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Abstract 

Knowledge-based decision support systems have a long tradition within the medical area. In particular, in the last dec-
ades, many Computer-Interpretable Guidelines (CIG) systems have been built to provide evidence-based and 
knowledge-based support to physicians. Since CIGs are, by definition, devoted to the management of specific diseases, 
the treatment of comorbid patients constitutes a challenging task in the area, involving (i) the detection of the possible 
interactions between (the effects of) the actions recommended by multiple CIGs (one for each disease of the patient), 
(ii) the management of such interactions and, finally, (iii) the conciliation of (the recommendations of) different CIGs. 
This paper focuses on issue (i) above, and specifically, on an innovative approach to support interaction detection 
along the temporal dimension. Practically, interactions can only occur between effects that intersect in time. Therefore, 
interaction detection involves the representation of temporal information (temporal constraints), and temporal reasoning 
(to propagate such constraints). Additionally, query answering facilities are important to support physicians in the in-
vestigation of the results of temporal reasoning. Current CIG approaches that face such issues take into account only 
“crisp” temporal constraints, i.e., they consider all temporal constraints as equally probable\preferred. However, pref-
erences about the temporal constraints between CIGs actions may be available, as well as knowledge about the probabil-
istic distribution of the effects of CIGs actions in time. Considering such additional pieces of information can provide 
crucial advantages, in term of the flexibility and informativeness of the support provided by the CIG system to physi-
cians. In this paper, we propose the first homogeneous approach to represent and reason with (propagate) temporal 
constraints with both preferences and probabilities. We ground our approach on the widely-used Simple Temporal 
Problem (STP) framework, which supports temporal reasoning on temporal constraints about possible distances be-
tween events. We extend (i) the representation formalism to associate preferences and\or probabilities to the possible 
distances, and (ii) the operations to propagate the constraints to combine also preferences and probabilities. We also 
(iii) provide an experimental evaluation of our approach, and (iv) propose a wide range of query-answering supports, 
to facilitate physicians in the analysis of the results of temporal reasoning in general, and in the temporal detection of 
possible interactions in particular. Finally, (v) we also show how such a temporal framework is integrated in GLARE-
SSCPM, a CIG system to treat comorbid patients, and show the advantages of our approach considering a running ex-
ample. 

KEYWORDS: Knowledge-based decision support; Clinical guideline interaction detection; Temporal reasoning; 
Probabilities; Preferences; Query answering 

 

1 INTRODUCTION 

Knowledge-based decision support systems have a long tradition within the medical area. In particular, in the last 
decades, many AI approaches have been developed to provide evidence-based and knowledge-based decision support to 
physicians, based on Clinical Practice Guidelines (CPGs). CPGs are – in the definition of the American Institute of Med-

icine – “systematically developed statements to assist practitioner and patient decisions about appropriate health care in 

specific clinical circumstances” (Institute of Medicine, Committee on Quality Health Care in America, 2001). They are 

large bodies of knowledge supporting physicians in an evidence-based, knowledge-based, standardized, and optimized 

treatment of patients. A lot of CPGs, developed by national and\or international organizations are publicly available (e.g., 

the Guideline International Network (Guidelines International Network, n.d.) provides more than 6500 CPGs). In the last 

twenty years, many computer-based approaches have been developed to manage Computer-Interpretable Guidelines 

(henceforth CIGs; consider, e.g., the surveys (Peleg, 2013; Ten Teije et al., 2008)). The adoption of computer-based ap-
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proaches to manage CIGs provides crucial advantages with respect to the direct use of traditional textual CPGs: in par-
ticular, the automatic connection to the patient’s electronical record allows CIG system to provide patient-specific rec-
ommendations\decision support to physicians. As a consequence, many CIG systems have been built. While commer-

cial CIG systems are mostly domain-specific (i.e., they are devoted to the treatment of a specific guideline, for a specific 

disease), a large stream of research in Artificial Intelligence in Medicine (AIM) is devoted to the development of domain-

independent CIG systems. Such systems usually resemble “old-style” medical expert systems, providing physicians with 
an acquisition tool to acquire medical knowledge (i.e., a specific CPG) in an internal format, and an execution tool, 
which can be conceived as a decision support tool, supporting physicians in the application of an acquired CIG to a 
specific patient. 

Given also the increasing ageing of the population, the treatment of comorbid patients (i.e., patients affected by more 
than one disease) is a hot problem, which is attracting a lot of attention in AIM. By definition (see, e.g., (Institute of 
Medicine, Committee on Quality Health Care in America, 2001)), each CPG (and CIG) focuses on a specific disease 
only. Though ad-hoc CPGs can be devised to consider the most common cases of co-occurrence of diseases, in the 
general case it is not possible to imagine the definition of a new CPG for each possible combination of diseases, so 
that new methods have to be devised. The development of such methods has been identified as one of the “grand 
challenges” for clinical decision support (Sittig et al., 2008).  

In most cases, coping with comorbid patients involves the need of combining multiple CPGs (CIGs). And, unfortu-
nately, the effects of the recommendations in different CIGs may interact, and some of such interactions may be 
(very) dangerous for the health of the patient. To face such a challenging problem, in the last decade many AIM ap-
proaches have started to devise computer-based approaches which extend CIG frameworks to provide physicians 
with decision support capabilities also in case of comorbid patients. A general overview of the different AIM CIG-
based approaches coping with comorbidities in the literature would lead us far away from the main goals of this pa-
per (consider, among the others, (Jafarpour et al., 2019; Jafarpour & Abidi, 2013; Kogan et al., 2018; Merhej et al., 2016; 
Michalowski et al., 2021; Piovesan et al., 2018; Piovesan & Terenziani, 2016; Riaño & Collado, 2013, p. 13; Sánchez-
Garzón et al., 2013; Wilk et al., 2017; Zamborlini et al., 2017; Zhang & Zhang, 2014) and the recent surveys in (Bilici et 
al., 2019; Fraccaro et al., 2015; Riaño & Ortega, 2017)). As an example of such approaches, in Section 3 of this paper we 
briefly introduce GLARE-SSCPM (GLARE Support System for Comorbid Patient Management), which constitutes the 
framework in which the approach proposed in this paper is integrated. For the sake of this paper, it is only important 
to highlight that, in the CIG approaches in the literature, the problem of coping with comorbidities is usually split in-
to three main and independent subproblems:  

(i) knowledge-based detection of possible interactions between CIGs,  
(ii) management (i.e., resolution) of the interactions, and  
(iii) conciliation of the interacting CIGs (i.e., merging the recommendations of multiple CIGs in such a way 

that interaction managements are considered). 

A large literature has been devoted to each one of the above topics. In this paper, we focus on subproblem (i), and, 
more specifically, on the temporal issues it involves. In general, temporal knowledge (often expressed in the form of 
temporal constraints) and temporal reasoning are fundamental in many medical tasks, including decision support 
(Adlassnig et al., 2006; Augusto, 2005).  

In particular, temporal constraints are fundamental in the CPG and CIG context (consider, e.g., temporal constraints 
about when the different actions should be executed, about the required delay between actions, or the periodicity of a 
treatment such as a chemotherapy), in which multiple types of temporal information are involved (consider, e.g., the 
survey in (Terenziani et al., 2008)). 

As a consequence, many CIG formalisms in the literature support the specification of temporal constraints (see, e.g., 
the survey (Terenziani et al., 2008), and Section 2.3 of this paper).  In particular, temporal constraints are very important 
when considering multiple CIGs to deal with comorbid patients. Indeed, knowledge about the effects of CIGs’ actions and 
about the possible interplay between such effects may be exploited in order to detect the possibility of interactions 
between CIGs (see, e.g., (Zamborlini et al., 2017) and GLARE-SSCPM (Piovesan et al., 2018)). However, only a tem-
poral analysis concerning when actions have to be executed and when their effects can occur can discriminate be-
tween those interactions that may effectively occur in time, and the ones that cannot. Indeed, interactions (between 
the effects of CIG actions) may occur only in case effects may intersect in time. Therefore, detecting temporally possible 
interactions is a challenging task, requiring temporal knowledge (in the form of temporal constraints between CIG 
actions, and between actions and their effects) and temporal reasoning (e.g., in the form of temporal constraint propa-
gation). Some of the current AIM approaches in the literature face such a problem, taking advantage of general 
frameworks, that natively support representation of and reasoning about constraints, including temporal ones (con-



  

 

sider, e.g., (Jafarpour et al., 2019; Michalowski et al., 2021; Piovesan et al., 2020; Wilk et al., 2017)), other approaches 
like GLARE and GLARE-SSCPM (Anselma et al., 2017; Piovesan et al., 2018) propose a specialized framework to model 
and propagate temporal constraints, and integrate it in the overall CIG system (see the discussion in Section 2.3 below).  

 Though interesting and useful, the above CIG temporal approaches share a common limitation: they deal only with 
“crisp” temporal constraints, i.e., they consider all temporal constraints as equally probable\preferred. Unfortunate-
ly, “crisp” approaches are often too rigid, since “crisp” constraints may be either satisfiable or not. Indeed, this may 
be a severe limitation in all cases in which preferences and\or probabilities are (directly or indirectly) available. Spe-
cifically, in the CIG context, several guidelines provide not only temporal constraints about the delay between ac-
tions, but also indicate that different delays have different preferences. A typical example is the administration of anti-
biotics, in which the delays between administrations depend on pharmacokinetics factors: the delays with maximum 
preference are the ones that guarantee that the level of the drug in the patient remains as much as possible constant, 
and preferences decreases while moving away from such preferred delays. Preferences for CIG actions can be also 
derived from patient’s preferences (consider, e.g., the time of administration of drugs) or from organizational reasons 
(e.g., of an hospital). Additionally, probabilistic knowledge about the time and duration of the effects of CIG actions 
may be available\derived. Consider again, for instance, drug administrations. Pharmacokinetics provides mathemat-
ical models describing the time course of drug absorption, distribution, metabolism, and excretion in a specific pa-
tient, while pharmacodynamics provides models describing the time course and intensity of therapeutic effects 
(Spruill et al., 2014). Such models are the result of studies carried out both in vivo, in vitro and, in the last years, in 
silico (i.e., through computer-based simulators – see, e.g., (Burghaus et al., 2014; Johnstone et al., 2017) and the survey 
(Ekins et al., 2007)). Some approaches in literature have started to integrate pharmacokinetics (drug concentration vs 
time) and pharmacodynamics (effect vs drug concentration) models obtaining integrated models quantitatively and 
probabilistically describing the course of an effect of a specific drug in time1 (see, e.g., (Derendorf & Meibohm, 1999; 
Mehrotra et al., 2007)).   

Notably, in the CIG context, both preferences and probabilities may be available. The former regard the (temporal con-
straints between) CIG actions, whose execution is under the control of physicians. The latter regards the (time of oc-
currence of) the effects of CIG actions. The time of the rise of effects is not under the control of physicians, so that, in 
this case, we have probabilities (of occurrence at a given time), and not preferences (which involves an agent’s 
choice). As a concrete example, let us consider Ex.1.  

Ex.1. Let us consider a comorbid patient suffering from Gastroesophageal reflux disease (GERD) and from Urinary 
Tract Infection (UTI). Among the other treatments, the clinical guideline for GERD recommends Calcium Carbonate 
Administration (CCA), to be dispensed when needed. Assuming units of 15 minutes as temporal granularity, and 
considering preferences in the [0,1] real interval, with 0 and 1 denoting the minimum and maximum preferences, re-
spectively,  CCA can be administered  0 or 1 units (i.e., between 0 and 15 minutes)  after the decision about the reflux 
symptoms (RS) with preference 1, 2 or 3 units after RS with preference 0.75, 4 or 5 units after RS with preference 0.5, 
and finally 6 units after RS with preference 0.25. Among the other effects, CCA leads to the Decreasing Gastric Ab-
sorption (DGAb), which can begin after 1, 2, or 3 units, with probability 0.4, 0.4 and 0.2 respectively. In addition, 
DGAb can end  5, 6, 7, 8, 9 or 10 units after CCA, with probability 0.1, 0.2, 0.3, 0.2, 0.1 and 0.1 respectively.  We sup-
pose that the patient is currently treated with (orally administered) Nalidixic Acid, as recommended by the clinical 
guideline for UTI. Each Nalidixic Acid Administration (NAA) should be dispensed exactly six hours (i.e., 24 time 
units) after the previous one with preference 1. The preference value decreases by moving (before or after) such a 
maximally preferred time: 20 units after has preference 0.25, 21 has preference 0.5, 22 has preference 0.75, 23, 24 and 
25 have preference 1, 26 has preference 0.75, 27 has preference 0.5 and finally performing NAA 28 units after the pre-
vious one has preference 0.25. The Increase of Nalidixic Acid Gastric Absorption (INAGA) begins after 1 unit from 
NAA with probability 0.4, or 2 units with probability 0.6. INAGA can end 2, 3, 4, 5, 6, 7 or 8 units after NAA, with 
probability 0.15, 0.25, 0.25, 0.15, 0.10, 0.05 and 0.05 respectively. ■  

Notably, preferences regard the time of execution of drug administrations (i.e., actions which are under the control of 
physicians), while probabilities regard the general knowledge about the delay and duration of effects (which are not 
under the control of physicians).  

Note.1. Preferences are evaluated in each guideline independently of the other guidelines (e.g., they do not consider the possibil-
ity that multiple guidelines can be executed on a patient).  

 

1 Notably, even if online repositories (e.g., drugbank (Wishart et al., 2018)) provide, at least in plain text, both pharmacokinetics and pharmacody-
namics information, they do not provide information about integrated models. To the best of our knowledge, a repository containing such a 
knowledge still does not exist. For such a reason, the probabilities of the drug effects used in this paper have been defined by an expert by using 
pharmacokinetics and pharmacodynamics information taken from the specialized literature.  



 

 

In Ex.1, DGAb and INAGA are potentially interacting (and contrasting) effects, since DGAb may decrease the body’s 
capability of absorbing Nalidixic Acid (NA). In “crisp” approaches to temporal constraints (in which no probability 
and no preference can be managed), temporal reasoning can be used to propagate the temporal constraints (e.g., to 
infer the implied temporal constraints between each endpoint of actions and of their effects), and, after the propaga-
tion, query answering facilities can be provided to check, given the time when CCA and NAA are executed, whether 
the interaction between DGAb and INAGA must\may temporally occur, or not. However, in the case preferences 
and probabilities are available, such a response would be quite incomplete. Indeed, in case the interaction may tem-
porally occur, physicians might want to know also what are the temporal probabilities of the interaction, and the 
temporal preferences in the given temporal scenario. However, to provide them with such additional knowledge, we 
have to move from “crisp” to “non-crisp” temporal constraints, in which both temporal preferences and temporal 
probabilities are considered. 

Notably, the limitations of approaches facing only “crisp” constraints are not at all specific of the medical application 
domain, and have been noticed since a long time by the AI literature. As a consequence, several domain-independent 
approaches have been already devised in order to enrich temporal constraints with preferences or probabilities, and 
to perform temporal constraint propagation in such an extended context (see the discussion in Section 2.2). However, 
such approaches take into account either preferences or probabilities, while none of them consider both, as required in the 
CIG context (see again Ex.1). Focusing specifically on CIG approaches, “non-crisp” temporal constraints have been 
considered only in (Andolina et al., 2018). In such an approach, STP temporal constraints have been extended to asso-
ciate probabilities to the temporal distances, and a temporal reasoning algorithm (based on constraint propagation) has 
been devised to propagate such constraints. 

In this paper, we overcome the above general limitation of the AI literature. We go on with the mainstream of AI re-
search overviewed in Section 2, and already followed in the GLARE and GLARE-SSCPM projects (Anselma et al., 
2017; Piovesan et al., 2018), by proposing a specialized temporal framework to manage temporal constraints. Specifi-
cally, in this paper we propose the first temporal framework in the literature able to represent, reason and query 
about “non-crisp” temporal constraints, and considering both preferences and probabilities. This paper is a (very) ex-
tended version of our AIME’19 short paper (Terenziani & Andolina, 2019) (five pages, LNCS format). In (Terenziani 
& Andolina, 2019), we have just proposed the idea of integrating both preferences and probabilities in STP temporal 
constraints. We have proposed the extended representation formalism, and we have shown an example of applica-
tion. No technical elaboration of the idea has been proposed in (Terenziani & Andolina, 2019): indeed, the contribu-
tions in Sections 5, 6, and 7 of this paper are entirely new.  

Specifically, the main contributions of our approach are:  

(1) The definition of a formalism to represent quantitative temporal constraints with preferences and probabili-
ties (Section 4). 

(2) The definition of the operations (intersection and composition) to propagate such temporal constraints, in-
cluding their preferences and probabilities (such operations are the core of our temporal reasoning algo-
rithm, and are presented in Section 5). 

(3) An experimental evaluation of our extended temporal reasoning approach (Section 5.3). 
(4) A rich query language (and its related query-answering support) to query the results of temporal reasoning, 

with specific support to check temporal intersection (i.e., the temporal possibility of interactions), and to con-
sider hypothetical queries (to support what-if reasoning) (Section 6). 

