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Abstract Peer-to-Peer(P2P) Desktop Gridsare comput-
ing infrastructures that aggregate a set of desktop-class ma-
chines in which all the participating entities have the same
roles, responsibilities, and rights. In this paper, we present
ShareGrid, a P2P Desktop Grid infrastructure based on the
OurGrid middleware, that federates the resources provided
by a set of small research laboratories to easily share and
use their computing resources. We discuss the techniques
and tools we employed to ensure scalability, efficiency, and
usability, and describe the various applications used on it.
We also demonstrate the ability of ShareGrid of providing
good performance and scalability by reporting the results
of experimental evaluations carried out by running various
applications with different resource requirements. Our ex-
perience with ShareGrid indicates that P2P Desktop Grids
can represent an effective answer to the computing needs
of small research laboratories, as long as they provide both
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ease of management and use, and good scalability and per-
formance.
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1 Introduction

In many scientific areas, the use of computers to carry out
research has become essential. The technological advances
in scientific instrumentation have indeed led to the gener-
ation of increasing amounts of data whose processing re-
quires larger and larger amounts of storage and computing
power. The availability of computing infrastructures ableto
provide such amounts of resources has thus become funda-
mental for the achievement of scientific outcomes in these
research areas.

Grid computing technologies [1] and infrastructures [2–
5] have been shown to be able to provide very large amounts
of storage and computing power. Typical Grid platforms (also
referred to asservice Grids) usually include relatively few
and very powerful resources. Therefore, small research lab-
oratories that cannot afford neither such powerful resources,
nor the manpower costs required for their management, can-
not exploit Grid computing to satisfy their computing needs.

Desktop Grids[6] (also referred to asopportunistic Grids),
computing infrastructures that aggregate a (potentially very
large) set of desktop-class machines owned by many inde-
pendent individuals, have been used in the past both in the
enterprise [7] and in the academia [8–11] as a low-cost al-
ternative to traditional Grids. In academic settings a specific
subclass of Desktop Grids, known asVolunteer Computing
(VC) systems[12], has been typically adopted. VC systems
exploit the unused capacity of non-dedicated computers vol-
untarily provided by a set of independent owners. Generally
speaking, such systems use amaster serverthat coordinates
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a set ofclientsby assigning them some work to do, collects
the corresponding results and ultimately assembles them. To
obtain significant benefits, however, VC systems must grow
large enough to provide sufficient computing power and re-
dundancy to tolerate the heterogeneity and failures of the
involved computers. Furthermore, as discussed in [13], non-
negligible efforts may be required to set up and maintain the
master server. Consequently, small research laboratoriesare
in general unable to exploit VC solutions, because of their
lack of sufficient visibility to aggregate a large community
of volunteers, and of enough manpower to set up and operate
a master server. This is confirmed by the fact that the major
part of successful Volunteer Computing projects is usually
carried out in prestigious and famous institutions that typi-
cally have more resources to invest in project advertisement
and infrastructure management.

Peer-to-Peer(P2P) Desktop Grids [14] have been re-
cently developed to address the above issues; they are based
on the principle that all the participating entities have the
same roles, responsibilities, and rights. More specifically,
participants to a P2P Desktop Grid share and use a set of re-
sources on a reciprocity basis. That is, each participant lets
other participants to use his/her resources when (s)he does
not need them, provided that they do the same. In this way,
small institutions that do not have enough computing power
to satisfy their own needs, can federate with other similar in-
stitutions to obtain a possibly large Desktop Grid that can be
easily shared by all participants. In contrast, in VC systems
there is a clear difference in roles and rights between the re-
source donors (i.e., the clients) and the resource consumer
(i.e., the master server); indeed, the former ones can only
run the application(s) provided by the master server, while
the latter is the only entity entitled to exploit the resources
provided by the clients.

Although P2P Desktop Grids are considered very promis-
ing, converting this promise into reality is nontrivial, asit
requires to properly address various issues affecting the per-
formance, scalability, and usability of the resulting infras-
tructure. In this paper we report our experience in addressing
these issues, that comes from the work we did during the de-
sign, implementation, and use ofShareGrid[15,16], a P2P
Desktop Grid infrastructure that federates the resources pro-
vided by a set of small research laboratories, located in the
Piemonte and Liguria areas (in Northwestern Italy). At the
moment of this writing, ShareGrid federates 11 university
laboratories, 1 public research center, and 1 private institu-
tion, providing more than 250 computing resources. Share-
Grid is based on theOurGrid [14] middleware, that pro-
vides a set of core services enabling the aggregation and the
sharing of large sets of computing resources, and on sev-
eral additional components that we developed to provide a
set of supplementary services. OurGrid (and, hence, Share-
Grid) supports onlyBag-of-Tasks(BoT) [17] applications

(also referred to asembarrassingly parallel applications),
that are composed by a set of identical and independent tasks
that can be executed in parallel on distinct input data and
parameters. It is worth to point out that this restriction is
only an apparent limitation. As a matter of fact, this class
of applications, despite its simplicity, is used in a variety of
domains, such asparameter sweeping[18,19], simulations,
fractal calculations, computational biology [20], and com-
puter imaging [21]. Furthermore, as will be discussed later,
all the applications of interest to the current ShareGrid part-
ners fit within this class.

The primary purpose of this paper is to provide a com-
plete description of ShareGrid, highlighting the techniques,
tools, and algorithms that we used to ensure scalability, ef-
ficiency, and usability. The ability of ShareGrid of fulfill-
ing its performance and scalability requirements is demon-
strated by the results of a thorough performance evaluation
activity that we carried out by running various applications
characterized by different resource requirements.

