
Peer-to-Peer Desktop Grids in the Real World: the ShareGrid Project ∗

Cosimo Anglano1, Massimo Canonico1, Marco Guazzone1, Marco Botta2, Sergio Rabellino2,
Simone Arena3, Guglielmo Girardi3

1Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria (Italy),
2 Dipartimento di Informatica, Università di Torino, Italy,

3 Torino Piemonte Internet Exchange (TOP-IX), Torino, Italy
email:{cosimo.anglano,massimo.canonico,marco.guazzone}@unipmn.it,

{botta,sergio.rabellino}@di.unito.it,
{simone.arena,guglielmo.girardi}@topix.it

Abstract

ShareGrid is a peer-to-peer desktop grid aimed at satis-
fying the computing needs of the small research laborato-
ries located in the Piedmont area in Northern Italy. Share-
Grid adopts a cooperative approach, in which each partic-
ipant allows the other ones to use his/her own resources on
a reciprocity basis. ShareGrid is based on the OurGrid mid-
dleware, that provides a set of mechanisms enabling partic-
ipating entities to quickly, fairly, and securely share their
resources. In this paper we report our experience in de-
signing, deploying, and using ShareGrid, and we describe
the applications using it, as well as the lessons we learned,
the problems that still remain open, and some possible so-
lutions to them.

1 Introduction

In many scientific areas, the use of computers to carry
out research has become essential. The availability of com-
puting infrastructures able to speed-up as much as possi-
ble the execution of relevant applications is therefore funda-
mental for the achievement of scientific outcomes. Volun-
teer computing infrastructures, set up by means of suitable
middlewares (e.g. BOINC [1] and XtremWeb [9]) and able
to harvest the unused cycles provided by a set of desktop-
class computers owned by independent individuals, have
been shown to be able to provide performance comparable
to those of more traditional grids at a fraction of their cost.
However, computing infrastructures based on this paradigm
can grow large enough to provide significant benefits only
if a large set of resource owners are convinced to install the

∗This work has been supported by TOP-IX and the Piedmont Region
Agency under the Innovation Development Program.

software that will allow them to contribute their resources
to the system. Furthermore, a non-negligible effort may be
required to set up a control center responsible for managing
the resources contributed to the system. It is no surprise,
therefore, that the largest volunteer-computing communities
are aggregated by projects carried out in prestigious and fa-
mous institutions, since they typically have more resources
to invest in project advertisement and infrastructure man-
agement. Thus, the gap between the research that can be
carried out at the few large research institutions (that are
able to profitably exploit volountary computing solutions)
and the one that can be conducted by the majority of small
labs (that cannot) is becoming larger.

Smaller research labs, however, can overcome these
difficulties if they federate their resources and use them
cooperatively according to the peer-to-peer computing
paradigm, in which each participant lets other members use
its resources when it does not need them, provided that they
do the same. This is the precise goal of the ShareGrid
Project [16], that is aimed at establishing a shared comput-
ing infrastructure in the Piedmont area, in Northern Italy,
by federating the computing resources of the many small
research laboratories of the region that do not have enough
resources to satisfy their computing needs, and sufficient
visibility to coagulate a volunteer community large enough
to provide an adequate amount of computing power, and
enough manpower to manage it. The ShareGrid infrastruc-
ture is based on the peer-to-peer computing paradigm, and
relies on the OurGrid [4] middleware to provide a set of
core services enabling participating laboratories to easily
share their resources when they do not need them, to use
those of other participants easily and transparently, and to
make sure that free riders (i.e., participants that do not do-
nate their resources but want to use those of others) do not
receive services at the detrimental of contributing users. At

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.23

609

the moment, ShareGrid comprises more than 200 machines
(including both desktop-class and server-class computers),
donated by three University research labs and one private
institution, that are used to run a variety of different appli-
cations. Plans are underway to enlarge both the number of
contributing laboratories and of the application base.

To the best of our knowledge, there are not many other
general-purpose computing infrastructures that, as Share-
Grid, are based on the peer-to-peer paradigm. The only
other example we are aware of is the publicly-accessible
desktop grid operated by the OurGrid project [14], that
however – unlike ShareGrid – does not provide any sup-
port to its users, and comprises a smaller number of ma-
chines. The other similar computing infrastructures based
on the volunteer-computing paradigm that have been de-
ployed in the past few years (e.g., Grid.Org [12], Compute
Against Cancer [7], Folding@home [11], ClimatePredic-
tion.Net [6], FightAids@Home [10], LCH@Home [13], and
Distributed Folding [8], just to name a few) support the exe-
cution of a single application. In contrast, ShareGrid is able
to support the simultaneous execution of many competing
applications.