(5) The integration of the above contributions into GLARE-SSCPM, to analyze interactions between CIGs (Sec-
tions 5.4 and 6.6). 

Notably, though in this paper we consider the integration of our temporal framework into GLARE-SSCPM, the tem-
poral approach we propose in Sections 4—5 (and, partly, in Section 6) is task and domain independent, and can oper-
ate as a temporal knowledge server for different systems, and for different applications. 

  The paper starts with two background sections.  In Section 2, we provide the necessary background about temporal 
constraints and temporal reasoning. Then, in Section 3, we briefly resume the main features of the GLARE-SSCPM 
system, which provides physicians with CIG-based decision support for the treatment of comorbid patients. 

2 PRELIMINARIES AND RELATED WORKS 

In this background section we briefly illustrate some relevant AI approaches to temporal reasoning about “crisp” 
(Section 2.1) and “non-crisp” (Section 2.2) temporal constraints, and then discuss the treatment of temporal con-
straints in current CIG systems (Section 2.3). 



  

 

2.1 “Crisp” temporal constraints and reasoning 

In general, and informally, temporal constraints can be interpreted as limitations about when events occur\should 
occur.  In AI, a whole stream of research aims at proposing special-purpose frameworks (usually called temporal rea-
soners) to represent and reason with temporal constraints (see, e.g., the survey in (Vila, 1994)). Such frameworks can 
be used as specialised knowledge servers to which temporal problems can be demanded, to solve complex tasks (e.g., 
planning, and scheduling) in an efficient and compositional way. The AI special-purpose approaches on temporal 
constraints have been traditionally divided into two main classes, depending on whether they deal with quantitative 
or qualitative temporal constraints (see, e.g., the surveys in (Barták et al., 2014; Schwalb & Vila, 1998; Terenziani, 2006; 
Vila, 1994)). Quantitative temporal constraints involve metric time and include dates (e.g., “Mary was enrolled on 
10/1/2020”), delays (e.g., “Sue was enrolled 15 days after Mary”), and durations (e.g., “Mary worked for the compa-
ny XXX for 120 days”). Qualitative temporal constraints concern the relative position of events (e.g., “John arrived at 
work after Mary”). Notably, in many cases, temporal constraints are not exact (e.g., “Sue was enrolled between 20 
and 40 days after Mary”). Two famous approaches to quantitative constraints are, e.g., (Dechter et al., 1991; Koubar-
akis, 1997). In particular, in the Simple Temporal Problem (STP) framework (Dechter et al., 1991), constraints of the form 
ti[dmin,dmax]tj  represent the minimum (dmin) and maximum (dmax) temporal distances between pairs of time points ti and 
tj. Notably, exact and non-exact dates, durations and delays can be easily encoded in STP. 

Qualitative approaches consider qualitative temporal constraints, i.e., constraints about the relative temporal ordering 
of events (e.g., event e1 occurred before event e2).  For instance, Allen’s famous Interval Algebra (Allen, 1983) copes 
with time intervals, while the Point Algebra (M. B. Vilain & Kautz, 1986) deals with time points, and Vilain’s Point-
Interval Algebra copes with both points and intervals (M. Vilain, 1982).  

Moreover, also hybrid approaches have been developed, considering both quantitative and qualitative temporal con-
straints (e.g., (Brusoni et al., 1997; Kautz & Ladkin, 1991; Meiri, 1996)). For instance, the Later temporal reasoner is 
based on the STP framework, and supports, besides quantitative temporal constraints, also those qualitative temporal 
constraints that can be mapped onto such a framework (Brusoni et al., 1997). 

The core of such approaches are temporal reasoning algorithms to propagate the constraints. Depending on the 
framework, temporal reasoning is developed in order to achieve different goals: (i) consistency checking, (ii) to find a 
solution (i.e., an instantiation of variables that satisfies all the constraints; also called scenario), or (iii) to find out the 
minimal network (Dechter et al., 1991) (i.e., the tightest implied constraints). Notably, in many tasks, such as in decision 
support (which includes the CIG context we consider in this paper), providing users with a specific solution does not suffice 
(physicians want to choose themselves among the different possibilities), and presenting them all the solutions is 
practically infeasible. In such tasks, a good option is to provide users with (i) the minimal network (which represents 
in a compact and implicit way all the possible solutions), and (ii) some query answering facility, to let them explore 
the space of solutions, facilitating their choice (consider, e.g., (Brusoni et al., 1997)). 

Ex.2. As an example, consider the set KB of STP constraints, where t1, t2 and t3 denote time points: KB={t1[2,4]t2, 
t2[8,10]t3, t1[9,16]t3}. KB is consistent (i.e., there is at least a solution satisfying all the constraints), {t1=0, t2=2, t3=10} is a 
solution, and KB’={t1[2,4]t2, t2[8,10]t3, t1[10,14]t3} is the minimal network (notably, the inferred distances between t1 and 
t3 are [10,14]). ■ 

In STP (and in many other temporal frameworks), a set of temporal constraints can be represented by a graph, and 
temporal reasoning is performed by an all-to-all shortest path algorithm (e.g., Floyd-Warshall’s one) which repeatedly 
applies the operations of intersection (∩) and composition (@) of constraints to check the consistency and produce the 
minimal network (see Fig. 1 below).  In short, given a constraint between ti and tk, and a constraint between tk and tj, 
composition determines the implied constraint between ti and tj. Intuitively, the minimum distance between ti and tj is 
obtained by summing the minimum distance between ti and tk to the minimum distance between tk and tj (similarly 
for the maximum distance). On the other hand, given two constraints between ti and tj, intersection evaluates the 
tightest implied constraints. Intuitively, the resulting constraint is simply obtained by intersecting the two ranges of 
possible distances, such that both constraints must hold (if the intersection is empty, the two constraints are incon-
sistent). For instance, in the above example, the new constraint between t1 and t3 is evaluated as t1[9,16]t3 ∩ (t1[2,4]t2 @ 
t2[8,10]t3), where t1[2,4]t2 @ t2[8,10]t3 = t1[10,14]t3 and t1[9,16]t3 ∩ t1[10,14]t3 = t1[10,14]t3.  

for k:=1 to N do 

  for i:=1 to N do 

    for j:=1 to N do 

    C(i,j) = C(i,j)  (C(i,k) @ C(k,j)) 

Fig. 1. Floyd-Warshall’s algorithm. i, j, and k denote variables (time points, in the temporal reasoning context), C(l,m) de-



 

 

notes the constraint between l and m, and N is the number of time points. 

The complexity of Floyd-Warshall’s algorithm is 𝛩 (𝑁3 ∗ 𝑚𝑎𝑥(𝑇∩, 𝑇@)), where, 𝑁 is the number of time points in the 
knowledge base, and 𝑇∩ and 𝑇@ represent the time needed to calculate ∩ and @, respectively. Floyd-Warshall’s algo-
rithm has been proved to be correct and complete on STP (i.e., all the implied constraints are computed), and provides 
as output the minimal network of the input constraints, or reports an inconsistency (Dechter et al., 1991). 

The above family of temporal reasoning approaches constitutes the background for our work, and, in the next subsec-
tion, we show how it is being extended towards the treatment of “non-crisp” temporal constraints. Before that, how-
ever, it is worth highlighting that, recently, a main research direction in the AI research aims at extending distance-
based temporal constraints to cope with other forms of uncertainty. For instance, Simple Temporal Network with Un-
certainty (STNU) (Morris et al., 2001) supports temporal constraints contexts in which the temporal duration of some 
actions is not under the control of the agent(s). Conditional Simple Temporal Network (CSTN) supports conditioned 
temporal constraints between time points, in which conditions can only be observed in real time (Hunsberger et al., 
2015). In STNU and CSTN, a crucial temporal reasoning task is to determine whether the network of constraints is 
dynamically consistent, e.g., in the case of STNU, whether there exists a strategy for executing its time-points such 
that all relevant constraints are guaranteed to be satisfied no matter which are the durations of non controllable ac-
tions. Very recent evolutions in this area are provided, e.g., in  (Cairo et al., 2018; Combi et al., 2019; Combi & Posena-
to, 2018; Hunsberger & Posenato, 2018; Zavatteri et al., 2019; Zavatteri & Viganò, 2019).  

2.2 Moving towards “non-crisp” temporal constraints 

Traditional temporal reasoning approaches are based on the Constraint Satisfaction Problem (CSP) framework. Tem-
poral constraints are “crisp”: they represent set of equally possible/preferable constraints between two time units. 
Unfortunately, such approaches inherit also the limitations of CSP, concerning flexibility and its limited representa-
tion of uncertainty (see, e.g., the discussion in (Dubois et al., 1996)).  In many real contexts, constraints are not strict. 
Therefore, the AI literature has moved towards “non-crisp” constraints, to take into account probabilities or preferences. 
Starting from the seminal work in (Dubois et al., 1996), a large number of temporal reasoning approaches based on 
the fuzzy CSP have been devised. 

In the following, we restrict our attention to the fuzzy extension of the constraints discussed in Section 2.1 above.  
Considering qualitative temporal constraints, Riabov and Trudel (Ryabov & Trudel, 2004) pair each Allen's basic in-
terval relations with a probability. Temporal reasoning is performed through inversion, composition, and addition 
operations, which are extended in order to combine, besides the temporal relationships, also their probability. Simi-
larly, Mouhoub and Liu (Mouhoub & Liu, 2008) propose an adaptation of the probabilistic CSP framework and Bada-
loni and Giacomin (Badaloni & Giacomin, 2006) extend Allen’s interval relations with a preference degree. As regards 
“non-crisp” quantitative temporal constraints, in (Terenziani & Andolina, 2017) the STP framework has been extend-
ed by associating probabilities to distances. The authors define new operations of intersection and composition, 
which also combine the probabilities associated with the distances in the constraints. Floyd-Warshall’s algorithm is 
used in order to evaluate the minimal network of such extended constraints. On the other hand, Khatib et al. (Khatib 
et al., 2001) have extended the STP and the TCSP (Temporal Constraint Satisfaction Problem) frameworks (Dechter et 
al., 1991) to allow for reasoning about temporal preferences, to identify an optimal solution. In a recent paper, Teren-
ziani et al. (Terenziani et al., 2017) have associated a preference with each possible distance between time points and 
have used an adaptation of the Compute-Summaries algorithm to evaluate the minimal network. Additionally, they 
have proposed query-answering facilities to explore the minimal network with preferences. Mouhoub and Sukpan 
(Mouhoub & Sukpan, 2008) deal with both preferential quantitative and qualitative temporal constraints and perform 
temporal reasoning to find a solution optimizing preferences. 

Despite the huge amount of work in this area, however, no approach in the literature has faced yet the task of extend-
ing STP temporal constraints and computing the minimal network considering both preferences and probabilities 
(except the preliminary short AIME’19 paper (Terenziani & Andolina, 2019)).   

2.3 Temporal constraints in CIG systems 

Temporal constraints are an intrinsic part of many CPGs and CIGs. Therefore, they are explicitly recorded in many 
CPGs and CIGs. Notably, Kamisalic et al. have proposed an interesting approach to mine CPG temporal constraints 
from medical data, and to represent them (Kamisalic et al., 2018). This contribution is very important, since it may be 
used as a starting point to derive temporal constraints from experience, for those CPGs which do not natively contain 
them. Temporal constraints are essential in many different tasks involving CIGs (see, e.g., the survey (Terenziani et 
al., 2008)). For instance, several CIG execution modules take into account CIG temporal constraints in order to make 
recommendations about when CIG actions should be executed on the patient. As a consequence, temporal constraints 
and temporal reasoning have been faced by several different approaches in the area (see, e.g., the survey in (Terenzi-
ani et al., 2008)). To mention few examples, consider e.g. ASBRU (Duftschmid et al., 2002; Shahar et al., 1998), GLARE 



  

 

(Terenziani et al., 2001), and (Combi et al., 2015). ASBRU provides temporal annotations to express the minimum and 
maximum starting time and ending time of durative actions (intervals), as well as their minimal and maximal dura-
tion. Also, cyclical annotations are supported, to cope with periodically repeated actions. Also, GLARE provides a 
rich temporal constraint language, which extends the STP framework (Dechter et al., 1991) (see also Section 2.1) to 
consider also periodic constraints. GLARE provides temporal reasoning algorithms to propagate such constraints, 
and proves their correctness and completeness (Anselma et al., 2006). In (Combi et al., 2015), the authors propose a 
conceptual model for CIGs which takes into account also temporal constraints and temporal constraint propagation, 
considering also uncertainty and alternative paths.  

In the last decade, several CIG approaches have started to be extended to support the treatment of comorbidities. The 
treatment of temporal constraints and of temporal reasoning is fundamental in such a context, and, in particular, for 
the detection of temporal interactions that can actually occur in time (see the discussion in the introduction).  

Indeed, knowledge about the effects of CIGs’ actions and about the possible interplay between such effects may be 
exploited in order to detect the possibility of interactions between CIGs (see, e.g., (Zamborlini et al., 2017)). However, 
only a temporal analysis concerning when actions have to be executed and when their effects can occur can discrimi-
nate between those interactions that may effectively occur in time, and the ones that cannot. Indeed, interactions (be-
tween the effects of CIG actions) may occur only in case effects may intersect in time. Therefore, detecting temporally 
possible interactions is a challenging task, requiring temporal knowledge (in the form of temporal constraints between 
CIG actions, and between actions and their effects) and temporal reasoning (e.g., in the form of temporal constraint prop-
agation). Some of the current AIM approaches in the literature face such a problem, taking advantage of general 
frameworks, that natively support representation of and reasoning about constraints, including temporal ones. Five 
significant and recent examples are the approaches in (Jafarpour et al., 2019; Michalowski et al., 2021; Piovesan et al., 
2020; Van Woensel et al., 2021; Wilk et al., 2017).  (Wilk et al., 2017) proposes a framework based on First Order Logic 
(FOL) for identifying and managing interactions between multiple CIGs. Different predicates are defined in the logic 
in order to represent temporal aspects (consider, e.g., duration, startTime, overlap, endTime). Reasoning about con-
straints is directly performed by the theorem prover for the logic. Similarly, also the recent approach by Jafarpour et 
al. (Jafarpour et al., 2019) uses an FOL (plus OWL2) encoding to model execution-time dynamic integration of CIGs. 
Temporal constraints regarding minimum and maximum delay, and duration of CIGs’ tasks are explicitly modelled 
as FOL predicates, as well as the maximal durations of the effects\results of the tasks. Such constraints are used, e.g., 
in the definition of the policies to manage interactions (e.g., SimulTasksPolicy, DelayingTaskPolicy). Van Woensel et al. 
(Van Woensel et al., 2021)  basically extends the previous works and exploits a dynamic (continuous) planning mod-
ule coping with the temporal aspects of CIG integration. On the other hand, in (Michalowski et al., 2021), the problem 
of interaction mitigation in multiple CIGs is modeled as a planning problem, using PDDL 2.1, which provides sup-
port for durative actions, and different forms of temporal constraints (e.g., delays) (Fox & Long, 2003). The Optic 
planner is used to find solutions to the planning problem, considering such constraints (Coles et al., 2010). Interest-
ingly, such an approach considers also patient’s preferences to merge CIGs. Finally, (Piovesan et al., 2020) proposes 
an Answer Set Programming encoding of the problem of analysing a-posteriori the conformance of the treatment of a 
comorbid patient (encoded into the patient’s log) with respect to the CIGs’ recommendations. Answer Set Program-
ming is thus used to model, besides the other pieces of knowledge, also the temporal constraints between CIGs’ ac-
tions, and the delays and durations of the effects of such actions, and to reason with them. Other works in literature 
leave the management of temporal aspects as future work. Among them, the work a work of particular interest is the 
one in (Kogan et al., 2020), based on the well-known framework ProForma and adopting a goal-based methodology 

for CIG combination.  

On the other hand, the GLARE project (Anselma et al., 2017; Piovesan et al., 2018; Terenziani et al., 2001) follows the 
mainstream of AI research aiming at proposing a temporal framework specialized for the representation and the rea-
soning about temporal constraints. Specifically, (Anselma et al., 2017) proposes a temporal reasoning framework 
based on the well-known STP framework (Dechter et al., 1991), and provides physicians with a direct support to face 
many different temporal reasoning tasks involved in the detection and management of interactions. In GLARE-
SSCPM’s architecture, such a framework acts as a temporal knowledge-server, which interacts with several other mod-
ules in order to support physicians in the detection and management of CIGs’ interactions (Piovesan et al., 2018). 
Such issues will be further discussed in Section 3 below. 