Our experience in deploying, managing, and using Share-
Grid (that, at the moment of this writing, spans over a three
years period), indicates that P2P Desktop Grids can repre-
sent an effective answer to the computing needs of small re-
search laboratories, as long as they provide ease of manage-
ment and use, as well as good scalability and performance.
We believe that our findings apply not only to ShareGrid,
but also to the whole class of P2P Desktop Grids. Our ex-
perience and study, therefore, can be considered an assess-
ment of the pros and the cons of these systems, and can be
potentially useful to interested user communities to evaluate
whether P2P Desktop Grids are an appropriate solution for
their computing needs or not.

The rest of this paper is organized as follows. Section 2
describes the architecture and implementation of ShareGrid,
as well as its current status. Section 3 describes the set of ap-
plications that currently use ShareGrid. Section 4 reportsthe
results of the performance evaluation study we performed.
Section 5 discusses the related works and, finally, Section 6
concludes the paper and outlines future research work.

2 ShareGrid: Design, Architecture, and Implementation

As for any Grid infrastructure, the main goals of ShareGrid
are the achievement of satisfactory application performance
and the ability to aggregate as many resources as possible
without incurring into scalability problems. Additional goals
include also the provision of high usability and ease of main-
tenance of the Desktop Grid infrastructure, since ShareGrid
is targeted to user communities that do not necessarily in-
clude computer scientists. These goals were translated into
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the following set of requirements, that drove its design, con-
figuration, and deployment:

– Performance and scalability requirements:
1. Lack of centralized components: in order to avoid

possible performance bottlenecks, the architecture of
the system must not encompass centralized compo-
nents (or, at least, must keep them to a bare mini-
mum).

2. Adoption of specific scheduling policies: Desktop Grids
are characterized by an extreme resource volatility
(since any user can reclaim his/her own resources at
any time and without any advance notice) and het-
erogeneity. In order to ensure satisfactory applica-
tion performance, scheduling policies able to tolerate
the high degree of resource failures and heterogene-
ity, that typically characterize Desktop Grids, must
be adopted.

– Usability requirements:
1. Ease of use: executing and monitoring applications,

as well as collecting their results, must be as simple
as possible and must not require any specific knowl-
edge of the system architecture or configuration.

2. Support of multiple platforms: in order to accommo-
date the largest possible number of distinct comput-
ing platforms, the middleware must support as many
combinations as possible of operating systems and
processor architectures.

3. Application agnosticism: each user must be able to
submit and run his/her own applications without hav-
ing to set-up the system in an application-specific
way prior to the submission.

– Manageability requirements:
1. Ease of joining and leaving: the operation of adding

or removing a set of resources must be as simple as
possible and must not require specialized knowledge
of the middleware and/or of the operating systems
running on them.

2. Ease of configuration and maintenance: the infras-
tructure must require minimal efforts (possibly none)
to (re)configure and maintain its core components.

3. Resilience to resource departure: the infrastructure
must employ specific mechanisms and policies (e.g.,
task replication) enabling application to tolerate unan-
ticipated resource departures.

To satisfy all the above requirements, the following activities
have been performed: (a) choice of a suitable middleware
platform providing the necessary mechanisms, (b) deploy-
ment of the middleware onto an appropriate system archi-
tecture, and (c) configuration of the middleware in order to
tailor the various mechanisms (e.g., scheduling, data man-
agement, security, and accounting) to the specific needs of
the user communities targeted by ShareGrid.

In the rest of this section we will firstly introduce Our-
Grid and motivate the reasons of our choice (Section 2.1).
Then, we will describe the architecture of ShareGrid (Sec-
tion 2.2). Finally, we will provide an overview of the char-
acteristics of the resources currently belonging to ShareGrid
(Section 2.3).

2.1 The choice of OurGrid

As anticipated in the Introduction, ShareGrid is based on the
OurGrid middleware platform (and, in particular, on version
3 that was the stable release when the project begun), whose
characteristics will be discussed in this section by referring
to the architecture of a generic OurGrid-based infrastructure
schematically depicted in Fig. 1.

In an OurGrid-based Desktop Grid, a set ofpeer nodes,
each one in charge of managing a set ofworking machines,
interacts to fulfill execution requests coming from a popu-
lation of users. These interactions are carried out by means
of a set of middleware components provided by OurGrid,
namely thePeer Agent(running on each peer node), the
User Agent(executing on each working machine), and the
MyGrid user interface(running on individual user machines
and providing user access to the computing infrastructure).
A core peer(a machine running theCore Peer Agentmiddle-

Fig. 1: Architecture of OurGrid.

ware component) provides a directory service to all the peers
in the Desktop Grid. Specifically, each peer, upon start-up,
registers itself with the core peer in order to announce to the
other peers its presence and the characteristics of the work-
ing machines it manages. Subsequently, the peer can query
the core peer at anytime to obtain the list of all the currently
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available peers. In order for a user to submit his/her jobs,
(s)he must associate with a specific peer (henceforth referred
to as thelocal peer) by means of MyGrid, that will send all
the submitted tasks to that peer. This association, however,
is not fixed, and the user may change it at anytime as long
as (s)he is not waiting for the completion of tasks already
submitted to the current local peer.

OurGrid adopts a decentralized scheduling approach, in
which each MyGrid manages the jobs submitted by the cor-
responding user independently from the other MyGrid in-
stances in the system, and cooperates with its local peer to
schedule them. Each MyGrid instance uses theWork Queue
with Replication (WQR)scheduling algorithm [22]. WQR
works by submitting, for each task,R distinct replicas (R is
called thereplication factor), that are started concurrently
on different machines. When the first replica terminates its
execution, the otherR− 1 are killed. Conversely, when a
task replica abnormally terminates its execution (typically
when the machine executing it is reclaimed by the respec-
tive owner), the corresponding MyGrid component automat-
ically resubmits it; each task is resubmitted at most for a
given numberRSof times (RS is called theresubmission
factor) before it is declared as failed by the MyGrid compo-
nent1. Task replication provides both resilience to resource
failures, and toleration of resource heterogeneity (a poorma-
chine choice for a given task may be compensated by a better
choice for one of its replicas).