In this paper we report our experience and the lessons we
learned while setting up, deploying, and using the Share-
Grid infrastructure. We start with Section 2, where we
describe the architecture of ShareGrid, the configuration
of the middleware on which it is based, and the develop-
ment of some additional middleware components that were
made necessary by the peculiarities of the user community
targeted by ShareGrid. We then continue with Section 3,
where we describe the set of applications that are currently
executed on ShareGrid, and with Section 4, where we report
the lessons we learned, the problems we encountered, and
the possible solutions to them. Finally, Section 5 concludes
the paper and outlines future research work.

2 The architecture of ShareGrid

As anticipated in the Introduction, ShareGrid aims at
providing a shared computing infrastructure obtained by
federating resources contributed by independent research
institutions, typically doing research in domains different
from computer science, and having limited manpower to
manage their computing resources. Therefore, in order to
be successful, it was crucial to design ShareGrid in such a
way that it provides suitable mechanisms facilitating indi-
vidual sites to participate and use the resulting infrastruc-
ture. In order to satisfy the above requirement, ShareGrid
adopts a peer-to-peer paradigm in which each laboratory
can independently contribute its resources anytime, with-
out the need of signing any prior agreement with the rest of
the community, and can withdraw them exactly in the same
way. To implement this vision, we adopted the OurGrid

middleware, that has been specifically conceived to provide
suitable mechanisms and policies to enable small laborato-
ries to aggregate their computing resources in a peer-to-peer
fashion, so that the creation, management, and operation of
the resulting computing infrastructure is greatly simplified.
More specifically, OurGrid provides mechanisms enabling
a set of independent organizations to quickly assemble a
shared computing infrastructure and to profitably use it to
run Bag-of-Tasks [5] applications (i.e., parallel applications
comprising a set of independent tasks) in a secure way, and
to deal with the typically large volatility and heterogeneity
of the constituent resources, without requiring the availabil-
ity of a large amount of manpower to manage it. Further-
more, by giving priority to users according to the amount of
contributed resources, OurGrid provides clear incentives to
donate resources to the infrastructure, thus perfectly match-
ing the goal of ShareGrid.

The architecture of ShareGrid, schematically depicted in
Fig. 1, follows a peer-to-peer paradigm in which a set of
peer nodes, each in charge of managing a set of computing
nodes, interact with each other in order to fulfill execution
requests coming from a population of users. In its present

Figure 1. The Architecture of ShareGrid

incarnation, ShareGrid comprises four different sites: three
of them are independent laboratories located in the Univer-
sity of Turin and the University of Piemonte Orientale at
Alessandria, while the fourth one is a small research facil-
ity provided by the a non-profit organization (TOP-IX [17])
to accommodate the computational needs of selected inde-
pendent researchers that do not own resources to donate.
Globally, these sites provide 224 machines, equipped with
Intel and AMD processors of different families, and running
various versions of Linux, Windows, and Solaris. These
machines are not dedicated to run grid applications, but –
according to the volunteer computing paradigm – can be
used by ShareGrid only when they are not used by the re-

610

spective owners. Therefore, the actual number of available
machines may strongly fluctuate over time.

The various middleware components used in ShareGrid
(the peers and the agents running on computational nodes),
as well as the clients used by users to submit and manage
their applications, are provided by OurGrid. Each site that
wants to join ShareGrid deploys a peer on one of its re-
sources, and configures the other ones to act as computing
nodes under the control of the corresponding peer. This peer
is provided with a list of the other peers in ShareGrid, and
uses it to contact them to set the peering relationships.