3 GLARE AND GLARE-SSCPM 

GLARE (GuideLine Acquisition Representation and Execution, (Terenziani et al., 2001)) is a domain-independent 
framework supporting physicians in the acquisition and execution of CIGs. It has been developed in a collaboration 
between the University of Eastern Piedmont and the San Giovanni hospital in Turin (one of the major hospitals in Ita-
ly), that have started in 1997. Among the other features, GLARE provides a user-friendly graphical user interface 



 

 

(GUI) and a representation formalism supporting physicians both in the acquisition of CIGs and a tool that takes into 
account the patient’s electronic clinical record, and supports physicians in the execution of a CIG on a specific patient. 
In the formalism of GLARE, CIGs are modelled as conditional and hierarchical graphs, whose nodes represent ac-
tions or decisions and whose arcs model the control flow relations and the temporal constraints between them (see 
examples in the following). GLARE supports the distinction between atomic actions (simple steps in a CIG) and compo-
site actions (plans). Atomic actions can be: work actions (a procedure which must be executed), pharmacological actions (a 
drug to be administered), query actions (retrieval of information from the clinical record/examinations) or decisions 
(choice among different alternatives).  

Fig. 2 shows an example of a CIG acquired using GLARE. The reported CIG is a simplified version of the guideline 
for the treatment of Urinary Tract Infections (UTI) provided by the British National Institute for Health and Care Ex-
cellence (NICE; (NICE | The National Institute for Health and Care Excellence, n.d.)). The figure shows most of the 
GLARE elements. Yellow diamonds represent decisions. For instance, the decision “CATHETER” distinguishes be-
tween the treatment of patients suffering from UTI with or without a urinary catheter. Blue circles represent work ac-
tions. For instance, “Hospitalize patient” recommends hospitalizing patients having symptoms (e.g. sepsis) suggest-
ing a more serious illness or condition. In such a case the current CIG ends because this guideline does not include 
the treatment of hospitalized patients. Finally, red hexagons represent composite actions, that can be further expand-
ed in term of their components. For instance, “UTI lifestyle” is a composite action for the follow-up of patients treated 
for UTI, containing a plan with recommendations (such as drinking enough fluids - to avoid dehydration - and self-
care medications) to prevent relapses. In the figure we have already expanded the composite action for the treatment 
of the upper UTI (which includes the part of the graph starting with the decision “SERIOUS SYMPTOMS?”). On the 
other hand, the composite action “Nalidixic Acid treatment” has not been expanded in the figure. It contains a repeti-
tion of the pharmacological action “Nalidixic Acid Administration”, to be performed periodically for 1 or two weeks 
with a delay between two consecutive actions ranging from 5 to 7 hours (i.e., 20 to 28 time units – see Ex.1).  

 

GLARE’s architecture is modular and open. Along the years, new modules and\or methodologies have been added 
to deal with CIG contextualization (Terenziani et al., 2004), temporal reasoning (Anselma et al., 2006), cost-benefit 
analysis (Montani & Terenziani, 2006), model-based verification (Bottrighi et al., 2010), conformance analysis (Spiotta 
et al., 2017) and agent delegation (Bottrighi et al., 2019). 

Additionally, GLARE has also been extended with a Knowledge Manager, to cope with additional CIG-independent 
medical knowledge (Piovesan et al., 2014). The Knowledge Manager adopts an OWL ontological model (built using 
Protégé; (Musen, 2015)), which also integrates parts of the SNOMED CT (International Health Terminology Stand-
ards Development Organisation, 2015) and ACT (WHO Collaborating Centre for Drug Statistics Methodology, n.d.) 
ontologies. GLARE’s actions can be linked to ontological elements. The ontological model enriches GLARE with addi-
tional basic medical knowledge, associating actions with their effects and intentions. Effect and intentions are mod-
eled as variations of the patient’s status attributes. Moreover, the ontological model represents the relations between 
effects/intentions, such as causal relations or interactions. In (Anselma et al., 2017) the ontological model has been 
enriched with temporal information. In particular, the properties relating the actions/drugs to their effects have been 

Fig. 2. UTI CIG modeled with the GLARE formalism. 



  

 

extended to contain the delays between the action execution/drug administration and the onset and the end of the 
effects. Notably, GLARE’ Knowledge Manager module is paired with an OWL reasoners providing inferences about 
the previous elements. 

Fig. 3 (solid lines) shows part of the ontological knowledge of GLARE for the actions “Calcium Carbonate Admin-
istration” and “Nalidixic Acid Administration” involved in Ex.1. In particular, the ontological model associates both 
the actions with the drugs they prescribe (property “substance”) and each drug is associated with its effects (property 
“hasEffects”). For instance, the action “Calcium Carbonate Administration” is related to the substance “Calcium Car-
bonate”, that has the effect “Decrease Gastric Acidity”. Such an effect, however, causes also a decreasing of the gastric 
absorption capability (“Decrease Gastric Absorption”). Following such a model, the Knowledge Manager of GLARE is 
able to infer that each CIG action linked to the concept “Calcium Carbonate Administration” has, as effects, the de-
creasing of gastric acidity and the decreasing of the gastric absorption. Such a knowledge can be exploited, for in-

stance, to study the interactions between CIG actions for comorbid patients (see below). 

 

GLARE-SSCPM (Piovesan et al., 2018) is the GLARE extension devoted to the treatment of comorbidities. GLARE-
SSCPM faces all the three “core” tasks in the CIG-based treatment of comorbid patients: (i) the detection of interac-
tions occurring between CIGs (Piovesan et al., 2014, 2015), (ii) the management of the interactions (Piovesan & Teren-
ziani, 2015), and (iii) the final merging of (parts of the) CIGs (Piovesan & Terenziani, 2016). With respect to the other 
related approaches in the literature, GLARE-SSCPM is characterized by a high degree of interaction with user-
physicians, to interactively support, “step-by-step”, their decisions, and by a specific attention to the temporal dimen-
sion. In particular, GLARE-SSCPM supports physicians by adopting the “focus, hypothesize and test” methodology. 
In a session of work using GLARE-SSCPM, a physician can (i) take advantage of GLARE-SSCPM to focus on the parts 
of the CIGs that are relevant to the current status of the patient, and ask it to automatically detect the possible interac-
tions between the focused actions. Then (ii) GLARE-SSCPM provides user-physicians with different options for man-
aging an interaction, giving them a way of simulating the application of each option, until one of them is chosen by 
the physicians. Finally, (iii) in case multiple interactions have been managed, GLARE-SSCPM automatically checks the 
general consistency of the managements. In the case of consistency, it provides a “merge” of the (focused parts of the) 
CIGs, while, in the case of inconsistency, physicians may check alternative managing options (following the “hypoth-
esize and test” methodology). 

The general architecture and behaviour of GLARE-SSCPM is described in (Piovesan et al., 2018), while the specific 
treatment of focusing, automatic detection, interaction management and merge is described in (Piovesan et al., 2014; 
Piovesan & Terenziani, 2015, 2016), respectively. In the following, we just mention focusing, management and merge, 
and then we briefly describe interaction detection and temporal reasoning, which concern the focus of this paper.  

Fig. 3. Part of the ontological model (solid lines) of GLARE exploited to infer the interaction between the actions of Ex.1. 

Dashed nodes and arcs represent the inferences of the reasoner. 



 

 

Focusing. Since CIGs may consists of hundreds of actions, and (in GLARE) can be structured at different levels of ab-
straction, GLARE-SSCPM provides physicians with a facility, to support them in the tasks of focusing on the parts of 
the CIGs which are currently “relevant” for the patient at hand, and of choosing the appropriate level of abstraction. 
Such a tool provides a graphical interface, and supports physicians in the “navigation” of the CIGs, at different levels 
of abstraction. A “navigation tree” is maintained, to provide physicians also a way to backtrack to previous focuses. 

Interaction Management. Analysing the medical literature, it emerges that different options are used by physicians 
to manage (i.e., “solve”) interactions, and the choice between them is usually context and patient-dependent. There-
fore, GLARE-SSCPM provides physicians with 8 different management options. Management options leads to local 
changes to the CIGs, to avoid undesirable interactions and to enforce desirable ones. For example, the “safe alterna-
tive” option allows physicians to avoid an interaction by choosing alternative paths in the CIGs, while the “replan-
ning” option substitute an interacting action with an automatically determined plan achieving the same intentions of 
the interacting action. Interestingly, in GLARE-SSCPM, all the 8 management options are achieved on top of three 
basic reasoning techniques: Backward Navigation on the CIGs, Goal Based Planning (taking advantage of the Knowledge 
Manager and of its Knowledge Base), and Temporal Reasoning. 

CIG conciliation. In case more than one management is needed (due to multiple interactions to be managed), their 
global consistency must be checked, and a “local merge” of the involved parts of the CIG must be provided. Such a 
task is automatically managed by GLARE-SSCPM taking advantage of the CSP (Constraint Satisfaction Problem) 
framework.  

Interaction detection. Given a set SA of actions from different CIGs (in case no focusing is performed, all the actions 
in the CIGs – used for the given patient – are considered), GLARE-SSCPM automatically detects the possible interac-
tions between them. Such a detection is achieved in two steps. In the first step, GLARE-SSCPM exploits the ontologi-
cal knowledge, a set of Semantic Web Rules (SWRLs) and the OWL reasoner to retrieve all the possible interactions 
between the intentions, effects and (in case of pharmacological actions) prescribed drugs of the actions in SA. As an 
example, the part of the ontological model shown in Fig. 3 can be used to detect an interaction between the actions 
CCA and NAA of Ex.1 (in Ex.1, we have SA = {“Nalidixic Acid Gastric Administration”, “Calcium Carbonate Admin-
istration”}). Notably, dashed elements in Fig. 3 represent the inferences of the reasoner . 

Given SA, the reasoner focuses on the effects, the intentions and the drugs of the actions in SA to detect possible inter-
actions.  In our example, “Nalidixic Acid Gastric Administration” is an administration of the substance (substance re-
lationship) “Nalidixic Acid” which has as effect (hasEffect relationship) “Increasing of Nalidixic Acid Gastric Absorp-
tion”; “Calcium Carbonate Administration” is an aministration of the substance “Calcium Carbonate”, which has as 
effect “Decrease Gastric Acidity”. 

Exploiting the causal relationship between the effects “Decrease Gastric Acidity” and “Decrease Gastric Absorption”, 
the reasoner infers that also “Decrease Gastric Absorption” is an effect of the drug Calcium Carbonate (dashed edge 
“hasEffect”). “Increasing of Nalidixic Acid Gastric Absorption” focuses on (focusOn relationship) the attribute “Na-
lidixic Acid Gastric Absorption”, that is a sub-type (subTypeOf relationship) of the attribute “Gastric Absorption”. No-
tably, such an attribute is also the focus of “Decrease Gastric Absorption”.  As a consequence, an interaction between 
such two effects is inferred (see the dashed concept “DGAb-INAGA Interaction” in Fig. 3). Moreover, “Increasing of 
Nalidixic Acid Gastric Absorption” causes an increase (hasModality arc stemming from “Increasing of Nalidixic Acid 
Gastric Absorption”), while “Decrease Gastric Absorption” causes a decrease of “Gastric Absorption”. Therefore, 
through the following SWRL rule, a discordance is detected between the two effects.  

Interaction(?i) ^ hasElement(?i, ?v1) ^ hasElement(?i, ?v2) ^ focusOn(?v1, ?a1) ^ fo-

cusOn(?v2, ?a2) ^ subTypeOf(?a2, ?a1) ^ hasModality(?v1, ?m1) ^ hasModality(?v2, ?m2) 

^ differentFrom(?m1, ?m2) -> hasType(?i, Discordant) 

Finally, since the interaction detected at the previous step involves two effects of the drugs “Nalidixic Acid” and 
“Calcium Carbonate”, a discordance interaction (“CC-NA Interaction” in Fig. 3) is inferred between them through the 
following SWRL rule: 

Interaction(?i) ^ hasElement(?i, ?d1) ^ hasElement(?i, ?d2) ^ Drug(?d1) ^ Drug(?d2) ^ 

Interaction(?i1) ^ hasElement(?i1, ?v1) ^ hasElement(?i1, ?v2) ^ hasEffect(?d1, ?v1) ^ 

hasEffect(?d2, ?v2) ^ hasType(?i1, ?t1) -> hasType(?i, ?t1) ^ causedBy(?i, ?i1) 

As a consequence, the interaction “CC-NA interaction” between the concepts “Calcium Carbonate Administration” 
and “Nalidixic Acid Administration” is inferred and reported to the user physician. If needed, the explanations pro-
vided by the OWL reasoner are also shown to the user physicians by the GUI of the Interaction Detection module of 
GLARE-SSCPM. 



  

 

The interactions detected at this step, without considering time, are only hypothetical. Indeed, if the interacting ef-
fects do not overlap in time, the interaction does not actually occur. For such a reason, GLARE-SSCPM adopt a tem-
poral reasoner to check whether the detected interactions can temporally occur, or not. 

Temporal reasoning. In the second step, for each detected interaction, temporal reasoning is used to check whether it 
can actually occur or not, given the temporal information (i) in the CIGs (in the form of temporal constraints between 
–the endpoints of– CIG actions – e.g., delays between action), (ii) in the (temporally extended) ontological model, 
concerning the delay and duration of the effects of actions, and (iii) the time of execution of previous actions on the 
patient. Following the AI stream of research described in Section 2, in GLARE-SSCPM we have developed a 
specialised temporal reasoner to manage such temporal pieces of information, and to reason (in the form of constraint 
propagation) about them (Anselma et al., 2017). Moreover, we enriched the knowledge model of GLARE to represent 
temporal constraints between actions and/or effects. The temporal reasoner acts as a knowledge server, to which 
temporal problems may be delegated (notably, also interaction management takes advantage of the temporal 
reasoner, as described in (Piovesan et al., 2018)).   

The temporal approach we developed in (Anselma et al., 2017) provides a wide set of facilities which are specific of 
the CIG application domain. However, the “kernel” of the approach is the “classical” STP framework discussed in 
Section 2.1. A specific interface module, composed by three submodules, is used in order to retrieve the temporal 
constraints (i)-(iii), to map them into STP constraints, and to give them as input to the STP temporal reasoner. Specifi-
cally, constraints (i) are retrieved through a navigation into the CIGs (which focus only, in each CIG, on the path in 
the CIG which is being applied to the given patient); constraints (ii) are retrieved through navigation and search in 
the knowledge base, by considering as entries the link (to the knowledge base) contained in the actions in the CIG; 
constraints (iii) are simply taken from the “log” of the actions executed on the patient (which contains the starting 
and ending time for action execution).  

Let us consider, as an example, the temporal analysis of the interaction between CCA and NAA. In GLARE-SSCPM, 
interaction detection (and the related temporal analysis) is performed whenever required by the physicians. As a con-
sequence, in order to propose a running example, we have to fix a specific situation in which the temporal analysis is 
invoked (see Ex.1’ below, which contextualizes the patient-independent example discussed in Ex.1). Notably, in STP, 
absolute times are expressed as distances (delays) from a given reference point. For the sake of simplicity, in this ex-
ample we take as reference time 00:00 of the current day (X0 henceforth), and we consider units of 15 minutes as tem-
poral granularity. For instance, time unit 8 represents time 02:00 of the current day. 

Ex.1’. We consider a comorbid patient affected by GERD and UTI. Specifically, as regards UTI, we suppose that sev-
eral actions in the CIG have been already executed on the patient: the decisions “CATHETER” (chosen branch: “no”), 
“LOCALIZATION” (chosen branch: “upper”; i.e., the patient has upper UTI), “SERIOUS SYMPTOMS?” (chosen 
branch: “no”) and “ANTIBIOTIC SELECTION” (chosen branch: “Nalidixic Acid treatment”). We also suppose that 
the patient has already started the NAA therapy, and that today the patient has already had an administration (node 
NAA0 in Fig. 4) at unit 28.  

As regards the GERD CIG, we suppose that today the RS decision is executed at the time unit 52, with a positive an-
swer, so that CCA has to be administered to the patient. 

First, GLARE-SSCPM extracts the constraints from the CIGs, the knowledge model and the log. Notably, the temporal 
constraint that the ending time of all the durative elements (e.g., durative actions, effects) is equal or after their start-
ing time is automatically inserted by the framework. A detailed description of the automatic extraction procedure is 
provided in (Anselma et al., 2017). Fig. 4 shows the STP derived from the constraints extracted to temporally analyze 
the interaction in Ex.1+Ex.1’ above. Specifically,  

- the constraints X0 [28,28] NAA0 and X0 [52,52] RS are extracted from the log (storing the time when actions 
are executed on the patient; see Ex.1’),  

- the constraints NAA0 [20,28] NAA and RS [0,6] CCA are extracted from the UTI and GERD CIGs respective-
ly 

- the constraints between NAA and the starting (INAGAs) and ending (INAGAe) times of its effect Increase of 
Nalidixic Acid Gastric Absorption, and between CCA and the starting (DGAbs) and ending (DGAbe) times of 
its effect Decrease of Gastric Absorption are extracted from the ontological model.  