When a user submits a job (consisting in a bag ofN in-
dependent application tasks), its corresponding MyGrid in-
stance requests to the local peerR×N available resources.
A resource is considered to be available when (a) it is idle,
and (b) it matches the requirements of the application (a
boolean expression of one or more software and hardware
constraints, specified by the user).

Then, the MyGrid instance and its local peer enter into
an event-based loop, where in each step the peer locates a
given numberX of (either local or remote) resources that are
available to execute these tasks, requestsX tasks to the My-
Grid instance, and dispatches them on these resources. The
loop terminates when all theN tasks have been completed.

The local peer always gives preference to local tasks:
each time a resource is needed to accommodate the request
coming from a local user, and there are no free local re-
sources, the peer first attempts to free busy resources by
killing remote tasks (if any). If, even after remote tasks are
killed, the numbers of local resources is lower than the num-
ber of task replicas pending at the MyGrid instance, the local
peer contacts other peers in the system (in a random order),
and requests them as many resources as possible.

1 Note that bothR andRSare set by each MyGrid instance inde-
pendently from the other ones. Therefore, at the same time, different
users may choose different values forR andRSwhen submitting their
applications.

To ensure thatfree riders(users that exploit the resources
of other participants without contributing their own ones to
the system) receive little or no service, OurGrid uses the
network of favorsmechanism [23], a reputation-based re-
source allocation mechanism designed to promote contribu-
tions of resources among peers. In practice, each peerPi lo-
cally maintains, for each other peerPj in the system, the
amount offavors it exchanged, a variable that accounts for
the amount of time thatPi andPj devoted to execute tasks
of each other (suitably weighted to take into account the
computational power of the involved machines, as discussed
in [24]). When responding to requests coming from remote
peers,Pi proportionally distributes its resources among the
various peers according to their favor values; in case of tie,
Pi chooses recipients at random. As soon as a donated re-
source returns toPi , the appropriated local favor values of
Pi and of each requesting peer, for whichPi has donated a
resource, are updated.

From the above discussion, it should be clear OurGrid
is able to fulfill all the requirements listed at the beginning
of this section. More specifically, in OurGrid there are no
centralized components (with the exception of the core peer,
whose failure does not hinder the ability of the system to
complete the already-submitted tasks). Furthermore, it pro-
vides scheduling algorithms able to deal with resource fail-
ures and heterogeneity. Joining an existing infrastructure re-
quires only to deploy a User Agent on each working ma-
chine, and a peer to interface these machines with the rest of
the system. Leaving the infrastructure is as simple as shut-
ting down the peer. The departure of a peer does not affect
in any way the other peers in the Desktop Grid, and task
failures are transparently handled by means of replication
and automatic resubmission mechanisms (described in sub-
sequent sections). Consequently, the system is highly usable
also by people with little or no background in computer sci-
ence. Furthermore, OurGrid provides a set of decentralized
user and resource management mechanisms that eliminate
the need and the costs of centralized management. Addi-
tionally, it provides mechanisms and policies aimed at mo-
tivating users to donate resources while, at the same time,
at discouraging free riders (something that is crucial for the
sustainability of an infrastructure formed by peers that do
not necessarily trust each other). Finally, all Unix variants,
as well as most modern Windows versions, are supported on
both 32 and 64 bit architectures.

The above considerations, and the observation that (as
discussed in Section 5.1) none of the other middleware plat-
forms available in the literature at the moment of our analy-
sis was able to satisfy all the requirements listed above, mo-
tivate our decision of adopting OurGrid as the middleware
substrate of ShareGrid.
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2.2 ShareGrid Architecture

The ShareGrid infrastructure has been obtained by deploy-
ing the various components of OurGrid on a set of physical
resources, by suitably using the mechanisms it provides to
enforce specific resource management and security policies,
and by adding a set of additional components that we specif-
ically designed and developed in order to provide some func-
tionalities that are missing in OurGrid.

More specifically, as indicated by Fig. 2, in addition to
the standard OurGrid components, ShareGrid encompasses
also three new servers: aVPN Server(providing peer visi-
bility to firewall-shielded peers, see later), aPortal Server
(providing Web-based user access to the infrastructure), and
a Storage Server(providing users with a persistent storage
facility for the input/output files of their applications).As
discussed in the rest of this section, each of these compo-
nents has been added in order to address a specific issue
arising from the peculiar nature of ShareGrid, that consists
in a federation of independent, heterogeneous, and volatile
resources that do not trust each other.

2.2.1 Dealing with firewalls: the VPN Server

Nowadays, the presence of firewalls to filter the ingress and
egress network traffic is practically ubiquitous. This means
that, in order to make a given peer able to communicate with
all the other peers of ShareGrid, it is necessary to properly
configure the firewall controlling the traffic of the corre-
sponding network so that it does not block the traffic gen-
erated by, and directed to, the peer. In some cases, however,
such a configuration may not be possible. For instance, this
was the case of some of the laboratories currently involved
in ShareGrid whose network is part of a larger networking
infrastructure which is globally shielded by a firewall con-
trolled by another IT department.