The peer of a given site fulfills two purposes: (a) it ac-
cepts the submission requests coming from users of the site,
and decides whether to dispatch them on local resources or
to remote ones, and (b) accepts submission requests com-
ing from external users, queues them locally, and dispatches
them on local resources when they become available. Peers
prioritize submissions according to the standard OurGrid
policy, in which local users are given priority with respect
to remote ones: when a local application is submitted for
execution and there are no local resources available for ex-
ecution, remote applications that are being run are termi-
nated, and the corresponding resources are allocated to the
local applications. When choosing which one among its lo-
cal resource will run a given task, the peer will pick one at
random among those that are idle and that possibly match
the requirement expressed by the user with the characteris-
tics of the machine. If there are not enough local resources,
the peer contacts other peers of ShareGrid and select the
one(s) to which it will ship the local application accord-
ing to the network of favors principle [4]. In practice, each
peer Pi maintains for each other peer Pj in the system the
amount of favors it received, a variable that accounts for
the amount of time that Pj devoted to execute Pi’s tasks
(suitable weighted to take into account the computing power
of the involved machines). When selecting remote applica-
tions for the execution on local resources, Pi gives prefer-
ence to the applications coming from the peer with the high-
est favor value. By coupling the network of favors mecha-
nisms with a proper accounting mechanism [15], OurGrid
ensures that free riders (i.e. users that do not donate re-
sources to the system but use those donated by other ones)
receive little or no service.

In addition to the basic OurGrid components, the de-
ployment of ShareGrid required us to develop additional
mechanisms to tailor the specific needs of the targeted user
community.

3 ShareGrid Applications

ShareGrid, being based on the OurGrid middleware,
supports only the execution of Bag-of-Tasks applica-
tions.These applications typically consist in a set of inde-

pendent tasks that do not communicate among them. De-
spite their simplicity, Bag-of-Tasks are used in a variety
of domains, such as parameter sweeps, simulations, fractal
calculations, computational biology, and computer imaging.

At the moment of this writing, ShareGrid is used by five
applications, belonging to very different domains, that have
been implemented as Bag-of-Tasks, namely:

• Distributed rendering: Scene rendering is a typical
compute-intensive activity, where a set of scenes of a
given movie must be rendered via software in order
to add in static and dynamic features (like bitmap or
procedural textures, lights, bump mapping, etc.), and
to stitch them together for making the final animation.
The inherent nature of scene rendering, where differ-
ent frames belonging to the same animation can be ren-
dered independently from each other, makes it partic-
ularly suited to distributed processing. A distributed
version of scene rendering can indeed be obtained by
processing each frame independently, and then merg-
ing them together to build the complete movie. Dis-
tributed rendering drastically reduces the rendering
time (and the production time too) and the investment
costs needed for buying and managing personal com-
puting resources. For ShareGrid, we developed a Bag-
of-Tasks version of blender [3],in which bags corre-
spond to scenes, and tasks of a bag to the different
frames of the same scene. This application is being
used by professionals working in the animation field
to accomplish their activities.

• Simulation of economic systems: Researchers in the
Department of Economic and Financial Sciences of the
University of Turin have developed Parei, an agent-
based simulation system modelling the over 500,000
production units composing the economy of Piedmont,
and use it for the understanding and the esteem of eco-
nomic dynamics, particularly when they are difficult to
be observed in vivo, and for the evaluation, in vitro, of
economic effects of proposed public policies. Given
the large size of the model, and the large set of pa-
rameter values that must be studied, the analysis of the
Parei model requires very large amounts of comput-
ing power to obtain results in an acceptable time, that
far exceed those available to the researchers that de-
veloped it. However, such a simulation naturally fits
the Bag-of-Tasks paradigm, since each set of model
parameters, as well as each distinct scenario, corre-
sponds to an independent task. A Bag-of-Tasks imple-
mentation of this application, executed on ShareGrid,
has been able to produce very interesting results in an
amount of time much smaller than that taken by its se-
quential version. Furthermore, as an additional benefit,
the simultaneous exploration of the solution space al-

611

lowed by running several tasks on the same parameter
set and scenario made possible to neutralize determin-
istic effects in random number generation and to ana-
lyze the solution space.

• Simulation of molecular systems: The simulation of
the dynamic behavior of molecular systems is a com-
putationally intensive task, especially when biological
macromolecules are concerned, and solvent molecules
are modeled explicitly. The availability of large com-
putational resources is thus mandatory to accomplish
reliable esteems of the free energy of binding between
a ligand and its target. Techniques like thermody-
namic integration require running several, indepen-
dent, molecular dynamics simulations, and can nat-
urally be implemented as Bag-of-Tasks applications,
since each simulation corresponds to an individual task
that do not communicate with the other ones.An addi-
tional application belonging to this scientific domain
consists in performing the simultaneous virtual screen-
ing of a series of potential drug candidates by means
of molecular docking and subsequent molecular dy-
namics simulation refinement, thus making in silico
methods competitive with traditional in vitro wet-lab
screening. Researchers of Department of Drug Sci-
ence of the University of Turin have developed Bag-of-
Tasks versions of the above implementation, and have
extensively used them on ShareGrid. As result, they
have obtained innovative and significant results in a
relatively short time, that would instead have required
much longer time on traditional computing platforms.