 

 

 



 

 

The temporal reasoner of GLARE-SSCPM is based on the STP framework, and propagates the input constraints to 
provide the minimal network (see Section 2.1).  For example, some of the constraints in the minimal network are 
shown in Fig.5 below. Since the minimal network is not easy to interpret for non-expert users, GLARE-SSCPM pro-
vides several facilities, including a rich language to query the minimal network. In particular, GLARE-SSCPM’s “In-
teraction” facility allows physicians to check the possible temporal occurrence of an interaction, by checking whether 

the interacting effects must, may or cannot intersect in time. Additionally, to facilitate users in the analysis of tem-
poral constraints, GLARE-SSCPM provides a graphical interface to visualize them (see (Anselma et al., 2017) for a de-
tailed description)In general, the graphical facility allows users to specify a set of time points, and provides as output 
a graphical representation of their temporal location, with respect to the timeline (i.e. their distance with respect to 
the reference time X0). Specifically, such a general facility can be used in order to study interactions, e.g., by visualiz-
ing the temporal location of the endpoints of the effects of (potentially interacting) actions. For example, Fig. 6 shows 
the GUI for the analysis of the interaction between the effects DGAb and INAGA of CCA and NAA in Ex.1+Ex.1’. The 
GUI shows in a timeline (starting at the chosen X0 – that in our example is the time 00:00 of the current day) the time 
intervals (represented as rectangles) when the interacting effects (DGAb and INAGA) can start and end. For instance, 
the top rectangle in the figure represents the time when DGAb can start. Through this representation, it is easier to 
notice that the two effects may overlap in time, but they can also be disjoint.  

 

Fig. 5. Part of the minimal network for Ex.1, representing the temporal constraints between the actions/effects and the reference 

time X0, and the temporal constraints between the interacting effects. 

Fig. 4. STP extracted for the analysis of the interaction between CCA and NAA of Ex.1. 



  

 

GLARE-SSCPM also supports Boolean queries. For instance, users can ask whether, given the minimal network, 
DGAb and NAGA intersect. The answer, in our example, would be “possibly”2. Finally, GLARE-SSCPM also sup-
ports hypothetical queries, i.e., queries to be answered in a context in which a set of STP constraints is hypothesized 
(see the discussion in Section 6.5). 

4 PROBABILISTIC+PREFERENTIAL QUANTITATIVE TEMPORAL NETWORKS 

We aim at extending STP to support the possibility to associate both preferences and probabilities to the possible dis-
tances between time points. In our approach, time points may represent: 

(i) the time of occurrence of “instantaneous” events, or 

(ii) the endpoints of the time intervals in which durative events occur. 

For instance, in our encoding of Ex.1+Ex.1’ (see Ex.3 below) we suppose, with no loss of generality, that Calcium Car-
bonate Administration (CCA) and Nalidixic Acid Administration (NAA) are instantaneous events. Of course, their 
effects “Decreasing Gastric Absorption” (DGAb) and “Increase of Nalidixic Acid Gastric Absorption” (INAGA) are 
durative.  

Though our temporal reasoning approach focuses on time points, we maintain two tables, encoding the correspond-
ence between instantaneous events and their time of occurrence, and durative events and the starting and ending 
time of their interval of occurrence.  

To model preferences and probabilities along paths of events, we need to consider (i) “purely” preferential con-
straints, (ii) “purely” probabilistic constraints, and (iii) “mixed” probabilistic+preferential constraints. We represent 
the above constraints homogeneously, where each constraint has both a probability and a preference, and we use two 
special symbols, namely “%” and “”, to denote the undefined probability (for type (i) constraints) and the undefined 
preference (for type (ii) constraints), respectively. When probabilities are undefined (value “%”), we adopt the usual 
interpretation that all the alternatives have the same probability. Without loss of generality, we assume that both 
probability and preferences are defined over the domain [0,1] ∈ 𝑅. Thus, we define the domains PB (for probabilities) 
and PF (for preferences) as follows. 

Terminology. We term PB the domain [0,1] ∪ {%} of probabilities, and PF the domain [0,1] ∪ {#} of preferences. ■ 

Definition.  

• let 𝑡𝑖 , 𝑡𝑗 ∈ 𝑅 be time points, 

• let 𝑝1, … , 𝑝𝑛 ∈ 𝑅 be probabilities; 0 < 𝑝1 ≤ 1, … ,0 < 𝑝𝑛 ≤ 1 or 𝑝1 = ⋯ = 𝑝𝑛 = %, 

• let 𝑃1, … , 𝑃𝑛 ∈ 𝑅 be preferences; 0 ≤ 𝑃1 ≤ 1, … ,0 ≤ 𝑃𝑛 ≤ 1 or 𝑃1 = ⋯ = 𝑃𝑛 = #, 

 

2It is worth noticing that, though “crisp” STP constraints do not model preferences nor probabilities, they may still be indeterminate (i.e., not ex-
act). As a consequence, in the “crisp” case, the answers to Boolean queries are not just yes/no, but yes/possibly/no. As an example, consider two 
time points t1 and t2, and a query asking whether t2 follows t1 (i.e., t2>t1). The answer to such a query would be “yes” in case, e.g. the STP constraint 
between t1 and t2 is t1[1,2]t2, “possibly” in case the constraint is t1[-1,+1]t2,  “no” in case the constraint is t1[-2,-1]t2. 

Fig. 6. GUI for the analysis of the interaction of Ex.1. Coloured rectangles represent the times in which the interacting effects can 

start/end expressed as delays from the reference time X0. 



 

 

• let 𝑑1, … , 𝑑𝑛 ∈ 𝑍 be distances (between points). 

A Probabilistic+Preferential Quantitative Temporal Label (P+PQTL) is a list ⟨(𝑑1, 𝑝1, 𝑃1), … , (𝑑𝑛, 𝑝𝑛 , 𝑃𝑛)⟩ where ei-
ther 𝑝1 = ⋯ = 𝑝𝑛 = % or 𝑝1 + ⋯ + 𝑝𝑛 = 1. In the following, we denote by 𝐿 the domain of such labels. 

A Probabilistic+Preferential Quantitative Temporal Constraint (P+PQTC) is a constraint of the form 𝑡𝑖𝐶𝑡𝑗 where 
𝐶 ∈ 𝐿 and 𝑡𝑖 , 𝑡𝑗 ∈ 𝑅 are time points.  

A Probabilistic+Preferential Quantitative Temporal Network (P+PQTN) is a directed graph 𝐺 = ⟨𝑉, 𝐸⟩ with an 
edge labelling 𝜆, where 𝑉 is a set {𝑡1, … , 𝑡|𝑉|} of time points, 𝐸 ⊆ 𝑉 × 𝑉, and 𝜆: 𝐸 → 𝐿. ■ 

The intended meaning of a constraint 𝑡𝑖⟨(𝑑1, 𝑝1, 𝑃1), … , (𝑑𝑛, 𝑝𝑛 , 𝑃𝑛)⟩𝑡𝑗 is that the distance 𝑡𝑗 − 𝑡𝑖  between 𝑡𝑗 and 𝑡𝑖 is 𝑑1 
with probability 𝑝1 and preference 𝑃1, or … or 𝑑𝑛 with probability 𝑝𝑛 and preference 𝑃𝑛.  

Ex.3. For example, the P+PQTC  

CCA <(1,0.4,#), (2,0.4,#), (3,0.2,#)> DGAbs 

represents the constraint between CCA and the starting point of DGAb (denoted as DGAbs) in Ex.1+Ex.1’, and 

RS <(0,%,1),(1,%,1), (2,%,0.75), (3,%,0.75), (4,%,0.5), (5,%,0.5), (6,%,0.25)> CCA.  

represents the temporal constraint in Ex.1+Ex.1’ relating the decision RS to the action CCA (in the CIG for GERD). ■ 

The P+PQTN associated with Ex.1+Ex.1’ is shown in Fig. 7. 

Fig. 7 Graphical representation of the P+PQTN for Ex.1+Ex.1’. 

5 TEMPORAL REASONING ON P+PQTNS 

As discussed in Section 4 above, we extend STP (with discrete distances) to include both probabilities and preferences. 
As in STP, we use Floyd-Warshall’s algorithm to perform temporal reasoning. However, we have to extend it to ap-
ply to P+PQTNs. To achieve such a goal, we extend the operators of intersection and composition to operate also on 
both probabilities and preferences. In the following, we denote by ∩𝑝𝑃 and @𝑝𝑃 our extended intersection and compo-
sition operators. 

5.1 Intersection and composition operators 

Concerning distances, both ∩𝑝𝑃 and @𝑝𝑃 work as the corresponding STP operators. 

The intersection operator ∩𝑝𝑃 “merges” two constraints 𝐶1 = ⟨(𝑑1
′ , 𝑝𝑑1

′ , 𝑃𝑑1
′ ), … , (𝑑𝑛

′ , 𝑝𝑑𝑛
′ , 𝑃𝑑𝑛

′ )⟩ and 𝐶2 =



  

 

⟨(𝑑1
′′, 𝑝𝑑1

′′, 𝑃𝑑1
′′), … , (𝑑𝑚

′′ , 𝑝𝑑𝑚
′′ , 𝑃𝑑𝑚

′′ )⟩ regarding the same pair of time points. As in STP, the output distances are obtained 
as the intersection of the input distances. As regard probabilities, as in the probabilistic approaches in the literature, 
we consider each constraint as independent of the others. The intersection operator evaluates those distance values 
that are in common with both input constraints, and, given the independence, it multiplies the corresponding proba-
bilities. Intersection computes all and only the distance values that are possible between the two input points. From 
the probabilistic point of view, such distances form a new exhaustive set of basic events, and therefore their probabili-
ties have to be normalized.  

Considering defined preferences (i.e., preferences different from “”), we adopt the usual approach that, for each dis-
tance in the output, its preference is the minimum of the preferences in the input constraints. On the other hand, the 
intersection of a defined preference 𝑃 with an undefined one is the defined preference 𝑃, while the intersection of two 
undefined preferences is the undefined preference. The formal definition is the following: 

Definition. Intersection (∩𝑝𝑃). Given two P+PTQLs 

𝐶1 = ⟨(𝑑1
′ , 𝑝𝑑1

′ , 𝑃𝑑1
′ ), … , (𝑑𝑛

′ , 𝑝𝑑𝑛
′ , 𝑃𝑑𝑛

′ )⟩, 𝐶2 = ⟨(𝑑1
′′, 𝑝𝑑1

′′ , 𝑃𝑑1
′′), … , (𝑑𝑚

′′ , 𝑝𝑑𝑚
′′ , 𝑃𝑑𝑚

′′ )⟩relating two time points, their intersection 
𝐶 is defined as follows. Let {𝑑1, … , 𝑑𝑘} = {𝑑1

′ , … , 𝑑𝑛
′ } ∩ {𝑑1

′′, … , 𝑑𝑚
′′ }, and let 𝑝𝑋(𝑑) and 𝑃𝑋(𝑑) be the probability and the 

preference of the distance 𝑑 in the constraint 𝑋, then 

𝐶 = 𝐶1 ∩𝑝𝑃 𝐶2 = ⟨(𝑑1, 𝑝𝐶(𝑑1), 𝑃𝐶(𝑑1)), … , (𝑑𝑘 , 𝑝𝐶(𝑑𝑘), 𝑃𝐶(𝑑𝑘))⟩ 

where for each 𝑑 ∈ {𝑑1, … , 𝑑𝑘} the output probability 𝑝𝐶(𝑑) is defined as follows: 

(i) if 𝑝𝐶1
(𝑑) = % and 𝑝𝐶2

(𝑑) = % then 𝑝𝐶(𝑑) = 1 𝑘⁄ , 

(ii) if 𝑝𝐶1
(𝑑) ≠ % and 𝑝𝐶2

(𝑑) = % then 𝑝𝐶(𝑑) = 𝑝𝐶1
(𝑑) (𝑝𝐶1

(𝑑1) + ⋯ + 𝑝𝐶1
(𝑑𝑘))⁄ , 

(iii) if 𝑝𝐶1
(𝑑) = % and 𝑝𝐶2

(𝑑) ≠ % then 𝑝𝐶(𝑑) = 𝑝𝐶2
(𝑑) (𝑝𝐶2

(𝑑1) + ⋯ + 𝑝𝐶2
(𝑑𝑘))⁄ , 

(iv) if 𝑝𝐶1
(𝑑) ≠ % and 𝑝𝐶2

(𝑑) ≠ % then 𝑝𝐶(𝑑) = (𝑝𝐶1
(𝑑) ∗ 𝑝𝐶2

(𝑑)) (𝑝𝐶1
(𝑑1) ∗ 𝑝𝐶2

(𝑑1) + ⋯ + 𝑝𝐶1
(𝑑𝑘) ∗ 𝑝𝐶2

(𝑑𝑘))⁄ , 

and the output preference 𝑃𝐶(𝑑) is defined as follows: 

(i) if 𝑃𝐶1
(𝑑) = # and 𝑃𝐶2

(𝑑) = # then 𝑃𝐶(𝑑) = #, 

(ii) if 𝑃𝐶1
(𝑑) ≠ # and 𝑃𝐶2

(𝑑) = # then 𝑃𝐶(𝑑) = 𝑃𝐶1
(𝑑), 

(iii) if 𝑃𝐶1
(𝑑) = # and 𝑃𝐶2

(𝑑) ≠ # then 𝑃𝐶(𝑑) = 𝑃𝐶2
(𝑑), 

(iv) if 𝑃𝐶1
(𝑑) ≠ # and 𝑃𝐶2

(𝑑) ≠ # then 𝑃𝐶(𝑑) = 𝑚𝑖𝑛 (𝑃𝐶1
(𝑑), 𝑃𝐶2

(𝑑)). ■ 

Notice that the intersection ∩𝑝𝑃 may be empty if the intersection between {𝑑1
′ , … , 𝑑𝑛

′ } and {𝑑1
′′, … , 𝑑𝑚

′′ } is empty. 

Ex.4. As an example, the intersection between X <(1,0.5,1), (2,0.3,0.5), (3,0.2,0.2)> Y and X <(2,0.4,1), (3,0.4,0.8), 
(4,0.2,0.3)> Y is X <(2,0.6,0.5), (3,0.4,0.2)> Y. ■ 

Given a constraint 𝐶1 between 𝑡𝑖 and 𝑡𝑘 and a constraint 𝐶2 between 𝑡𝑘 and 𝑡𝑗, the composition operator @𝑝𝑃 evaluates 
the constraint between 𝑡𝑖 and 𝑡𝑗. As in STP, the output distances are obtained as the pairwise sums of the input dis-
tances, considering all the possible combinations, that are assumed to be independent. Therefore, for each given com-
bination of distances, we must multiply the corresponding probabilities (if they are definite). The set of all the combi-
nations is mutually exclusive. As a consequence, the probability of each output distance is the sum of the probabilities 
of all the combinations generating it. When probabilities are undefined (value “%”), we adopt the usual interpreta-
tion that all the alternatives have the same probability. 

As regards (definite) preferences, for each given combination of distances we minimize the corresponding prefer-
ences (i.e., we impose that the preference of a path is the minimum preference of its components), and then, for each 
output distance, we maximize the preference of each pair leading to such a distance (i.e., we select the preference of 
the “best” path). The composition of a defined preference 𝑃 with an undefined one # is the defined preference 𝑃, 
while the composition of two undefined preferences is the undefined preference. More formally: 

Definition. Composition (@𝑝𝑃). Given two P+PTQLs 

𝐶1 = ⟨(𝑑1
′ , 𝑝𝑑1

′ , 𝑃𝑑1
′ ), … , (𝑑𝑛

′ , 𝑝𝑑𝑛
′ , 𝑃𝑑𝑛

′ )⟩, 𝐶2 = ⟨(𝑑1
′′, 𝑝𝑑1

′′ , 𝑃𝑑1
′′), … , (𝑑𝑚

′′ , 𝑝𝑑𝑚
′′ , 𝑃𝑑𝑚

′′ )⟩ 

their composition 𝐶 is defined as follows. Let 𝐷′ = {𝑑1
′ , … , 𝑑𝑛

′ }, 𝐷′′ = {𝑑1
′′, … , 𝑑𝑚

′′ }, and 𝐷 = {𝑑1, … , 𝑑𝑟} = {𝑑: 𝑑 = 𝑑𝑖
′ +

𝑑𝑗
′′, 𝑑𝑖

′ ∈ 𝐷′, 𝑑𝑗
′′ ∈ 𝐷′′}, let 𝑝𝑋(𝑑) and 𝑃𝑋(𝑑) represent the probability and the preference of the distance 𝑑 in the con-

straint 𝑋, respectively, and let 𝑝𝑋 = % (𝑃𝑋 = #) represent the fact that all distances in 𝑋 have probability equal to % 
(preference equal to #), then 



 

 

𝐶 = 𝐶1@𝑝𝑃𝐶2 = ⟨(𝑑1, 𝑝𝐶(𝑑1), 𝑃𝐶(𝑑1)), … , (𝑑𝑟, 𝑝𝐶(𝑑𝑟), 𝑃𝐶(𝑑𝑟))⟩ 

where for each 𝑑 ∈ {𝑑1, … , 𝑑𝑟} the output probability 𝑝𝐶(𝑑) is defined as follows: 