The solution we devised for this problem consists in host-
ing each of these peers on a machine placed outside the
corresponding network, so that the traffic directed to the
peer is not blocked by the firewall, while the correspond-
ing working machines are kept behind the firewall. In order
to enable the peer to communicate with its working ma-
chines, all peer-to-working-machines communications are
conveyed through theVirtual Private Network (VPN) Server,
which is used as an application-level gateway. More specif-
ically, each working machine opens a VPN connection with
the VPN server (usually, the default configuration of fire-
walls enables the creation of outbound VPN connections),
which is used by them as the gateway for all the outbound
and inbound traffic. Analogously, the peer routes all the traf-
fic directed to its working machines to the VPN server (as
happens for peers A and B in Fig. 2), that forwards it to the
appropriate destinations.

2.2.2 User interaction mechanisms: the Portal and the
Storage Servers

MyGrid, the user interface provided by OurGrid, is charac-
terized by some peculiarities that, in our opinion, make it
awkward to use. As a matter of fact, OurGrid requires that
submitting clients remain connected to their local peer for
all the duration of the execution of the submitted tasks, for
the following reasons:

1. pending tasks are queued locally at the MyGrid instance
used to submit them. Therefore, if a MyGrid instance
disconnects from its local peer before the job terminates,
all the pending tasks are not scheduled;

2. the output files generated by completed tasks are tem-
porarily stored on the peer managing the resources on
which they ran, and must be retrieved by the submitting
MyGrid instance by using the TCP connection it opened
at the dispatching time. A disconnection of the MyGrid
instance implies that these TCP connections are teared
down, with the consequence that the results generated
by completed tasks cannot be retrieved anymore.

Therefore, a crash or a disconnection of the submitting ma-
chine is a nefarious event that must be avoided as much as
possible.

Another factor that makes MyGrid awkward to use is
that it supports only Linux-based machines, hence users can-
not use a different operating system on their submitting ma-
chines.

ThePortal Serverand theStorage Serverhave been in-
troduced to overcome the above problems. The Portal Server
hosts theShareGrid Web Portal[25], that we developed in
order to enable users to access ShareGrid by means of a stan-
dard Web browser. The ShareGrid Portal accepts submission
requests by users, stores task input and output files on the
Storage Server, and creates persistent connections with its
reference peer through which task input and output files are
transmitted. When one of the tasks submitted terminates (ei-
ther normally or abnormally), the ShareGrid Portal sends an
email notification message to the corresponding user, so that
(s)he will not have to manually and periodically poll the sys-
tem to monitor the status of his/her tasks.

By using the ShareGrid Portal, the user does not have
to use the standard MyGrid user interface, and consequently
can avoid its intrinsic limitations mentioned above. Further-
more, the portal provides additional facilities, such as the
support for the automatic creation of submission files for
parameter sweep applications (applications structured asa
group of multiple independent runs executing the same ex-
periment on a different set of input parameters). The inter-
ested reader may refer to [25] for more information on the
portal.
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Fig. 2: Architecture of ShareGrid.

2.2.3 Managing multi-core resources

Although practically all relatively recent machines are equipped
with multi-core processors, OurGrid provides no mechanisms
to take advantage of this feature. Therefore, in order to fully
exploit multi-core machines, we had to devise our own so-
lution. In particular, in ShareGrid we adopted two comple-
mentary techniques to manage multi-core processors, namely:

– Use of multiple User Agents per working machine: this
technique consists in running, on the same physical ma-
chine, a distinct User Agent for each core of its proces-
sor. This solution is very simple, but it may result in per-
formance bottlenecks when different tasks make an in-
tensive use of the same resource (e.g., CPU or memory),
or when too many User Agents are started on the same
machine. To limit these phenomena, we devised a rule-
of-thumb, crafted by considering the characteristics of
current ShareGrid applications, in which the number of
User Agent is set to min{C,max{M/1024,1}}, whereC
is the number of cores andM is the amount of RAM (in
MB) installed on the machine. In practice, this rule states
that each User Agent must receive at least 1,024 MB of
RAM, and at most one User Agent per core can be exe-
cuted on a given machine. However, it should be noted
that the amount of RAM allocated to a given User Agent
is imperatively controlled by the operating system of the
machine, so at any given time some User Agents may

receive more that 1,024 MB of RAM, while other ones
may receive less than that amount of memory. Further-
more, it should be noted that a given User Agent is not
statically allocated to a specific core (this is typically not
permitted by standard operating systems). Conversely,
the core on which a given task (allocated to the User
Agent) runs may change each time the task is resched-
uled by the operating system.

– Use of multiple virtual machines per working machine:
this technique consists in allocating, on the same phys-
ical machine, a distinct virtual machine (hosting a User
Agent) for each core of its processor. This solution re-
quires more configuration efforts than running several
User Agents as user processes, but brings two major ad-
vantages: (1) each virtual machine is an isolated run-
time environment which contributes to increase security
and reliability, and (2) it allows a single machine to si-
multaneously run different operating systems and, con-
sequently, to dynamically increase or decrease the num-
ber of resources running a given operating system in or-
der to match the needs of applications. The main disad-
vantage is that this solution usually requires an amount
of physical resources larger than those necessary to run
multiple User Agents without system virtualization, and
requires the availability of a processor supporting virtu-
alization. The same rule-of-thumb devised for the multi-
ple User Agent per physical machine case has been used
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to determine the number of virtual machines to run on a
given node. In this case, however, it is possible to bind a
given virtual machine to a specific core.

2.2.4 Enforcing Security

ShareGrid uses various authentication mechanisms to ensure
that only legitimate users have access to the infrastructure.
These mechanisms control the two points of user access,
namely the individual peers and the ShareGrid Portal.