• Simulation of scheduling algorithms for distributed
systems: Discrete-event simulation is often used in
Computer Science to study the behavior of certain sys-
tems before actually implementing them. Job schedul-
ing for distributed systems is one of the research areas
in which discrete-event simulation is often the tool-of-
choice. The study of the behavior of a given schedul-
ing algorithm for different scenarios, or the compar-
ison of different algorithms for the same set of sce-
narios, can be naturally performed by simultaneously
executing many independent simulations in parallel. A
Bag-of-Tasks discrete simulation engine has been de-
veloped by researchers of the Department of Computer
Science at the University of Piemonte Orientale, and is
used to perform parameter sweep studies of schedul-
ing algorithms for desktop grids. The computing in-
frastructure provided by ShareGrid has enabled these
researchers to enlarge the set of scenarios and schedul-
ing algorithm that could be studied in a reasonable
amount of time, thus significantly increasing their pos-
sibility of investigating interesting avenues of research
that could not have been possible otherwise.

• Evaluation of Classifier Systems: Classification is the
task of recognizing an object or event as an instance of
a given class and represents one of the problems most
frequently found in computer applications. Medical
and fault diagnosis, prognosis, image recognition, text
categorization, adaptive user profiling are weel known
instances of classification tasks. The task of auto-
matically inferring a classification program (classifier)
from a set of previously classified data has been inves-
tigated for more than two decades in pattern recogni-
tion, statistics, and in machine learning and produced
a large number of powerful algorithms. When new ap-
plication domains and/or new requirements are sought,
existing algorithms as well as new ones need to be
tested and evaluated extensively to assess their perfor-
mances. This evaluation activity consists in running
the algorithm to acquire a classification program and
test the learned model on, so called, test data, and is
very time-consuming, because, several runs are per-
formed by varying configuration parameters of the al-
gorithm and the datasets on which the algorithms are
tested. Each run of an algorithm can then be seen as a
separate task and, thus, a Bag-of-Tasks paradigm can
be applied to organize a large number of experiments
and get advantage of a grid computing environment. In
particular, the researchers at the Department of Com-
puter Science at the University of Turin used the com-
puting infrastructure provided by ShareGrid to test the
performances of an SVM classifier on a user identifica-
tion task. The experimental setup consists in running
the SVM classifier on 64 different datasets, by varying
three parameters of the algorithm for a total of about
1200 runs. Each run takes about 1 hour cpu time on
average to run. This means that it would take more
than a month to terminate all the experiments using a
single cpu system. By using the ShareGrid computing
power, the full experiment took only a couple of days.

4 Lessons learned

In order to make ShareGrid suitable to the execution of
such a variety of applications, we had to face a set of is-
sues, that had not been anticipated, and whose solution –
in some cases – is under development, that made us learn
some important lessons, that are summarized below.

Lesson 1: Software dependencies do exist. The first
problem we encountered is concerned with the software de-
pendencies characterizing applications. In many (if not all)
cases, each application requires the availability of specific
libraries that are not part of the standard software packages
installed on the machines. This problem gets even worse

612

for Windows-based machines. While a straightforward so-
lution is – at least in theory – available, namely the static
compilation of the application executable, there are cases
when such a compilation produces an excessively large ex-
ecutable file, or when statically-compiled libraries are not
available for all the platforms present in ShareGrid. There-
fore, we had to adopt a quick-and-dirty solution to this prob-
lem by installing, where possible, dynamic versions of the
libraries required by each application. Unfortunately, this
has not been possible for all machines and libraries, so the
set of resources available to a given application is actually
smaller than the number of machines in ShareGrid. A better
solution, that however requires a large development effort,
consists in encapsulating all the execution environment re-
quired by each application into a virtual machine, and ship
it to the computing nodes of ShareGrid. This, however, puts
some constraints on the computational nodes that, in order
to profitably run virtual machines, must be equipped with
hardware support for virtualization. Fortunately, this does
not seem to be a real problem anymore, since practically all
the newer processors incorporate this feature, but for older
machines the problem does exist.