(i) if 𝑝𝐶1
= % and 𝑝𝐶2

= % then 𝑝𝐶(𝑑) = ∑ (1 𝑛⁄ ) ∗ (1 𝑚⁄ ){〈𝑑′,𝑑′′〉:𝑑′∈𝐷′,𝑑′′∈𝐷′′,𝑑′+𝑑′′=𝑑} , 

(ii) if 𝑝𝐶1
≠ % and 𝑝𝐶2

= % then 𝑝𝐶(𝑑) = ∑ 𝑝𝐶1
(𝑑′) ∗ (1 𝑚⁄ ){〈𝑑′,𝑑′′〉:𝑑′∈𝐷′,𝑑′′∈𝐷′′,𝑑′+𝑑′′=𝑑} , 

(iii) if 𝑝𝐶1
= % and 𝑝𝐶2

≠ % then 𝑝𝐶(𝑑) = ∑ 𝑝𝐶2
(𝑑′′) ∗ (1 𝑛⁄ ){〈𝑑′,𝑑′′〉:𝑑′∈𝐷′,𝑑′′∈𝐷′′,𝑑′+𝑑′′=𝑑} , 

(iv) if 𝑝𝐶1
≠ % and 𝑝𝐶2

≠ % then 𝑝𝐶(𝑑) = ∑ 𝑝𝐶1
(𝑑′) ∗ 𝑝𝐶2

(𝑑′′){〈𝑑′,𝑑′′〉:𝑑′∈𝐷′,𝑑′′∈𝐷′′,𝑑′+𝑑′′=𝑑} , 

and the output preference 𝑃𝐶(𝑑) is defined as follows: 

(i) if 𝑃𝐶1
= # and 𝑃𝐶2

= # then 𝑃𝐶(𝑑) = #, 

(ii) if 𝑃𝐶1
≠ # and 𝑃𝐶2

= # then 𝑃𝐶(𝑑) = 𝑚𝑎𝑥({𝑃𝐶1
(𝑑′): 𝑑′ ∈ 𝐷′, 𝑑′′ ∈ 𝐷′′, 𝑑′ + 𝑑′′ = 𝑑}), 

(iii) if 𝑃𝐶1
= # and 𝑃𝐶2

≠ # then 𝑃𝐶(𝑑) = 𝑚𝑎𝑥({𝑃𝐶2
(𝑑′′): 𝑑′ ∈ 𝐷′, 𝑑′′ ∈ 𝐷′′, 𝑑′ + 𝑑′′ = 𝑑}), 

(iv) if 𝑃𝐶1
≠ # and 𝑃𝐶2

≠ # then 𝑃𝐶(𝑑) = 𝑚𝑎𝑥 ({𝑚𝑖𝑛 (𝑃𝐶1
(𝑑′), 𝑃𝐶2

(𝑑′′)) : 𝑑′ ∈ 𝐷′, 𝑑′′ ∈ 𝐷′′, 𝑑′ + 𝑑′′ = 𝑑}). ■ 

 

Ex.5. As an example, the composition between the constraint between RS and CCA and the constraint between CCA 
and DGAbs in Fig. 7 gives as result RS <(1, 0.0571429, 1), (2, 0.114286, 1), (3, 0.142857, 1), (4, 0.142857, 1), (5, 0.142857, 
0.75), (6, 0.142857, 0.75), (7, 0.142857, 0.5), (8, 0.0857143, 0.5), (9, 0.0285714, 0.25)> DGAbs. ■ 

Complexity (intersection and composition).  Let 𝐷1 and 𝐷2 be two P+PQTLs, consisting of |𝐷1| and |𝐷2| distances re-
spectively. Both intersection and composition take advantage of the fact that the distances between two time points 
are sorted. The intersection of 𝐷1 and 𝐷2 consists of at most 𝑚𝑖𝑛(|𝐷1|, |𝐷2|) distances, and is evaluated in 𝑇∩𝑝𝑃

=
𝑂 (𝑚𝑎𝑥(|𝐷1|, |𝐷2|)) time. The composition of 𝐷1 and 𝐷2 consists of at most 𝑂(|𝐷1| + |𝐷2|) distances, and is evaluated 
in 𝑇@𝑝𝑃

= 𝑂(|𝐷1| ∗ |𝐷2|) time. 

5.2 Temporal reasoning with probabilities and preferences 

In our approach, the goal of temporal reasoning is to compute the minimal network of a P+PQTN, propagating also 
preferences and probabilities. To achieve it, we apply a version of the Floyd-Warshall’s algorithm (or one of its recent 
optimized versions, e.g., (Planken et al., 2008)), in which we replace ∩ and @ by our operators ∩𝑝𝑃 and @𝑝𝑃, respec-
tively.  

Complexity (temporal reasoning algorithm). Given the complexity of Floyd-Warshall’s algorithm, and the above 

analysis of complexity of ∩𝑝𝑃 and @𝑝𝑃, the overall complexity of our temporal reasoning algorithm is 𝑂 (|𝑉|3 ∗

𝑚𝑎𝑥 (𝑇∩𝑝𝑃
, 𝑇@𝑝𝑃

)), where |𝑉| is the number of time points in a P+PQTN, and 𝑇∩𝑝𝑃
 and 𝑇@𝑝𝑃

 denote the time to 

evaluate ∩𝑝𝑃 and @𝑝𝑃, respectively, as defined above.  

On the limit, max (𝑇∩𝑝𝑃
, 𝑇@𝑝𝑃

) = 𝑇@𝑝𝑃
. It is also easy to notice that 𝑇@𝑝𝑃

 depends on the cardinalities (i.e., the number 

of distances) of the considered constraints (|𝐷1| and |𝐷2| above). To provide an accurate analysis of 𝑇@𝑝𝑃
, we thus 

need to estimate the maximum cardinality of a constraint during the propagation process. Let us define 𝐷𝑚𝑎𝑥 as the 

input constraint with the maximum cardinality before the propagation. In STP, and consequently in our algorithm, 

the application of composition operations between adjacent constraints in the network can produce constraints with 

increasing cardinality. Each composition can generate a constraint with at most a cardinality equal to the sum of the 

cardinalities of the composed constraints. Considering that the longest simple path in a network contains at most 

|𝑉| − 1 constraints, the maximum cardinality of constraints during/after the propagation is thus 𝑂(|𝐷𝑚𝑎𝑥| ∗ |𝑉|). As 

a consequence, 𝑇@𝑝𝑃
= 𝑂((|𝐷𝑚𝑎𝑥| ∗ |𝑉|)2). 

We can now formulate the overall complexity of our temporal reasoning algorithm as 𝑂(|𝑉|3 ∗ (|𝐷𝑚𝑎𝑥| ∗  |𝑉|)2) =

𝑂(|𝑉|5 ∗ |𝐷𝑚𝑎𝑥|2).  



  

 

In Fig.8 in the following, we show part of the minimal network obtained by our extended temporal reasoning 

algorithm applied to the constraints in Ex.1+Ex.1’ (the complete minimal network is reported in Appendix A). 

Notably, while the “crisp” temporal constraints are the same as in Fig.5, in our approach such constraints are 

enriched by additional pieces of information concerning preferences and probabilities. For instance, while from the 

minimal network in Fig.5 we have that INAGAs can occur between 5 units before and 12 units after DGAbs, we now 

provide physicians with additional relevant pieces of information about the preferences and probabilities. For 

instance, the most probable scenarios are the ones where the actual distance between INAGAs and DGAbs ranges 

between 1 and 5 time units (while the other ones are unlikely), and the scenarios associated with the higher 

preferences for the actions are the ones where such a distance ranges between -2 and 4 time units. However, the 

minimal network, and the preferences and probabilities it contains, are not easily consultable by physicians in a direct 

way. As a consequence, we provide a rich query language, and a graphical interface, to support physicians in the 

analysis of the results of temporal reasoning (see Section 6).  

5.3 Experimental Evaluation 

In this section, we present the results of the experimental evaluation we carried out to assess the performance of 
our temporal reasoning approach as well as its scalability with respect to the number of time points in a P+PQTN. To 
this end, we developed a prototype of our approach in C++ and we evaluated its performance on a Lenovo Thinkpad 
P1 Gen 3 equipped with a 2.6 GHz Intel Core i7-10750H CPU with 6 cores and 64 GiB of RAM, and running the Linux 
kernel version 5.13.12. To foster research and provide reproducibility of results we published the artifacts of our ex-
perimental evaluation on a public repository.3 

 

3 URL of the public repository of the artifacts of our experimental evaluation: https://gitlab.di.unipmn.it/sguazt/ppqtn-eswa2021-artifacts. 

Fig. 8 Part of the P+PQTN minimal network for Ex.1, representing the temporal constraints between the actions/effects 
and the reference time X0, and the temporal constraints between the interacting effects. 



 

 

To evaluate the scalability of our temporal reasoning algorithm, we considered P+PQTNs of different sizes, ranging 
from 10 to 250 time points. Moreover, in the absence of a real dataset, for each P+PQTN we randomly generated its 
constraints as follows: distance values are drawn from a uniform probability distribution over the integer interval 
[0,100], probability and preference values are drawn from two different uniform distributions over the real interval 
[0,1], and we use two binomial distributions with parameter 0.5 to decide whether a constraint has defined probabil-
ity and preference values or not, respectively. Finally, we used as performance metric the average execution time, i.e., 
the amount of time that our approach used the CPU to produce the minimal network for an input P+PQTN. This av-
erage value has been computed by running our approach several times over randomly generated P+PQTNs with the 
same number of time points and with randomly generated preferences and probabilities, and by averaging the execu-
tion time, until the relative precision of its 95% confidence interval became ≤ 4% (Banks et al., 2010). 

We present the results of our experiments in Fig. 9 where each black-filled circle denotes the average execution time 
taken by our approach to process P+PQTNs with a given number of time points, and the error bars denote the associ-
ated 95% confidence interval. To study the order of growth of the execution time, we fit both polynomial and expo-
nential regression models to the obtained results (where we used the number of time points as the predictor (inde-

pendent) variable and the average execution time as the response (dependent) variable), and, for each one of them, 
we evaluated its goodness-of-fit by analyzing its residuals and by considering as goodness-of-fit measures the adjust-
ed R2, the Root Mean Square Error (RMSE) and the Akaike Information Criterion (AIC), which are typically used for 
model selection (e.g., see (Ding et al., 2018; Emmert-Streib & Dehmer, 2019)). From this analysis, we found that a 5th 
degree polynomial model provides a better fit than the exponential model. This finding can also be observed in Fig. 9 
and in Table 1. Specifically, in Fig. 9 we note that the fitted 5th degree polynomial function (see the red solid line la-
beled as "fitted poly5") better fits the experimental data than the fitted exponential function (see the blue dashed line 
labeled as "fitted exp"), especially for a number of time points greater than 240. Also, from Table 1, we note that the 
fitted 5th degree polynomial model yields better values of the considered goodness-of-fit measures than the fitted ex-
ponential model; in particular, it results in lower RMSE and AIC values (intuitively, the lower, the better) as well as in 
a higher adjusted R2 value (intuitively, the closer to one, the better). 

Table 1. Goodness-of-fit measures of the 5th degree polynomial and the exponential regression models fitted to the 
experimental data. 

Fitted model 
Goodness-of-fit measures 

Adjusted R2 RMSE AIC 

Fitted poly5 0.997 24.65 238.32 

Fitted exp 0.995 31.54 247.43 

 

These results confirm the complexity analysis provided in the previous section. For example, the average execution 

Fig. 9 Execution time (in seconds) of our approach as a function of the number of time points in a P+PQTN. 

 



  

 

time required to deal with a P+PQTN of 100, 150 and 200 time points is 26.17 (standard deviation 5.19), 138.30 (stand-
ard deviation 27.81), and 507.35 (standard deviation 92.80) seconds, respectively. 

5.4 Extending GLARE SSCPM to cope with Probabilities and Preferences 

Following the approach in (Anselma et al., 2017), and taking advantage of the P+PQTNs approach described above, 
we have extended the Interaction Detection and the Temporal reasoner modules of GLARE-SSCPM to cope with 
probabilities and preferences. Such an extension has required several operations. 

First, we have extended the knowledge models (both CIGs and ontological model) to represent probabilities and 
preferences. As regards the CIGs, we have extended GLARE’s formalism to include preferences in the representation 
of temporal constraints between actions. As a simple example, the constraint between two consecutive administra-
tions of Nalidixic Acid NAA0 and NAA was previously modeled in GLARE as NAA0<[20,28]>NAA. In the extended 
formalism, the same constraint is now extended to include the preferences explained in Ex.1+Ex.1’: NAA0<(20,0.25), 
(21,0.50), (22,0.75), (23,1), (24,1), (25,1), (26,0.75), (27,0.50), (28,0.25)>NAA, where the first element of each pair is a 
possible delay (expressed in time units) and the second one is its preference. Similarly, we extended the ontological 
model of GLARE-SSCPM to represent the probabilities of the temporal constraints between actions and effects. In the 
previous ontological model of GLARE-SSCPM, each “hasEffect” relationship was including the representation of the 
temporal constraints between the action/drug and the related effect. As an example, the “hasEffect” relationship be-
tween “Nalidixic Acid” and the effect “Increase of Nalidixic Acid Gastric Absorption” shown in Fig. 3 contains the 
constraints NA<[1,2]>INAGAs and NA<[2,8]>INAGAe. In the extended formalism, such constraints are extended to 
model probabilities (i.e., they are replaced by NA<(1,0.4), (2,0.6)>INAGAs and NA<(2,0.15), (3,0.25), (4,0.25), (5,0.15), 
(6,0.10),(7,0.05),(8,0.05)>INAGAe, where the first element of each pair is a delay, and the second one is the probability 
of such a delay). 

Since we only extended the representation of the constraints, and we have not added “ex-novo” any knowledge 
source, we still exploit the optimized constraint extraction procedure described in (Anselma et al., 2017): when an in-
teraction has to be analyzed, the procedure retrieves from the ontological model, the CIGs and the log only the useful 
constraints. Since the extracted constraints are not in the form of P+PTQCs, only a minor extension has been needed 
to transform the extracted constraints into P+PTQCs constraints. Specifically: 

• for constraints extracted from the ontological model, which are “purely” probabilistic, we add undefined prefer-
ences: the procedure assigns preference # to each possible temporal value within the constraint; 

For instance, the procedure translates the constraint NA<(1,0.4), (2,0.6)>INAGAs, extracted to the ontological 
model, to NA<(1,0.4,#), (2,0.6,#)>INAGAs. 

• for constraints extracted from the CIGs, which are “purely” preferential, we add undefined probability: the pro-
cedure assigns probability % for each temporal value within the constraint; 

For instance, the procedure translates the constraint NAA0<(20,0.25), (21,0.50), (22,0.75), (23,1), (24,1), (25,1), 
(26,0.75), (27,0.50), (28,0.25),>NAA, extracted from the CIG, to NAA0<(20,%,0.25), (21,%,0.50), (22,%,0.75), 
(23,%,1), (24,%,1), (25,%,1), (26,%,0.75), (27,%,0.50), (28,%,0.25),>NAA. 

• for constraints extracted from the log, the given preference is #. The probability is 1 if the log is precise (i.e., each 
constraint contains only one temporal value), or it is % if the log is imprecise (i.e., the time of execution of an ac-
tion is not completely known). 

For instance, a precise log constraint X0<(28)>NAA0 is translated to X0<(28,1,#)>NAA0. 

Then, we have extended the GLARE-SSCPM Interaction Detection module to adopt the temporal reasoning algo-
rithm presented in Section 5.2 and to allow users to ask a set of queries (see Section 6) to analyze preferences and 
probabilities. Finally, we have extended the GLARE-SSCPM GUI to graphically show the analysis of the interactions 
(see Section 6). 

6 QUERY ANSWERING FACILITIES 

Given a P+PQTN, our approach evaluates the minimal network, which is an implicit compact representation of the 
space of all possible solutions. However, minimal networks are usually quite large and complex (even in case they 
regard “crisp” constraints only), so that it may be difficult, for non-expert users, to read and interpret them (consider, 
e.g., the minimal network in Fig.8 and Appendix A, which corresponds to the example Ex.1+Ex.1’ in Fig.7). Therefore, 
we think that providing facilities to explore\query the output of temporal reasoning is an important step, to practical-



 

 

ly support physicians. We thus provide users with query answering facilities. Notably, our goal in this context is to 
provide users with a “general” and flexible query language, supporting four different types of analysis (<Extrac-
tionQ>, <FilterPPQ>, <DistQ>, and <QualitQ>). Additionally, we also support hypothetical queries (<HypothQ>), 
which are queries of any of the four types above, to be answered in a context in which a set of P+PQTCs is assumed. 

In particular, <QualitQ> queries about the qualitative constraint INTERSECT (see below) are the ones that can be 
used (possibly in a hypothetical context) by physicians to look for the temporal intersections between the effects of 
guideline actions (i.e., to check for possible interactions, and their preferences\probabilities). Additionally, hypothet-
ical queries can be exploited by physicians to perform “what-if” temporal analysis. 

Part of the (extended) BNF grammar of our query language is shown below: 

<Query> ::= <HypQ> | <StandardQ> 

<HypQ>  ::= <StandardQ> IF <(P+PQTC)+> 

<StandardQ>  ::= <ExtractionQ> | <FilterPPQ>| <DistQ> | <QualitQ> 

<ExtractionQ> ::=  <point> ? <point> |<point> ? <point> ; <ExtractionQ> 

<FilterPPQ> ::= prob <Op> <val> pref <Op> <val> ?  