The access to individual peers, performed through My-
Grid, is restricted to legitimate users by means of an ac-
cess control list that, for each peer, contains the network ad-
dresses of the machines that are allowed to connect to that
peer. Furthermore, the ShareGrid Portal provides an authen-
tication mechanism for registered users, that have to authen-
ticate themselves before being allowed to access its services.

The security mechanisms provided by OurGrid encom-
pass also an application sandboxing technique namedSand-
boxing Without A Name(SWAN) [26], based on the Xen [27]
virtualization platform, in which user tasks are executed within
a Xen virtual machine where access to the network inter-
face is disabled and access to the hard disks of the physical
machine is limited to specific areas. The OurGrid software
distribution includes also a Debian-based virtual machineal-
ready configured to be used within SWAN.

Despite the greater level of security it provides, however,
SWAN is not used in ShareGrid for the following reasons.
Firstly, the use of SWAN results in a significant overhead,
since a virtual machine must be booted each time a task
starts its execution, and shut down when the above execution
terminates. This delay is particularly harmful for tasks char-
acterized by a relatively short duration, that cannot amortize
the high startup and shutdown costs typical of SWAN. Sec-
ondly, many ShareGrid machines do not provide hardware
support to virtualization, and running SWAN on them would
result in an excessive degradation of performance. Thirdly,
since Xen runs only on Linux-based systems, SWAN could
provide security only to a subset of ShareGrid resources,
while for the remaining ones (running alternative operating
systems, see Table 1 in Section 2.3) other security mecha-
nisms have to be adopted. Finally, the Debian-based virtual
machine distributed with OurGrid is really minimalist in its
software endowment, so most ShareGrid applications could
not run inside it unless that virtual machine is reconfigured
in order to equip it with a larger (virtual) storage device on
which to install the additional packages required by appli-
cations. Performing this reconfiguration without impacting
on the already configured SWAN service is, however, some-
what complicated.

It is worth to point out that, in spite of this relatively
simple approach to security, during the three-years periodof
ShareGrid operation we did not have any security incident.

This is not a surprise, given the nature of the ShareGrid user
community and the effectiveness of the user authentication
mechanisms described above.

2.2.5 Dealing with software dependencies

The heterogeneity of the hardware and software platforms
characterizing the resources of ShareGrid, as well as the
need of ensuring application agnosticism, naturally yields to
software dependency problems. As a matter of fact, a given
application may require a specific hardware or software plat-
form, or the availability of specific software components or
libraries. Installing these packages a priori is clearly impos-
sible, while doing so on-demand is unfeasible, as OurGrid
lacks appropriate mechanisms, and using statically-compiled
executables is not always possible (for instance, for legacy
applications whose source code is unavailable). As a con-
sequence, when choosing a specific resource to run a given
task, the scheduling substrate (provided by OurGrid) must
ensure that the task dependencies are satisfied by the re-
source chosen for its execution.

We addressed this problem by exploiting the matchmak-
ing mechanism provided by OurGrid as follows. The fea-
tures of resources (including their hardware/software char-
acteristics and the presence of specific software libraries) are
expressed as textual attributes, while task requirements are
specified as boolean expression involving these attributes.
Therefore, the scheduling policy used by OurGrid, that sends
a given task only to those resources satisfying all its re-
quirements, ensures that the peer dispatches tasks only on
resources providing all the additional software components
they require.

2.3 ShareGrid Resources

In this section we provide an overview of the characteris-
tics of the physical resources that are currently included in
ShareGrid. At the moment of this writing, ShareGrid sites
provide more than 250 machines, whose features are re-
ported in Table 1, hosting 314 distinct User Agents able to
fully exploit multi-core processors (when available).

As reported in Table 1, ShareGrid resources are provided
by 8 independent institutions distributed in 13 different sites:
the CSP research center, theTOP-IX non-profit organiza-
tion, the Department of Computer and Information Science
at University of Genova (UniGE – DISI), the Department
of Computer Science at University of Piemonte Orientale
(UniPMN – CS), theRe.Te.telecommunications network di-
vision at University of Turin (UniTO – Re.Te.), the Depart-
ment of Computer Science at University of Turin (UniTO
– CS, 5 laboratories), the Department of Drug Science and
Technology at University of Turin (UniTO – DSTF, 2 labo-
ratories), and the Department of Economics and Finance at
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Site # Machines # Cores # User Agents CPU Type Clock Memory Disk OS
(GHz) (MB) (GB)

CSP 5 5 5 Intel Pentium 4 1.60 768 20 Linux 2.6.8
4 4 4 Intel Pentium 4 1.60 512 20 Linux 2.6.8

TOP-IX 3 12 12 Intel Xeon Quad-Core 2.00 4,096 130 Linux 2.6.26

UniGE – DISI 2 4 4 UltraSPARC IIIi 1.34 2,048 73 SunOS 5.10
24 48 48 Intel Core 2 Duo 2.66 1,024 4 Linux 2.6.24

UniPMN – CS 49 49 49 Intel Pentium 4 2.80 1,024 34 Linux 2.6.27

UniTO – Re.Te. 5 20 9 AMD Opteron Quad-Core 2.30 4,096 7 Linux 2.6.26

UniTO – CS (I) 1 2 1 Intel Xeon Dual-Core 2.33 4,096 250 Linux 2.6.18
1 2 1 Intel Core 2 Duo 2.00 2,048 100 Linux 2.6.27

UniTO – CS (II) 34 34 34 Intel Pentium 4 2.53 2,048 30 SunOS 5.10

UniTO – CS (III) 12 12 12 Intel Pentium D 2.80 2,048 50 Windows XP

UniTO – CS (IV) 60 60 60 Intel Pentium 4 2.40 2,048 35 Windows XP

UniTO – CS (V) 23 23 23 AMD Athlon XP 2.10 1,024 75 Windows XP
7 7 7 Intel Pentium 4 3.00 1,024 35 Windows XP

