a state-of-the-art approach. The results show that,
unlike DynaQoS, Fuzzy-Q&E is able (1) to meet SLOs, (2) to
react in time to non-stationary and bursty workloads, and (3)



to show a moderate variability in response time. Furthermore,
with respect to approaches based on static capacity allocation,
Fuzzy-Q&E is also able to improve server consolidation since,
instead of keeping fixed the CAP needed during the peak
load (which is useless during low-load workload conditions),
it can exploit load variations by dynamically varying the CAP
assigned to the VM. As a consequence, Fuzzy-Q&E can also
improve energy-efficiency since a better server consolidation
can result in a reduced number of switched-on physical ma-
chines.

Regarding possible future works there are some interesting
activity that can be carried on. First of all, we want to
evaluate our system with other type of applications and under
different non-stationary workload conditions. Then, we would
like to integrate our work with current state-of-the-art power-
and performance-aware resource management frameworks for
cloud computing systems (like [29], [30]). Furthermore, we
would like to extend the system to also take into consideration
other resource types (e.g., memory and disks). Finally, we plan
to integrate our system into a cloud management platform (like
Eucalyptus [31] and OpenStack [32]), and to support different
hypervisors (e.g., KVM [33]).
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