<Op> ::= < | = | > |  |  

<DistQ> ::= <point> <PPCList> <point> 

<PPCList> ::= <distance> prob <Op> <val> pref <Op> <val> |  

<distance> prob <Op> <val> pref <Op> <val>, <PPCList> 

<QualitQ> ::= <point> <PQRel> <point> ?| <point> <PIQRel> <interval> ?| <interval> <IQRel> <interval> ? 

<PQRel> ::= < | = | > |  |  |  

<PIQRel> ::= •BEFORE | •MEETS |… | •AFTER 

<IQRel> ::= BEFORE | MEETS | … | AFTER | DISJOINT | INTERSECT 

Notably, <val> stands for a numeric real value in the interval [0,1], while <point> and <interval> stands for instanta-
neous (e.g., CCA) vs. durative (e.g. DGAb) actions\facts. 

6.1 Basic Extraction Queries 

Basic extraction queries (<ExtractionQ>) ask for the temporal distances between a set of pairs of time points, and for the 
probabilities and preferences of such distances. The output of such queries is simply obtained by retrieving the tem-
poral constraints between the pairs of points from the minimal network. 

Ex.6. INAGAe ? DGAbs asks the inferred constraints between the start of DGAb and the end of INAGA. The answer is 
INAGAe <(-11, 1.36229e-10, 0.25), (-10, 1.07253e-08, 0.5), (-9, 3.22431e-07, 0.75), (-8, 5.38618e-06, 1), (-7, 6.02336e-05, 1), 
(-6, 0.000472828, 1), (-5, 0.0026415, 1), (-4, 0.010615, 1), (-3, 0.031868, 1), (-2, 0.0735984, 1), (-1, 0.13305, 1), (0, 0.187752, 
1), (1, 0.204837, 1), (2, 0.170696, 1), (3, 0.108024, 1), (4, 0.0516438, 0.75), (5, 0.0186515, 0.75), (6, 0.00500682, 0.75), (7 , 
0.000952951, 0.5), (8, 0.000116029, 0.5), (9, 7.68125e-06, 0.5), (10, 2.12132e-07, 0.25), (11, 1.60081e-09, 0.25)>  DGAbs. 

Ad-hoc facilities (not shown in the BNF grammar) are provided to facilitate the analysis of the relative temporal posi-
tion of durative actions\facts. For instance, the query in Ex.6BIS is a shorthand for the query “X0 ? DGAbs, X0 ? DGA-
be, X0 ? INAGAs and X0 ? INAGAe”, and asks for the temporal location of the endpoints of the durative facts DGAb 
and INAGA with respect to the reference time X0 (of course, such an extraction query is useful to analyse the possible 
temporal intersection between DGAb and INAGA). 

Ex.6BIS  the answer to the query DGAb ?? INAGA, considering the constraints described in Ex.1+Ex.1', is {X0 <(53, 
0.00402692, 1), (54, 0.0367196, 1), (55, 0.130377, 1), (56, 0.235721, 1), (57, 0.274475, 0.75), (58, 0.205071, 0.75), (59, 
0.0962546, 0.5), (60, 0.0164411, 0.5), (61, 0.000914591, 0.25)> DGAbs, X0 <(57, 9.51058e-05, 1), (58, 0.00236306, 1), (59, 
0.0220704, 1), (60, 0.0844066, 1), (61, 0.180308, 1), (62, 0.265044, 1), (63, 0.247121, 1), (64, 0.142905, 0.75), (65, 0.0475228, 
0.75), (66, 0.00747661, 0.5), (67, 0.000652556, 0.5), (68, 3.48505e-05, 0.25)> DGAbe, X0 <(49, 0.00203797, 0.25), (50, 



  

 

0.0201031, 0.5), (51, 0.0642004, 0.75), (52, 0.143918, 1), (53, 0.224908, 1), (54, 0.244054, 1), (55, 0.180752, 1), (56, 0.0887179, 
0.75), (57, 0.0277925, 0.5), (58, 0.00351621, 0.25)> INAGAs, X0 <(50, 8.75086e-05, 0.25), (51, 0.00184127, 0.5), (52, 
0.0133795, 0.75), (53, 0.0493056, 1), (54, 0.117447, 1), (55, 0.192798, 1), (56, 0.231953, 1), (57, 0.199543, 1), (58, 0.125901, 1), 
(59, 0.0517802, 1), (60, 0.0134681, 1), (61, 0.00221205, 1), (62, 0.000261647, 0.75), (63, 1.95837e-05, 0.5), (64, 8.76022e-07, 
0.25)> INAGAe}. 

We have extended the graphical interface of GLARE-SSCPM to be able to graphically show the output of extraction 
queries (including preferences and probabilities). Fig. 10 show the enhanced representation, where each distance is 
paired with its probability4 (upper number) and its preference (lower number). Comparing Fig.10 with Fig. 6 above, it 
is easy to notice the additional informative content. Indeed, as regards probabilities, one can notice that DGAb has a 
high probability to start around time 57, and to end around time 62. On the other hand, INAGA has a high probabil-
ity to start around time 53-54, and to end around time 56-57. On the other hand, as concern preferences, we have that, 
e.g., scenarios in which DGA starts in [53,56] and ends in [57,63] have preference 1. 

 

Notably, though extraction queries (and the graphical representation of their output) facilitate users in the analysis of 
the output of temporal reasoning (i.e., of the minimal network) in general, and of possible temporal interactions (i.e., 
intersections of effects) in particular, still it is not easy, for physicians, to analyse\infer the preferences and probabili-
ties of the different scenarios. For such a purpose, we support other types of queries, and, in particular, qualitative 
queries (see subsection 6.4). 

6.2 Filter Queries 

Filter probability+preference queries (<FilterPPQ>) can be used to focus on distances whose preference and/or probabil-
ity satisfy a given condition (e.g. distances with probability >0.05 and preference >0.2). They provide as output the 
P+PQTN obtained by removing from the constraints all those triples (d,p,P)  that do not satisfy the conditions.   

6.3 Boolean queries about distances 

Boolean queries about distances (<DistQ>) ask whether the input distances between two points are possible given the 
minimal network, and their preferences and probabilities satisfy the conditions in the query, and return a boolean 
value. To answer a <DistQ> query 𝑡𝑖⟨𝑑1probOp1𝑝1prefOp2𝑃2⟩𝑡𝑗 (e.g., “𝑡𝑖⟨3prob > 0.1pref > 0.2⟩𝑡𝑗”) our approach re-
trieves the constraint between 𝑡𝑖 and 𝑡𝑗 from the minimal network and checks whether the distance between 𝑡𝑖 and 𝑡𝑗 
may be 𝑑1, and whether its probability and preference satisfy the conditions.  

6.4 Qualitative Queries 

Qualitative Queries (<QualitQ>). Though our approach grounds on STP quantitative (metric) temporal constraints, at 
the query level we can also support queries asking for the probability and the preference of qualitative constraints be-
tween instantaneous events (i.e., points) and\or durative ones. In particular, we consider: 

(i) the point—point relationships of Vilain and Kautz’s algebra (M. B. Vilain & Kautz, 1986) –see <PQRel> in the 

 

4 Probabilities of .000 represents time points with a probability less than 0.001 that, due to representation constraints, cannot be correctly visual-
ized. 

Fig. 10 GUI representation of the output of the query DGA ?? INAGA in our extended approach. Each line represents the time in-

terval when the starting or ending point of an effect may occur. For each time point, probability (upper number) and preference 

(lower number) are shown. 



 

 

grammar 

(ii) the point—interval  basic relationships of Vilain’s Algebra (M. Vilain, 1982) – see <PIQRel> in the grammar, and 

(iii) the interval—interval basic relationships of Allen’s interval Algebra (Allen, 1983), – see <IQRel> in the grammar. 

 

Since in the minimal network we have only distances between points (and their preferences and probabilities), we 
have to:  

(1) take into account the distances that “satisfy” the input qualitative conditions, and 

(2) derive the output preferences and probabilities of the conditions on the basis of the preferences and probabilities 
of such distances. 

In the following, we propose the rules to achieve such a goal, considering probabilities, and then preferences. 

Definition. Probabilities of relationships between time points. Given two time points t1 and t2, and given the tem-
poral constraint t1 <(d1,p1,P1), …,(dk,pk,Pk)> t2, we indicate with  (di) the probability of the distance di (i.e., (di)=pi); 
thus, we define the probability Prob(t1 op t2) of relationship op between time points t1 and t2 (i.e., of the relationships 
<PQRel> in the grammar) as follows: 

Prob(t2 > t1) = ∑ 𝝋(𝒅𝒊)𝒅𝒊>𝟎  if di{d1,…,dk} such that di>0, 0 otherwise 

Prob(t2 = t1)  = (0) if 0{d1,…,dk}, 0 otherwise 

Prob(t2 < t1)  ∑ 𝝋(𝒅𝒊)𝒅𝒊<𝟎  if di{d1,…,dk} such that di<0, 0 otherwise 

Prob(t2  t1)  = Prob(t2 > t1) + Prob(t2 = t1)   

Prob(t2  t1)  = Prob(t2 > t1) + Prob(t2 < t1)   

Prob(t2  t1)  = Prob(t2 < t1) + Prob(t2 = t1)  ■ 

Definition. Preferences of relationships between time points. Given two any time points t1 and t2, and given the tem-
poral constraint t1 <(d1,p1,P1), …,(dk,pk,Pk)> t2, we indicate with (di) the preference of the distance di (i.e., (di)=Pi); 
thus, we define the preference Pref(t1 op t2) of relationship op between time points t1 and t2 (i.e., of the relationships 
<PQRel> in the grammar) as follows: 

Let D={d| d{d1,…,dk}  d>0} 

  Pref(t2 > t1)  =  MAXdD ((d)) if D  Ø, 0 otherwise 

Let D={d| d{d1,…,dk}  d<0} 

  Pref(t2 < t1)  =  MAXdD ((d)) if D  Ø, 0 otherwise 

Pref(t2 = t1)  = (0) if 0{d1,…,dk}, 0 otherwise 

Pref(t2  t1)  = MAX(Pref(t2 > t1), Pref(t2 = t1))   

Pref(t2  t1)  = MAX(Pref(t2 > t1), Pref(t2 < t1)) 

Pref(t2  t1)  = MAX(Pref(t2 < t1), Pref(t2 = t1))  ■ 

In our approach, durative events are coded as pairs of points, denoting the starting and ending time of their interval 
of occurrence (see Section 4). Allen’s interval relationships are the most common tool used in AI to encode qualitative 
relationships between durative events. Each relationship can be easily mapped onto the corresponding conjunction of 
relationships between interval endpoints. We exploit such a mapping to define the probability and preference of Al-
len’s relationships in terms of the probability and preference of the qualitative relationships between endpoints which 
encode them. 



  

 

Besides Allen’s relationships, we also consider the INTERSECT and the DISJOINT relationships, which are very use-
ful in many domains, and, specifically, in the comorbidity context. 

Definition. Probabilities of relationships between events. Given two any (durative) events e1 and e2, and indicating 
by start(ei) and end(ei) their endpoints (e.g., if ei is DGAb, then start(ei) is DGAbs and end(ei) is DGAbe), we define: 

Prob(BEFORE(e1,e2))  = Prob((end(e1)+1) < start(e2))   

Prob(MEETS(e1,e2)) = Prob((end(e1)+1) = start(e2))   

Prob(OVERLAPS(e1,e2)) = Prob(start(e1) < start(e2))  * Prob(end(e1)  start(e2))  * Prob(end(e1) < end(e2))   

Prob(ENDED-BY(e1,e2)) = Prob(start(e1) < start(e2))  * Prob(end(e1) = end(e2))   

Prob(CONTAINS(e1,e2)) = Prob(start(e1) < start(e2))  * Prob(end(e1) > end(e2))   

Prob(STARTS(e1,e2)) = Prob(start(e1) = start(e2))  * Prob(end(e1) < end(e2))   

Prob(EQUAL(e1,e2)) = Prob(start(e1) = start(e2))  * Prob(end(e1) = end(e2))   

Prob(STARTED-BY(e1,e2)) = Prob(start(e1) = start(e2))  * Prob(end(e1) > end(e2))   

Prob(DURING(e1,e2)) = Prob(start(e1) > start(e2))  * Prob(end(e1) < end(e2))   

Prob(ENDS(e1,e2)) = Prob(start(e1) > start(e2))  * Prob(end(e1) = end(e2))   

Prob(OVERLAPPED-BY(e1,e2)) = Prob(start(e1) > start(e2)) * Prob(start(e1)  end(e2))  * Prob(end(e1) > end(e2))   

Prob(MET-BY(e1,e2)) = Prob((end(e2)+1) = start(e1))   

Prob(AFTER(e1,e2))  = Prob((end(e2)+1) < start(e1))   

Prob(DISJOINT(e1,e2))  = Prob(BEFORE(e1,e2))  + Prob(MEETS(e1,e2)) + Prob(MET-BY(e1,e2)) + Prob(AFTER(e1,e2))   

Prob(INTERSECT(e1,e2))  = 1 - Prob(DISJOINT(e1,e2))  ■ 

 

Definition. Preferences of relationships between events. Given two any (durative) events e1 and e2, and indicating by 
start(ei) and end(ei) their endpoints, we define: 

Pref(BEFORE(e1,e2)) = Pref((end(e1)+1) < start(e2))   

Pref(MEETS(e1,e2)) = Pref((end(e1)+1) = start(e2))   

Pref(OVERLAPS(e1,e2)) = MIN(Pref(start(e1) < start(e2)), Pref(end(e1)  start(e2)), Pref(end(e1) < end(e2)))  

Pref(ENDED-BY(e1,e2)) = MIN(Pref(start(e1) < start(e2)),  Pref(end(e1) = end(e2)))  

Pref(CONTAINS(e1,e2)) = MIN(Pref(start(e1) < start(e2)), Pref(end(e1) > end(e2)))  

Pref(STARTS(e1,e2)) = MIN(Pref(start(e1) = start(e2)), Pref(end(e1) < end(e2))) 

Pref(EQUAL(e1,e2)) = MIN(Pref(start(e1) = start(e2)),  Pref(end(e1) = end(e2)))   

Pref(STARTED-BY(e1,e2)) = MIN(Pref(start(e1) = start(e2)), Pref(end(e1) > end(e2))) 

Pref(DURING(e1,e2)) = MIN(Pref(start(e1) > start(e2)),   Pref(end(e1) < end(e2))) 

Pref(ENDS(e1,e2)) = MIN(Pref(start(e1) > start(e2)), Pref(end(e1) = end(e2)))   

Pref(OVERLAPPED-BY(e1,e2)) = MIN(Pref(start(e1) > start(e2)),  Pref(start(e1)  end(e2)), Pref(end(e1) > end(e2)))   

Pref(MET-BY(e1,e2)) = Pref((end(e2)+1) = start(e1))   



 

 

Pref(AFTER(e1,e2))  = Pref((end(e2)+1) < start(e1))   

Pref(DISJOINT(e1,e2))  = MAX(Pref(BEFORE(e1,e2)), Pref(MEETS(e1,e2)), Pref(MET-BY(e1,e2)), Pref(AFTER(e1,e2)))  

Pref(INTERSECT(e1,e2))  = MAX( 

Pref(OVERLAPS(e1,e2)), Pref(ENDED-BY(e1,e2)), Pref(CONTAINS(e1,e2)), Pref(STARTS(e1,e2)), Pref(EQUAL(e1,e2)), 
Pref(STARTED-BY(e1,e2)), Pref(DURING(e1,e2)), Pref(ENDS(e1,e2)), Pref(OVERLAPPED-BY(e1,e2)) )  ■ 

For the sake of brevity, we omit the definition of Vilain’s qualitative relationships between a time point and a time 
interval (M. Vilain, 1982), which is very similar.  

On the basis of the above definitions, the preferences and probabilities of qualitative relationships can be trivially de-
rived from the constraints in minimal network, to answer queries. 

Note.2. The interpretation of the probability of qualitative relations is quite natural and intuitive. For example, the 
probability of “INAGA INTERSECT DGAb” (see Ex.8 below) is the probability of the temporal scenarios in which 
“INAGA INTERSECT DGAb” holds (computed on the basis of the probabilities of the (propagated) distances such 
that “INAGA INTERSECT DGAb” holds; see definition of Prob(INTERSECT(e1,e2)) above). On the other hand, we 
have to explain the correct interpretation of preferences in the comorbidity context. Indeed, since the interaction be-
tween INAGA and DGAb is not desirable, and only happens in case INAGA and DGAb temporally intersect, it might 
look odd to speak about the “preference” on the relationship “INAGA INTERSECT DGAb” (or, alternatively, one 
may argue that its preference is null). 