UniTO – DSTF (I) 1 1 1 AMD Athlon XP 2.60 512 10 Linux 2.6.18
1 1 1 AMD Athlon XP 2.60 256 10 Linux 2.6.18
2 2 2 Intel Pentium 4 2.80 512 10 Linux 2.6.18
2 2 2 Intel Pentium 4 2.80 256 10 Linux 2.6.18
1 2 1 Intel Pentium D 3.20 2,048 300 Windows XP
2 4 4 AMD Athlon 64 X2 2.50 1,024 70 Linux 2.6.18
2 2 2 AMD Athlon 64 3.20 512 15 Linux 2.6.18

UniTO – DSTF (II) 10 10 10 Intel Pentium 4 2.80 256 10 Linux 2.6.18
4 8 8 Intel Pentium Dual 2.00 2,048 70 Linux 2.6.18
2 4 4 Intel Pentium D 3.00 1,024 120 Linux 2.6.18

UniTO – ECO 1 8 8 Intel Xeon Quad-Core 1.86 4,096 300 Linux 2.6.27
1 4 2 Intel Core 2 Quad-Core 2.40 4,096 300 Linux 2.6.27

Table 1: ShareGrid resources. The TOP-IX and (partially) the UniTO – DSTF machines exploit multi-core processors by
running several User Agent processes, while in the UniGE – DISI, UniTO – Re.Te. and UniTO – ECO cases virtual machines
(based either on VMware [28] or Solaris Containers [29]) areused for this purpose.

University of Turin (UniTO – ECO). Most of these sites are
interconnected by theGARR-Gnetwork, a 100 Mbps net-
work provided by theItalian Academic & Research Net-
work (GARR) [30], enabling low latency communications;
furthermore, for some of these sites, the capacity of the net-
work will be soon increased by means of the next generation
version of GARR-G (namedGARR-X), that will provide ca-
pacities ranging from 2.5 Gbps (in the preliminary phase) to
10 Gbps.

For each site, Table 1 reports the number of physical ma-
chines, the total number of cores (the sum of the number of
cores provided by individual machines), the total number of
User Agents (that determines the total number of ShareGrid
tasks that can be simultaneously executed by that site), the

processor families and frequencies (in GHz) of those ma-
chines, the RAM size (in MB) of each machine, the size of
their disks (in GB), and the operating systems installed on
them.

Most of the ShareGrid sites follow the rule-of-thumb
discussed in Section 2.2.3; however, it is important to note
that, being a practical rule and not a policy to which every
site must adhere, each site is free to use the User Agent de-
ployment strategy that better fits its needs. This is essentially
due to either the nature of the applications submitted by the
users of that site (e.g., compute-intensive applications), or
the presence on a same machine of different ShareGrid com-
ponents (e.g., the Peer Agent and the User Agent). For in-
stance, theUniTO – Re.Te.site runs 2 User Agents per ma-
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chine (instead of 4, like the rule-of-thumb would suggest)
on all machines except for one which is used for executing
the Peer Agent and one User Agent.

As highlighted by this table, in ShareGrid there is a high
degree of machine heterogeneity; indeed, these machines are
equipped with different families of Intel, AMD and SPARC
processors (e.g., from Intel Pentium 2 to Intel Xeon Quad-
Core), offer a diverse range of primary and secondary stor-
age size (e.g., from 256 MB to 4 GB of RAM and from 4
GB to 300 GB of disk), and run various operating systems
(including Linux, Windows and SunOS). These machines,
as prescribed by the Volunteer Computing paradigm, can be
used by ShareGrid only when they are not used by the re-
spective owners, so their actual number may strongly fluctu-
ate over time; in Section 4.1 we will give more insight about
resource availability in ShareGrid.

3 ShareGrid Applications

As already anticipated in the Introduction, ShareGrid sup-
ports only Bag-of-Tasks applications. At the moment of this
writing, the following applications have been ported to Share-
Grid, and are actively used by the corresponding users:

– Distributed scene rendering. Scene rendering is a typi-
cal compute-intensive activity, where a set of scenes of
a given movie must be rendered via software in order to
add in static and dynamic features (like bitmap or proce-
dural textures, lights, bump mapping, etc.), and to stitch
them together for making the final animation. Bag-of-
Tasks implementations ofBlender[31] andPOV-Ray[32],
in which bags correspond to scenes, and tasks of a bag
to different frames of the same scene, are used on Share-
Grid by professionals working in the computer graphics
and animation fields.

– Agent-based simulation of economic systems. Parei [33,
34] is an agent-based simulation system, modeling over
500,000 production units composing the economy of the
Piemonte region in Northwestern Italy, used to under-
stand and estimate economic dynamics and for the eval-
uation of economic effects of proposed public policies.
A Bag-of-Tasks implementation of Parei is used to per-
form parameter sweeping experiments, in which each
combination of scenarios and model parameters corre-
sponds to an independent task.

– Simulation of molecular systems. Various research ac-
tivities in Drug Science, such asvirtual screeningand
the reliable estimation of the free energy of binding be-
tween a ligand and its target, require to perform large set
of simulation of the dynamic behavior of molecular sys-
tems. ShareGrid is currently being used to perform such
studies [35] by means of a Bag-of-Tasks implementation

of molecular simulation, where each simulation corre-
sponds to a distinct task.