Lesson 2: Input and output data may be harder to
deal with than anticipated. The second major problem
we encountered was caused by applications requiring large
amounts of input data. The version of OurGrid used for
ShareGrid provides no support to remote I/O, so all the data
required and produced by an application must be staged in
and out for each task. When the size of the input data is
very large, copying them on the target machine may require
a very large amount of time, that greatly delays the com-
pletion of the corresponding task. The performance penalty
caused by the need of staging in the input data can be dra-
matic, especially considering that such a copy must be prac-
tically performed for each task of a bag. In some cases,
when a task needs the same input of another one, OurGrid
is able to schedule them on the same resource, but this only
partially solves the problem. We have not yet devised a so-
lution for this problem, although we are considering some
ways of integrating I/O support in OurGrid. One of these
possibilities consists in coupling a BitTorrent-like file trans-
fer system, like for instance done in [18], or an infrastruc-
ture like the File Mover [2].

Lesson 3: Data privacy is fundamental. The third prob-
lem, raised by those applications that process confidential
or sensitive data, consists in guaranteeing suitable privacy
levels for their input or output data. Unfortunately, this
seems to be a problem that cannot be easily solved on a
purely technical basis. One possible partial solution that we
are considering consists in using an encrypted file system
to store the data, that are decrypted on the fly – by means

of a secret key – by the application that needs them. This
solution, however, is only partial, as the data exist in an
encrypted form at least into the memory space of the task
using them and can be therefore accessed by dumping the
above memory, although this is less simple than reading
them from the disk (as it would be possible if they were
stored in an unencrypted form).

Lesson 4: The system does not manage itself. Although
OurGrid is a mature middleware, it is also a research
product constantly under development that, consequently,
has some bugs. While its developing community is quite
prompt to react to bug reports, bug fixing requires some
time during which it is important to minimize the impact on
the user community of ShareGrid. One of the known bugs
of ShareGrid is particularly annoying for users, namely the
unanticipated disappearance of a peer (with all the comput-
ing nodes it manages). A very quick-and-dirty solution to
this problem, that can be applied until the bug is fixed, con-
sists in restarting the peer. Doing that manually is an un-
practicable option, since it would require the continuous
human assistance, so we implemented a simple software
monitor that checks the availability of each peer of Share-
Grid, and automatically restart those that are not reported as
present by the OurGrid middleware.

Lesson 5: Sometimes you cannot configure your firewall.
Nowadays practically all the institutions protect their net-
works by means of a firewall that, if not properly config-
ured, does not allow the corresponding peer to communi-
cate with the other ones in ShareGrid. Unfortunately, in our
case one of the participating laboratories could not directly
configure the corresponding firewall, because of some net-
work access restriction policies. However, one of the other
laboratories belonging to the same university did not have
the same restrictions, and could directly configure its fire-
wall. This allowed us to solve the problem by setting up
a Virtual Private Network connecting the first laboratory to
the second one, and vehiculating through it all the traffic
coming from and directed to the corresponding peer.

Lesson 6: The world is not Linux-centric. As many re-
search software products, OurGrid has a strong Linux ori-
entation, although the bulk of the middleware – being writ-
ten in Java – runs on any platform supporting this language.
However, there are a few components that have been de-
veloped having the features and the restrictions of Linux
in mind, and do not work well (or not at all) on Windows
resources. We felt that this was a major problem that – if
not properly addressed – would significantly limit the size
that ShareGrid could potentially reach, given the dominant
position of Windows in non-academic environments.

613

The first issue due to the Linux-centric approach adopted
by OurGrid is that its client runs only on *nix machines, so
Windows users cannot submit applications from their ma-
chines. In order to overcome this problem, we developed
a web portal providing access to ShareGrid by means of a
standard web browser. In this way, on the one hand we pro-
vide a better support to Windows users, and on the other
hand we enlarge the potential user basis for ShareGrid.

Another consequence of the Linux-centric vision men-
tioned above is that the idleness detector, used by the agent
of OurGrid to decide if a given machine is not being used
by the respective owner so that it can be used to run Grid
jobs, does not properly work with USB keyboards and
mices, although nowadays practically all desktop machines
are equipped with USB human input devices (HIDs). This
is an heritage coming from the fact that currently the Linux
kernel is notoriously unable to detect activity produced by
these devices. However, Windows does not suffer from this
problem, but the idleness detector is the same for both plat-
forms, so it does not support USB keyboards and mices on
Windows too. While this is not a real problem for computa-
tional clusters, it can become a significant issue for desktop
users, as their machine would be deemed idle even if they
are interacting with it via the keyboard and the mouse. We
solved this problem by rewriting the idleness detector for
Windows, that now is able to properly deal with USB HIDs.