Indeed, it is important to point out that: 

(i) as mentioned in Note.1 in the introduction, input preferences concern the possible times when physicians 
can perform CIG actions, and are evaluated in each CIG, independently of the others (for instance, consider-
ing Ex.1+Ex.1’, the preferences of the possible execution times of CCA -- in our approach, execution times 
are expressed as distances between CCA and the reference time -- are evaluated considering on the basis of 
pharmacokinetics and pharmacodynamics studies, and without taking into consideration general issues 
such as the fact that, for specific patients, CCA may be combined with NAA), and 

(ii) the preferences we deal with in our approach only concerns temporal distances, independently of how much 
the events occurring at such distances are desirable or not. 

Therefore, the preference for the INTERSECT relation between INAGA and DGAb has not to be interpreted as the 
preference for the fact that there is an intersection, and thus a possible interaction, but as the preference of the “tem-
poral scenario” in which there is an intersection. Roughly speaking, such a preference is computed as discussed in the 
definition of Pref(INTERSECT(e1,e2)) above, on the basis of the preferences of the distances between INAGAs, INA-
GAe, DGAbs, and DGAbe, which, in turn, result from the propagation of the preferences of the distances of NAA and 
CCA from X0, combined with the other input distances (see Fig.2). Thus, in the example in Fig.7, the preference of “INA-
GA INTERSECT DGAb” is the temporal cumulative preference of the scenarios in which  “INAGA INTERSECT DGAb” 
holds, evaluated in terms of the combined preferences of the times when the actions NAA (which leads to INAGA) and CCA 
(which leads to DGAb) can be executed. ■ 

Ex.7. For example, the query “INAGAe < DGAbs ?” asks for the preference and the probability of the case in which 
INAGA ends before the start of DGAb. The answer is a probability of 0.559936 and a preference of 1. ■ 

Ex.8. The query “INAGA INTERSECT DGAb ?” asks for the preference and the probability of the case in which INA-
GA intersects DGAb. Notably, such a query can be used by physician to derive, from the minimal network, the prob-
ability of the intersection (notably, this is the case in which the two effects may interact), and the degree of the prefer-
ence of such situation. The answer to this query is a probability of 0.440064 and a preference of 1. ■ 

6.5 Hypothetical queries 

Hypothetical queries (<HypQ>) are composite queries, in which a set of P+PQTC constraints has to be assumed (hy-
pothesized), before asking a standard query <StandardQ>.  

Such queries are answered in several steps. Indeed, temporal reasoning is needed in order to see whether the con-
straints in the hypothesis are consistent with the ones in the minimal network, and to propagate their implications. 

(1) First, we (provisionally) add the new P+PQTC constraints to the minimal network (using the operation of inter-



  

 

section (∩𝑝𝑃)). 

(2) We then propagate the new set of constraints through our version of Floyd-Warshall’s algorithm. In case the 
propagation detects an inconsistency, the output is a warning, stating that the constraints in the hypothesis are 
not consistent with the minimal network (i.e., they are not possible, given the input constraints). Otherwise, the 
new minimal network MNHyp obtained by the propagation is considered. 

(3) Finally, <StandardQ> is answered (as detailed above) in MNHyp. 

Ex. 9. “INAGAe ? DGAbs IF {X0 <(53,%,#),(54,%,#)> CCA, X0 <(48,%,#),(49,%,#)> NAA}” asks the constraints between 
the start of DGAb and the end of INAGA in case CCA is executed in units 53 or 54, and NAA in units 48 or 49.  The 
answer is INAGAe <(-3, 1.74465e-58, 0.5), (-2, 5.94715e-30, 0.5), (-1, 2.02678e-11, 0.5), (0, 0.0934398, 0.5), (1, 0.906557, 
0.5), (2, 3.43289e-06, 0.5), (3, 5.88096e-21, 0.5), (4, 3.85778e-45, 0.5), (5, 1.0065e-84, 0.5), (6, 3.2115e-132, 0.5), (7, 4.42862e-
200, 0.25)> DGAbs. ■ 

Notably, also the output of extraction hypothetical queries can be shown by the extended graphical interface. 

6.6 An interactive session of temporal analysis 

Our approach provides physicians with a complete and flexible tool for the temporal analysis of the interactions be-
tween CIGs. In this section, we describe a session of analysis of the interaction between NAA and CCA described in 
Ex.1 and Ex.1' using some of the queries described above. In our example, we suppose that first (STEP1) the physician 
decides to analyse the interaction “as it is”, using only the information contained in the log, the CIGs and the ontolog-
ical model. Then (STEP2), she decides to make some hypotheses on the times of execution of the two actions. In par-
ticular, she analyses the interaction hypothesizing that NAA and CCA are executed at times with maximum prefer-
ence. Since the given result is not satisfying in terms of probability of the interaction (i.e., it is too high), in STEP3 and 
STEP4, we suppose that physician hypothesizes to move in time CCA and NAA to find a configuration with a low 
probability of interaction, but still with a good preference value. It is worth stressing that the steps described below 
are only illustrative: the physician is free to follow her-own criteria and reasoning process to investigate the possible 
temporal interactions between CIG actions. 

STEP1: at the beginning of the session, the physician wants to analyse the interaction considering only the infor-
mation contained in the log, the CIGs and the ontological model. First, she asks for the graphical representation of the 
query “DGAb ?? INAGA”, and our tool shows to physician the graphical representation shown in Fig.10 above. As 
already explained above, the GUI allows the physician to easily notice that the interaction is possible, and to evaluate 
the probabilities and the preferences associated to each time point. To better understand the probability of the interac-
tion, the physician asks for the query “DGAb INTERSECT INAGA ?”, having as result a probability of 0.440064 with 
preference 1.  

STEP2: then, we suppose that the physician wants to analyse the same interaction, but in the hypothesis that CCA 
and NAA are executed at times with maximum preferences. In particular, she asks for the probability and preference 
in which INAGA intersects DGAb assuming that CCA is executed in units 52 or 53, and NAA in units 51 or 52 (query 
“INAGA INTERSECT DGAb ? IF {X0 <(52,%,#), (53,%,#)> CCA, X0 <(51,%,#), (52,%,#)> NAA}”). The answer to this 
query is that the intersection has probability 0.681259 and preference 1 (for the sake of brevity, we do not show the 
GUI for the analysis of such a hypothetical analysis). Intuitively, the probability of intersection is quite high, since 
CCA and NAA are executed closely, and, according to temporal distances and probabilities in the constraints in Fig. 
7, this will result in a very likely interaction between INAGA and DGAb. The preference of the intersection scenario 
is, obviously, high, since it refers to high preferences for the times of execution of the actions. However, since the 
primary goal is to decrease the probability of the interaction (while possibly achieving a high preference), the given 
result is not satisfying. 

STEP3: to decrease the probability of the interaction, the physician decides to postpone the execution of NAA. The 
choice falls on times (54 and 55), which have good preferences (0.75 and 0.5 respectively), to be as conformant as pos-
sible with the CIGs, but are “far enough” from the times chosen in STEP2. The asked hypothetical query is “INAGA 
INTERSECT DGAb ? IF {X0 <(52,%,#), (53,%,#)> CCA, X0 <(54,%,#), (55,%,#)> NAA}”. The answer to this query is 
that the intersection has probability 0.999999 and preference 0.75. As can be easily noticed, the given configuration 
does not lead to better results. Indeed, the probability of the interaction is almost certain. 

STEP4: given the result obtained in STEP3, the physician decides to backtrack, for NAA, to the times of execution of 
STEP2 (51 or 52), and instead to postpone the execution of CCA to times 56 or 57 (i.e., times with a preference of 0.5). 
The corresponding query is “INAGA INTERSECT DGAb ? IF {X0 <(56,%,#),(57,%,#)> CCA, X0 <(51,%,#),(52,%,#)> 
NAA}”. The answer to this query is that the intersection has probability 5.0e-5 and preference 0.5. The preference of 



 

 

this scenario is lower with respect to the ones in STEP2 and STEP3 (i.e., the scenario is less conformant to the CIG). 
However, the probability of the interaction is negligible, and the physician decides that this configuration is a good 
trade-off between the adherence to the CIG recommendations and the safety of the treatment for the specific patient.  

The above example shows the effectiveness of our approach in integrating probability and preferences in temporal 
reasoning with respect to “crisp” approaches. As a matter of facts, our approach not only supports representation and 
reasoning about temporal preferences and probabilities, but also provides users with user-friendly facilities (queries 
and graphical visualizations) to explore such enriched temporal constraints, e.g., adopting a “what-if” methodology, 
and deeply taking advantage of the pieces of information provided by preferences and probabilities.  

Notably, graphical support and hypothetical queries were already provided in the previous version of GLARE-
SSCPM (see Section 3). However, in GLARE-SSCPM users would only be able to ask and visualize the “crisp” tem-
poral constraints between the endpoints of INAGA and DGAb (possibly in a context in which a set of temporal con-
straints has been assumed), or Boolean queries asking whether INAGA and DGAb may intersect (possibly given a set 
of temporal constraints to be assumed). However, it is worth noticing that, in all the steps 1-4, the answer of the 
“crisp” version of GLARE-SSCPM (see Section 3) is simply that an intersection between INAGA and DGAb is possible 
(please, consider again footnote 1 in Section 3). This is, of course, a poorly informative answer, in case temporal pref-
erences and probabilities are available. Instead, our new approach is more effective because, thanks to its ability to 
take into account also temporal preferences and probabilities, it allows physicians to perform more realistic and use-
ful what-if analysis, to check not only if temporal interactions between actions are possible but also their probabilities 
and preferences.  

7 CONCLUSIONS 

CIG systems are widely adopted for medical knowledge-based decision support. Several recent approaches also ex-
tend the support to consider comorbid patients. For such patients, the detection of the possible interactions between 
the effects of the actions recommended by multiple CIGs (one for each disease of the patient) is of primary im-
portance. Since, from the practical point of view, interactions can only occur between effects that intersect in time, a 
concrete analysis of interactions involves (i) the representation of the temporal constraints between CIG actions, and 
between such actions and their effects, and (ii) the propagation of such constraints. Until now, such issues have been 
faced, within the AIM community, only considering “crisp” temporal constraints (with the only exception of (Ando-
lina et al., 2018), in which probabilistic temporal constraints have been taken into account).  However, “crisp” tem-
poral approaches are quite “rigid”, since constraints may be either satisfiable or not. In the CIG context, several 
guidelines provide not only temporal constraints about the delay between actions, but also indicate that different de-
lays have different preferences. Additionally, medical knowledge can be used to derive knowledge about the probabilis-
tic distribution of the effects of CIGs’ actions in time. Such preferences and probabilities, when available, can be ex-
ploited to provide physicians with a more flexible temporal mechanism (e.g., indicating not just whether a temporal 
intersection is necessary, possible or not possible – as in (Anselma et al., 2017) –, but also – in case it is possible – its 
probability, and the value of preference of the constraints in the scenario).  To achieve such a result, our approach 
provides the following main contributions 

(i) we have extended quantitative STP temporal constraints with both preferences and probabilities, 

(ii) we have proposed an approach for propagating such temporal constraints (and their preferences and probabili-
ties), 

(iii) we have experimentally evaluated it, 

(iv) we have proposed query-answering supports, and  

(v) we have integrated our approach within an existing decision support system for the treatment of comorbidities 
(specifically, in GLARE-SSCPM). 

Notably, our approach provides two main novelties with respect to the state of the art: 

(i) we propose the first temporal framework in the literature able to represent, reason (propagate to deter-
mine the minimal network) and query “non-crisp” temporal constraints considering both preferences and 
probabilities. 

(ii) We first adopt preferential+probabilistic temporal reasoning in the context of supporting physicians in 
the treatment of comorbid patients (through an integration of our temporal framework with the GLARE-



  

 

SSCPM approach) 

We have also shown, with a running example, the application of our approach to a concrete case of comorbidity. 
In general, our temporal reasoning and query answering framework can be used to support run-time execution 
of CIGs on comorbid patients, to check for temporally possible interactions. At each time during the execution, 
physicians can trigger our temporal framework to check whether interactions may arise among the next actions 
to be executed in the guidelines. Probabilistic + preferential temporal reasoning is used to check not only whether 
interactions are temporally possible, but also their probabilities and preferences. Specifically, the check for possi-
ble intersections between effects can be useful at least in two different situations, during the run-time execution 
of multiple CIGs: 

(1) Focusing on the next actions in the different CIGs, physicians can check whether interactions are temporally possible, and their 
probability and preference. 

(2) While choosing among alternative paths of actions in the CIGs, physicians can check which alternatives contain actions that 
may temporally interact with the other therapies currently in execution for the patient, considering also probabilities and pref-
erences.  

In both cases, temporal reasoning can be used to propagate the temporal constraints and infer their minimal network, 
and query answering facilities can be used in order to directly check the probability and preferences of interactions. 
In particular, the hypothetical qualitative queries are very important in this context, since they support what-if analy-
sis about the consequences of performing actions at given times (consider the case study described in Section 6.6). 

Our current approach can be extended along several lines, and this will be the aim of our future work in the area. 
First, we plan to investigate the possibility to consider also dense and/or possibly non-contiguous values for distanc-
es. Second, several algorithms have been devised in order to optimize Floyd-Warshall’s algorithm in the evaluation of 
STP minimal networks (consider, for instance, delta-STP (Lin Xu & Choueiry, 2003) or P3C (Planken et al., 2008)). In 
our future work, we will investigate the possibility of exploiting one of such optimizations also in our approach. 
Third, our main goal is that of providing users with decision support facilities, so that in the paper we address the 
need of providing them with a minimal network (“summarizing” all the possible solutions) and feasible facilities to 
explore it (e.g., through an “hypothesize and test” process). Nevertheless, an additional facility, providing users di-
rectly with a specific solution (the “optimal” one) could provide additional support. Several papers in the literature 
have already addressed the problem of finding an optimal solution for constraints with preferences (consider, e.g., 
(Khatib et al., 2001) as regards STP constraints with preferences). We would like to investigate whether the reasoning 
techniques proposed in such approaches can be adapted\extended in order to cope with our constraints (given a 
suitable definition of “optimality” considering both preferences and probabilities). Fourth, we aim at applying our 
approach also to different contexts and tasks. Indeed, in many AI tasks (e.g., planning, knowledge representation) 
and application areas, both “endogenous” and “exogenous” actions/events have to be managed together. Endogenous 
actions/events are actions/events to be executed by an agent; as a consequence, preferences on the execution times 
might be identified. On the other hand, exogenous events are events that occur “in the outside world”, and agents 
have no control on them. Therefore, for such events, preferences on the execution times are meaningless. However, 
there might be probabilistic knowledge on the time of occurrence of such events. Though the primary goal of our ap-
proach has been to define an enriched temporal knowledge server for GLARE- SSCPM, to support physicians with a 
more flexible treatment comorbidities, the temporal approach in this paper is largely task and domain independent 
(indeed, only the query language has been designed, especially as regards qualitative queries, with a specific bias to-
wards our medical application), and we plan to take advantage of it for other domains\tasks. Finally, as briefly dis-
cussed at the end of Section 2.1, a mainstream of research in temporal reasoning is aiming at extending the STN 
framework to cope also with other forms of uncertainty, leading to the STNU and CSTN families of frameworks. In a 
very recent work (Gao et al., 2020), Gao et al. have extended STNU to consider probabilities on uncertain durations, 
focusing on dynamic controllability. As future work, it might be worth to investigate whether some features of our 
approach (e.g., the representation of -temporal constraints with- preferences and probabilities, and the intersection 
and composition operations to propagate them) can be exploited\adapted to support the treatment of preferences 
and probabilities also in the STNU and CSTN frameworks, thus enhancing their generality and flexibility.  
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APPENDIX A 

In this section, we present in Fig. 11 the minimal network obtained from applying our temporal reasoning algorithm to 
the graph of Fig. 7 (representing the constraints in Ex.1+Ex.1’). For the sake of readability, in the graph of Fig. 11, the 

label of each edge (𝑖, 𝑗) has been replaced by the symbol 𝐿𝑖,𝑗, where 𝑖 and 𝑗 are two vertices of the graph, and the corre-
sponding P+PQTL (i.e., the label of constraint 𝑖𝐿𝑖,𝑗𝑗) is reported separately in Table 2, where column “Edge Label” con-
tains an edge label as found in Fig. 7, and column “P+PQTL” contains the P+PQTL associated with the edge label of 
the same row. For instance, the “Edge Label” 𝐿𝑋0,𝐶𝐶𝐴 represents the label of edge (𝑋0, 𝐶𝐶𝐴) and its associated P+PQTL is 
<(52, 0.0134607, 1), (53, 0.0813113, 1), (54, 0.218911, 0.75), (55, 0.311709, 0.75), (56, 0.251776, 0.5), (57, 0.104329, 0.5) , (58, 
0.018503, 0.25)>. 

 

Table 2. Edge labels (i.e., P+PQTLs) for the minimal network of Fig. 7. 