– Simulation of scheduling algorithms for distributed sys-
tems. Discrete-event simulation is often used in Com-
puter Science to study the behavior of a scheduling al-
gorithm for different scenarios, or the comparison of dif-
ferent algorithms for the same set of scenarios. These
studies can be naturally performed by simultaneously
executing many independent simulations in parallel. A
Bag-of-Tasks discrete-event simulation engine is being
used to perform parameter sweep studies of scheduling
algorithms for Desktop Grids [36].

– Evaluation of Classifier Systems. Classification is the task
of recognizing an object or event as an instance of a
given class and represents one of the problems most fre-
quently found in computer applications. For instance,
medical and fault diagnosis, prognosis, image recogni-
tion, text categorization, adaptive user profiling are well
known instances of classification tasks. The evaluation
of algorithms able to perform classification is an impor-
tant step for the selection of the best alternative for a
given application domain, and can be naturally imple-
mented as a Bag-of-Tasks application in which each task
corresponds to a different setting of the algorithm pa-
rameters. ShareGrid is used to perform parameter sweep
studies concerning the performance ofSupport Vector
Machine(SVM) [37] classifiers when classifying distinct
users of a computer system.

– Evaluation and suppression of noise caused by flows over
a cavity. The evaluation and suppression of noise caused
by flows over a cavity is an important problem in aero-
nautical research. A novel method (developed by people
of the Politecnico di Torino), which allows the predic-
tion of the emitted noise based on 2-dimensional veloc-
ity field data, experimentally obtained byParticle Image
Velocimetry(PIV), has been implemented as a Bag-of-
Tasks application running on ShareGrid. In this applica-
tion, distinct tasks correspond to the different parameter
settings required to calculate the hydrodynamic pressure
from the PIV velocity data (one for each point of a time
series representing velocity fields).

– Automatic annotation of 3D multi-modal Magnetic Res-
onance images. Automatic image annotation (also known
asautomatic image tagging) is the process by which a
computer system automatically assigns metadata, usu-
ally in the form of captioning or keywords, to a digi-
tal image, in order to make possible its semantic (i.e.,
content-based) retrieval. A novel method [38], based on
the integration of supervised and unsupervised learning
techniques, has been implemented as a parameter sweep
application and is being run on ShareGrid.
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4 Performance Evaluation

In this section we present an experimental evaluation of the
performance attained by ShareGrid when running some of
the applications described in Section 3. In particular, we
focused on distributed scene rendering (DSR), agent-based
simulation of economic systems (SES) , and discrete-event
simulation of scheduling algorithms (SSA). All the experi-
ments were performed in the period elapsing from June 15th

to October 10th, 2009. In each experiment, we executed a
specificapplication jobconsisting in a bag-of-tasks char-
acterized by the samegranularity (i.e., the amount of to-
tal work assigned to each task). For each experiment, we
measured theaverage job completion time(i.e., the average
time taken to complete all the tasks in a job) and theaver-
age task completion time(i.e., the average time taken by a
task to complete its work), and we compared it against the
performance obtained by running a single application task
(performing all the work) on a dedicated machine equipped
with an Intel Xeon Quad-Core X3220 CPU and with 4 GB
of RAM (henceforth referred to as thereference machine).
In order to take into account fluctuations in the performance
delivered by working machines, and in their availability, each
experiment was repeated for 5 times, and average values of
the performance indices of interest were computed by using
the values collected during the individual runs.

Furthermore, in order to gain a better insight into the per-
formance results we collected, we computed – for each ap-
plication and experimental scenario – the number ofequiv-
alent reference machines(ERM) [39] provided by Share-
Grid to that application, which is defined as the number
of dedicated reference machines corresponding to the set
of distinct machines actually used for the execution. The
ERM, that depends on the number of machines satisfying
the requirements of the tasks that are available at submission
time, and on the relative performance delivered by these ma-
chines, gives a quantitative measure of the average perfor-
mance gain that can be achieved by ShareGrid in the time
frame in which the experiments were performed. The value
ERM(A) for the applicationA is defined as:

ERM(A) = ρ(A)×π(A) (1)

whereρ(A) denotes theaverage relative performancedeliv-
ered by ShareGrid to each task of applicationA, andπ(A)
denotes theaverage parallelismachieved by that application
(i.e., the average number of tasks ofA that were executed in
parallel). The quantityρ(A) is in turn defined as:

ρ(A) = ∑
Si∈Sites

wi ·RelPerf(A,Si) (2)

wherewi denotes the normalized fraction of machines used
to execute the tasks ofA that were provided by siteSi , while
RelPerf(A,Si) denotes therelative performanceattained by

these machines when runningA. In this paper we computed
RelPerf(A,Si) as the ratio of the execution time attained by
the sequential version ofA when running on the reference
machine over the time obtained by running it on machines
of siteSi

2.
For what regards the scheduling parameters described in

Section 2.1, we used, in all the experiments, 2 replicas per
task (i.e., we setR= 2), while, upon failure, each task was
resubmitted for at most 3 times (i.e., we setRS= 3); the
rationale for these choices is that using more than 2 replicas
per task brings marginal performance benefits at a price of a
much higher replication overhead [40], whileRS= 3 is the
default setting of OurGrid that we decided not to change.

Generally speaking, for a fixed amount of work that is to
be carried out, the performance of a job depends on the ratio
of the time taken to execute each task and the time required
to stage-in and stage-out its input and output data. More pre-
cisely, each task must perform enough computation in order
to amortize the time taken to transfer its input and output
data. The execution time of a task depends in turn on the
amount of total work assigned to that task (i.e., its granular-
ity) and the speed of the machine on which it is executed.