5 Conclusions and Future Work

In this paper we described ShareGrid, a peer-to-peer
desktop grid aiming at aggregating and sharing, in a very
simple and transparent way, the computing resources con-
tributed by independent research laboratories. ShareGrid
targets the research community of the Piedmont region in
Northern Italy, and at the moment aggregates more than
200 resources provided by four institutions. The usability
of ShareGrid for applications coming from different scien-
tific domains has been demonstrated by the development of
various applications, ranging from scene rendering to simu-
lation of molecular, economic, and computer systems. The
rapid turnaround time that ShareGrid has been able to guar-
antee to these applications has enabled the research teams
using them to obtain their results in much shorter time than
they were used to by using their own resources alone, thus
enabling them to explore in the same amount of time sce-
narios requiring a much larger computing power.

We have been pleasantly surprised by the degree of sat-
isfaction and enthusiasm manifested by the users of Share-
Grid, that in some cases have contributed to the project not
only by porting their applications on this platform, but also
by developing some tools simplifying the usage of Share-
Grid and providing them to the rest of the community.

The development of ShareGrid is still work in progress,

and many new functionalities are planned to be developed
and integrated. Among them, the most prominent ones are
the support for the execution of virtual machines encapsu-
lating the applications, instead of the mere executable code
as done at the moment, and the integration of an efficient
data transfer mechanisms enabling ShareGrid to provide ef-
fective support to data-intensive applications as well.

References

[1] D. P. Anderson. Boinc: A system for public-resource com-
puting and storage. In GRID ’04: Proceedings of the
Fifth IEEE/ACM International Workshop on Grid Comput-
ing, pages 4–10, 2004.

[2] C. Anglano and M. Canonico. The File Mover: High-
Performance Data Transfer for the Grid. Concurrency
and Computation: Practice and Experience, 20(1), January
2008.

[3] Home Page of Blender. http://www.blender.org. Visited on
Nov. 22nd, 2007.

[4] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade,
R. Novaes, , and M. Mowbray. Labs of the world, unite!!!
Journal of Grid Computing, 2006.

[5] W. Cirne and et al. Grid computing for bag of tasks applica-
tions. In Proc. of 3rd IFIP Conf. on E-Commerce, E-Business
and E-Government, 2003.

[6] The ClimatePrediction.Net Project.
http://www.climateprediction.net. Visited on Sept. 7th,
2007.

[7] The Compute Against Cancer Project.
http://www.computeagainstcancer.org. Visited on Sept.
7th, 2007.

[8] The Distributed Folding Project.
http://www.distributedfolding.org. Visited on Sept. 7th,
2007.

[9] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb:
A generic global computing system. In CCGRID ’01: Pro-
ceedings of the 1st International Symposium on Cluster
Computing and the Grid, page 582, 2001.

[10] The FightAids@Home Project.
http://fightaidsathome.scripps.edu. Visited on Sept.
7th, 2007.

[11] The Folding@home Project”.
http://www.stanford.edu/group/pandegroup/folding. Visited
on Sept. 7th, 2007.

[12] The GRID.ORGTM Project. http://www.grid.org. Visited on
Sept. 7th, 2007.

[13] The LHC@Home Project. http://lhcathome.cern.ch. Visited
on Sept. 7th, 2007.

[14] OurGrid Home Page. http://www.ourgrid.org.
[15] R. Santos, A. Andrade, W. Cirne, F. Brasileiro, and N. An-

drade. Relative Autonomous Accounting for Peer-to-Peer
Grids. Concurrency and Computation: Practice and Experi-
ence, September 2007.

[16] The ShareGrid Project Home Page. http://dcs.di.unipmn.it.
Visited on Nov. 22nd, 2007.

[17] Torino Piemonte Internet Exchange Home Page.
http://www.topix.it.

[18] B. Wei, G. Fedak, and F. Cappello. Towards efficient data
distribution on computational desktop grids with BitTor-
rent. Future Generation Computer Systems, 23(8), Novem-
ber 2007.

614