Edge Label P+PQTL 

𝐿𝑋0,𝑁𝐴𝐴0
 <(28, 1, 1)> 

𝐿𝑋0,𝑅𝑆 <(52, 1, 1)> 

𝐿𝑋0,𝐶𝐶𝐴 
<(52, 0.0134607, 1), (53, 0.0813113, 1), (54, 0.218911, 0.75), (55, 0.311709, 0.75), (56, 0.251776, 0.5), (57, 
0.104329, 0.5), (58, 0.018503, 0.25)> 

𝐿𝑋0,𝑁𝐴𝐴 
<(48, 0.00142083, 0.25), (49, 0.0154645, 0.5), (50, 0.0782606, 0.75), (51, 0.210637, 1), (52, 0.309997, 1), 
(53, 0.249903, 1), (54, 0.108162, 0.75), (55, 0.0239305, 0.5), (56, 0.00222469, 0.25)> 

𝐿𝑋0,𝐷𝐺𝐴𝑏𝑠
 

<(53, 0.00402692, 1), (54, 0.0367196, 1), (55, 0.130377, 1), (56, 0.235721, 1), (57, 0.274475, 0.75), (58, 
0.205071, 0.75), (59, 0.0962546, 0.5), (60, 0.0164411, 0.5), (61, 0.000914591, 0.25)> 

𝐿𝑋0,𝐷𝐺𝐴𝑏𝑒
 

<(57, 9.51058e-05, 1), (58, 0.00236306, 1), (59, 0.0220704, 1), (60, 0.0844066, 1), (61, 0.180308, 1), (62, 

Fig. 11 Minimal network resulting from the application of our temporal reasoning algorithm to the graph of Fig. 7. 



 

 

0.265044, 1), (63, 0.247121, 1), (64, 0.142905, 0.75), (65, 0.0475228, 0.75), (66, 0.00747661, 0.5), (67, 
0.000652556, 0.5), (68, 3.48505e-05, 0.25)> 

𝐿𝑋0,𝐼𝑁𝐴𝐺𝐴𝑠
 

<(49, 0.00203797, 0.25), (50, 0.0201031, 0.5), (51, 0.0642004, 0.75), (52, 0.143918, 1), (53, 0.224908, 1), 
(54, 0.244054, 1), (55, 0.180752, 1), (56, 0.0887179, 0.75), (57, 0.0277925, 0.5), (58, 0.00351621, 0.25)> 

𝐿𝑋0,,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(50, 8.75086e-05, 0.25), (51, 0.00184127, 0.5), (52, 0.0133795, 0.75), (53, 0.0493056, 1), (54, 0.117447, 1), 
(55, 0.192798, 1), (56, 0.231953, 1), (57, 0.199543, 1), (58, 0.125901, 1), (59, 0.0517802, 1), (60, 0.0134681, 
1), (61, 0.00221205, 1), (62, 0.000261647, 0.75), (63, 1.95837e-05, 0.5), (64, 8.76022e-07, 0.25)> 

𝐿𝑁𝐴𝐴0,𝑅𝑆 <(24, 1, 1)> 

𝐿𝑁𝐴𝐴0,𝐶𝐶𝐴 
<(24, 0.0134607, 1), (25, 0.0813113, 1), (26, 0.218911, 0.75), (27, 0.311709, 0.75), (28, 0.251776, 0.5), (29, 
0.104329, 0.5), (30, 0.018503, 0.25)> 

𝐿𝑁𝐴𝐴0,𝑁𝐴𝐴 
<(20, 0.00142083, 0.25), (21, 0.0154645, 0.5), (22, 0.0782606, 0.75), (23, 0.210637, 1), (24, 0.309997, 1), 
(25, 0.249903, 1), (26, 0.108162, 0.75), (27, 0.0239305, 0.5), (28, 0.00222469, 0.25)> 

𝐿𝑁𝐴𝐴0,𝐷𝐺𝐴𝑏𝑠
 

<(25, 0.00402692, 1), (26, 0.0367196, 1), (27, 0.130377, 1), (28, 0.235721, 1), (29, 0.274475, 0.75), (30, 
0.205071, 0.75), (31, 0.0962546, 0.5), (32, 0.0164411, 0.5), (33, 0.000914591, 0.25)> 

𝐿𝑁𝐴𝐴0,𝐷𝐺𝐴𝑏𝑒
 

<(29, 9.51058e-05, 1), (30, 0.00236306, 1), (31, 0.0220704, 1), (32, 0.0844066, 1), (33, 0.180308, 1), (34, 
0.265044, 1), (35, 0.247121, 1), (36, 0.142905, 0.75), (37, 0.0475228, 0.75), (38, 0.00747661, 0.5), (39, 
0.000652556, 0.5), (40, 3.48505e-05, 0.25)> 

𝐿𝑁𝐴𝐴0,𝐼𝑁𝐴𝐺𝐴𝑠
 

<(21, 0.00203797, 0.25), (22, 0.0201031, 0.5), (23, 0.0642004, 0.75), (24, 0.143918, 1), (25, 0.224908, 1), 
(26, 0.244054, 1), (27, 0.180752, 1), (28, 0.0887179, 0.75), (29, 0.0277925, 0.5), (30, 0.00351621, 0.25)> 

𝐿𝑁𝐴𝐴0,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(22, 8.75086e-05, 0.25), (23, 0.00184127, 0.5), (24, 0.0133795, 0.75), (25, 0.0493056, 1), (26, 0.117447, 1), 
(27, 0.192798, 1), (28, 0.231953, 1), (29, 0.199543, 1), (30, 0.125901, 1), (31, 0.0517802, 1), (32, 0.0134681, 
1), (33, 0.00221205, 1), (34, 0.000261647, 0.75), (35, 1.95837e-05, 0.5), (36, 8.76022e-07, 0.25)> 

𝐿𝑅𝑆,𝐶𝐶𝐴 
<(0, 0.0134607, 1), (1, 0.0813113, 1), (2, 0.218911, 0.75), (3, 0.311709, 0.75), (4, 0.251776, 0.5), (5, 
0.104329, 0.5), (6, 0.018503, 0.25)> 

𝐿𝑅𝑆,𝑁𝐴𝐴 
<(-4, 0.00142083, 0.25), (-3, 0.0154645, 0.5), (-2, 0.0782606, 0.75), (-1, 0.210637, 1), (0, 0.309997, 1), (1, 
0.249903, 1), (2, 0.108162, 0.75), (3, 0.0239305, 0.5), (4, 0.00222469, 0.25)> 

𝐿𝑅𝑆,𝐷𝐺𝐴𝑏𝑠
 

<(1, 0.00402692, 1), (2, 0.0367196, 1), (3, 0.130377, 1), (4, 0.235721, 1), (5, 0.274475, 0.75), (6, 0.205071, 
0.75), (7, 0.0962546, 0.5), (8, 0.0164411, 0.5), (9, 0.000914591, 0.25)> 

𝐿𝑅𝑆,𝐷𝐺𝐴𝑏𝑒
 

<(5, 9.51058e-05, 1), (6, 0.00236306, 1), (7, 0.0220704, 1), (8, 0.0844066, 1), (9, 0.180308, 1), (10, 
0.265044, 1), (11, 0.247121, 1), (12, 0.142905, 0.75), (13, 0.0475228, 0.75), (14, 0.00747661, 0.5), (15, 
0.000652556, 0.5), (16, 3.48505e-05, 0.25)> 

𝐿𝑅𝑆,𝐼𝑁𝐴𝐺𝐴𝑠
 

<(-3, 0.00203797, 0.25), (-2, 0.0201031, 0.5), (-1, 0.0642004, 0.75), (0, 0.143918, 1), (1, 0.224908, 1), (2, 
0.244054, 1), (3, 0.180752, 1), (4, 0.0887179, 0.75), (5, 0.0277925, 0.5), (6, 0.00351621, 0.25)> 

𝐿𝑅𝑆,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(-2, 8.75086e-05, 0.25), (-1, 0.00184127, 0.5), (0, 0.0133795, 0.75), (1, 0.0493056, 1), (2, 0.117447, 1), (3, 
0.192798, 1), (4, 0.231953, 1), (5, 0.199543, 1), (6, 0.125901, 1), (7, 0.0517802, 1), (8, 0.0134681, 1), (9, 
0.00221205, 1), (10, 0.000261647, 0.75), (11, 1.95837e-05, 0.5), (12, 8.76022e-07, 0.25)> 

𝐿𝐶𝐶𝐴,𝑁𝐴𝐴 

<(-10, 2.79754e-09, 0.25), (-9, 6.33977e-07, 0.25), (-8, 3.63775e-05, 0.5), (-7, 0.000868524, 0.5), (-6, 
0.0105809, 0.5), (-5, 0.069516, 0.75), (-4, 0.235043, 0.75), (-3, 0.341664, 0.75), (-2, 0.250559, 1), (-1, 
0.0784016, 1), (0, 0.0123006, 1), (1, 0.00099186, 1), (2, 3.78892e-05, 0.75), (3, 5.50532e-07, 0.5), (4, 
1.85569e-09, 0.25)> 

𝐿𝐶𝐶𝐴,𝐷𝐺𝐴𝑏𝑠
 <(1, 0.395458, 1), (2, 0.456637, 1), (3, 0.147905, 1)> 

𝐿𝐶𝐶𝐴,𝐷𝐺𝐴𝑏𝑒
 <(5, 0.0373862, 1), (6, 0.204006, 1), (7, 0.444584, 1), (8, 0.239003, 1), (9, 0.0575214, 1), (10, 0.0175001, 



 

 

1)> 

𝐿𝐶𝐶𝐴,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(-9, 3.21271e-07, 0.25), (-8, 2.2304e-05, 0.25), (-7, 0.000375183, 0.5), (-6, 0.0031125, 0.5), (-5, 0.0161265, 
0.5), (-4, 0.0580381, 0.75), (-3, 0.148034, 0.75), (-2, 0.247665, 0.75), (-1, 0.26068, 1), (0, 0.174456, 1), (1, 
0.0700768, 1), (2, 0.0181684, 1), (3, 0.00295316, 1), (4, 0.000278229, 0.75), (5, 1.26466e-05, 0.5), (6, 
1.68126e-07, 0.25)> 

𝐿𝐶𝐶𝐴,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(-8, 1.53175e-09, 0.25), (-7, 2.9084e-07, 0.25), (-6, 1.28157e-05, 0.5), (-5, 0.000224054, 0.5), (-4, 
0.00209349, 0.5), (-3, 0.0121372, 0.75), (-2, 0.0470996, 0.75), (-1, 0.121247, 0.75), (0, 0.209745, 1), (1, 
0.244017, 1), (2, 0.194902, 1), (3, 0.109041, 1), (4, 0.043944, 1), (5, 0.0126447, 1), (6, 0.00253928, 1), (7, 
0.000325682, 1), (8, 2.57906e-05, 1), (9, 1.23706e-06, 1), (10, 3.59029e-08, 0.75), (11, 5.25712e-10, 0.5), 
(12, 2.80375e-12, 0.25)> 

𝐿𝑁𝐴𝐴,𝐷𝐺𝐴𝑏𝑠
 

<(-3, 9.25544e-09, 0.25), (-2, 1.36158e-06, 0.5), (-1, 5.3611e-05, 0.75), (0, 0.000886938, 1), (1, 0.00785679, 
1), (2, 0.0414772, 1), (3, 0.134883, 1), (4, 0.255612, 1), (5, 0.286393, 1), (6, 0.184392, 0.75), (7, 0.0699182, 
0.75), (8, 0.0160397, 0.75), (9, 0.0022845, 0.5), (10, 0.000192658, 0.5), (11, 8.38491e-06, 0.5), (12, 
1.28364e-07, 0.25), (13, 4.57248e-10, 0.25)> 

𝐿𝑁𝐴𝐴,𝐷𝐺𝐴𝑏𝑒
 

<(1, 9.66332e-11, 0.25), (2, 3.67129e-08, 0.5), (3, 3.05891e-06, 0.75), (4, 8.28895e-05, 1), (5, 0.00103093, 
1), (6, 0.00738966, 1), (7, 0.0333132, 1), (8, 0.0988267, 1), (9, 0.195765, 1), (10, 0.254491, 1), (11, 
0.219501, 1), (12, 0.125849, 1), (13, 0.0484897, 0.75), (14, 0.0128175, 0.75), (15, 0.00220078, 0.75), (16, 
0.000226785, 0.5), (17, 1.24905e-05, 0.5), (18, 3.17585e-07, 0.5), (19, 3.65858e-09, 0.25), (20, 1.54687e-11, 
0.25)> 

𝐿𝑁𝐴𝐴,𝐼𝑁𝐴𝐺𝐴𝑠
 <(1, 0.389832, 1), (2, 0.610168, 1)> 

𝐿𝑁𝐴𝐴,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(2, 0.0931263, 1), (3, 0.330536, 1), (4, 0.367839, 1), (5, 0.148214, 1), (6, 0.0476238, 1), (7, 0.00944498, 1), 
(8, 0.00321607, 1)> 

𝐿𝐷𝐺𝐴𝑏𝑠,𝐷𝐺𝐴𝑏𝑒
 

<(2, 0.00661778, 1), (3, 0.0513521, 1), (4, 0.179003, 1), (5, 0.29579, 1), (6, 0.269049, 1), (7, 0.136086, 1), 
(8, 0.0495023, 1), (9, 0.0126001, 1)> 

𝐿𝐷𝐺𝐴𝑏𝑠,𝐼𝑁𝐴𝐺𝐴𝑠
 

<(-12, 1.10228e-07, 0.25), (-11, 6.1068e-06, 0.25), (-10, 0.000114232, 0.5), (-9, 0.00103306, 0.5), (-8, 
0.00558142, 0.5), (-7, 0.0211963, 0.75), (-6, 0.0601589, 0.75), (-5, 0.128671, 0.75), (-4, 0.202865, 1), (-3, 
0.23002, 1), (-2, 0.185483, 1), (-1, 0.106282, 1), (0, 0.0431397, 1), (1, 0.0125767, 1), (2, 0.00252839, 1), (3, 
0.000321338, 0.75), (4, 2.1753e-05, 0.5), (5, 5.49598e-07, 0.25)> 

𝐿𝐷𝐺𝐴𝑏𝑠,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(-11, 1.60081e-09, 0.25), (-10, 2.12132e-07, 0.25), (-9, 7.68125e-06, 0.5), (-8, 0.000116029, 0.5), (-7, 
0.000952951, 0.5), (-6, 0.00500682, 0.75), (-5, 0.0186515, 0.75), (-4, 0.0516438, 0.75), (-3, 0.108024, 1), (-2, 
0.170696, 1), (-1, 0.204837, 1), (0, 0.187752, 1), (1, 0.13305, 1), (2, 0.0735984, 1), (3, 0.031868, 1), (4, 
0.010615, 1), (5, 0.0026415, 1), (6, 0.000472828, 1), (7, 6.02336e-05, 1), (8, 5.38618e-06, 1), (9, 3.22431e-
07, 0.75), (10, 1.07253e-08, 0.5), (11, 1.36229e-10, 0.25)> 

𝐿𝐷𝐺𝐴𝑏𝑒,𝐼𝑁𝐴𝐺𝐴𝑠
 

<(-19, 1.11902e-08, 0.25), (-18, 6.10847e-07, 0.25), (-17, 1.21623e-05, 0.5), (-16, 0.000142447, 0.5), (-15, 
0.0010472, 0.5), (-14, 0.00509594, 0.75), (-13, 0.0177611, 0.75), (-12, 0.0467918, 0.75), (-11, 0.0966001, 1), 
(-10, 0.157628, 1), (-9, 0.199916, 1), (-8, 0.19543, 1), (-7, 0.146012, 1), (-6, 0.0829385, 1), (-5, 0.0358663, 
1), (-4, 0.0115915, 1), (-3, 0.00270455, 1), (-2, 0.000422238, 1), (-1, 3.77454e-05, 0.75), (0, 1.57458e-06, 
0.5), (1, 2.24968e-08, 0.25)> 

𝐿𝐷𝐺𝐴𝑏𝑒,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(-18, 2.75948e-10, 0.25), (-17, 2.95143e-08, 0.25), (-16, 1.06945e-06, 0.5), (-15, 1.92606e-05, 0.5), (-14, 
0.000197294, 0.5), (-13, 0.00126094, 0.75), (-12, 0.00547715, 0.75), (-11, 0.0173714, 0.75), (-10, 0.0426131, 
1), (-9, 0.0835243, 1), (-8, 0.132477, 1), (-7, 0.170711, 1), (-6, 0.179039, 1), (-5, 0.153341, 1), (-4, 0.107709, 
1), (-3, 0.0620746, 1), (-2, 0.0291629, 1), (-1, 0.0109733, 1), (0, 0.00320921, 1), (1, 0.000708433, 1), (2, 
0.000115364, 1), (3, 1.363e-05, 1), (4, 1.12365e-06, 1), (5, 5.74542e-08, 0.75), (6, 1.39595e-09, 0.5), (7, 
1.08275e-11, 0.25)> 

𝐿𝐼𝑁𝐴𝐺𝐴𝑠,𝐼𝑁𝐴𝐺𝐴𝑒
 

<(0, 0.0758523, 1), (1, 0.213296, 1), (2, 0.278516, 1), (3, 0.211482, 1), (4, 0.121602, 1), (5, 0.0588336, 1), 
(6, 0.0317201, 1), (7, 0.00869848, 1)> 

 