Choosing the right granularity on ShareGrid is nontriv-
ial for several reasons. First, determining the execution time
of a given task requires the knowledge of the performance
that the resource chosen for its execution will deliver when
the task will be running; obtaining this information is com-
plicated by the heterogeneity of machines, and by the fluctu-
ations in performance that may arise when several tasks are
running on the same physical machine. Second, determining
stage-in and stage-out times can be challenging as well, as
it depends on the specific network conditions at the moment
of the transfer, and on the specifictransfer modechosen by
the user to transfer data to and from the application. More
precisely, OurGrid provides two distinct file transfer modes
that the user can choose for his/her application, namely:

– the PUT mode, in which all the input files required by
each task are transferred to the corresponding comput-
ing machine before the task starts, and removed once the
computation is done. This mode saves disk space on the
working machine, but requires the retransmission of the
same input files in case they are required by another task
allocated on it;

– theSTOREmode, whereby input files are removed from
working machines only when a prescribed maximum size
(possibly infinite) is reached, so it is highly probable that
it is not necessary to transfer them again in case they are
required by another task. This, of course, comes at the
price of a higher disk space occupancy on working ma-
chines.

2 Possible fluctuations of these values were taken into account by
computing the average of the execution time values collected during 5
independent runs.
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In order to assess the performance delivered by Share-
Grid under different application settings, we performed, for
each application, a set of experiments in which we varied the
granularity of the constituent tasks, and the transfer mode
chosen to stage-in and stage-out data. The granularity of the
tasks composing the application was set by keeping fixed
the total amount of work that had to be accomplished, and
by choosing a suitable number of elementary units of work
(work units) assigned to each task.

The rest of this section is structured as follows. In Sec-
tion 4.1 we firstly characterize the availability of ShareGrid
resources, using information collected during the experimen-
tal period, in order to better understand the performance
results we observed. Next, in the following three subsec-
tions we describe the performance results observed for dis-
tributed scene rendering (Section 4.2), agent-based simula-
tion of economic systems (Section 4.3), and discrete-event
simulation of scheduling algorithms (Section 4.4), respec-
tively.

4.1 Resource Availability

As mentioned in Section 2.3, a ShareGrid resource corre-
sponds to a distinct User Agent. A resource is said to be
connectedif the corresponding peer has joined the Share-
Grid infrastructure, while it is said to bedisconnectedin the
opposite case. A connected resource is said to beavailable
if both the User Agent and its hosting machine are up and
its owner is not using it. Conversely, a connected resource
is said to beunavailableif either the User Agent or the cor-
responding machine is down, or if its owner has reclaimed
it. An available resource that is currently executing a task
is said to bebusy, while it is said to beidle if it is not exe-
cuting any application task. Note that a computing machine
can have some of its hosted User Agents busy and other ones
idle or even unavailable.

In order to study the availability of ShareGrid resources
during the experimental period, we collected the status of
each one of them with a sampling time of 30 minutes. The
values of the resulting aggregated statistics are plotted in
Fig. 3, where each point represents the average of all the
observations collected in a given day, and the associated
error-bar shows the 95% confidence interval. More specifi-
cally, every circle-shaped point denotes the average number
of available resources, each square-shaped point indicates
the average number of busy resources, and the dashed line
represents the average number of idle resources, on a single
day of the experimental period.

Fig. 3 shows that, for about the three-fourths of the ex-
perimental period (from the beginning to the mid of July,
and from the end of August to the end of October), there
were on average more than 150 available resources per day,
corresponding to more than 59% of the average total number

of ShareGrid resources (both connected and disconnected),
and more than 72% of the average number of connected re-
sources. Out of these 150 resources, more than 100 were
idle per day, on average. Conversely, between the middle of
July and the end of August (approximately, one-fourth of the
experimental period) the number of available resources con-
siderably decreased. This period of low availability (marked
with two dot-dashed vertical lines) was probably due to the
summer vacation period, during which the machines belong-
ing to laboratories used for student activities were taken off-
line in order to save energy. Finally, the unavailability ofany
resource on July 18th and 19th was due to a scheduled main-
tenance, that required to take down all the infrastructure.

In order to gain a better insight about resource availabil-
ity, we computed the (empirical) probability distributionof
the numberX of available resources (that is considered a
random variable). More precisely, we computed theCom-
plementary Cumulative Distribution Function CCDFX(x) =

P{X ≥ x} (plotted in Fig. 4a), that gives the probability that
at least xmachines are available, and some sample statis-
tics of X (that are reported in Fig. 4b). From Fig. 4a we
can observe that the maximum number of resources that are
available with a probability close to 1 is 32 (the probability
of such event is 0.983), and that the CCDF values quickly
decrease for larger values ofx. For instance, the probability
of finding at least 150 available resources is 0.52, and be-
comes 0.18 if at least 180 resources are requested. The av-
erage number of available resources (see Fig. 4b) during the
experimental period was 128.44, which corresponds to 62%
of the average number of connected resources (207.16), and
50.2% of the maximum number of connected resources (256).
It is worth to point out that these average numbers should be
taken with caution, given the relatively high values of the
coefficient of variation (the row labeled asCoV).

The results discussed above, although representative of
the operational conditions under which we performed our
experiments, cannot be considered typical of the ShareGrid
infrastructure, as they incorporate also both the vacationand
maintenance periods, that are exceptional events occurring
only once in a while. Therefore, in order to obtain a char-
acterization of the “typical” availability of ShareGrid re-
sources, we censored the observations collected from the
middle of July to the end of August, and we computed the
CCDF and the sample statistics using only the remaining
data (that are reported in Fig. 5a and Fig. 5b). As shown in
Fig. 5a, when both the vacation and maintenance periods are
not considered, the maximum number of resources that are
available with probability close to 1 is 120 (while this num-
ber was 32 in the uncensored case). Furthermore, for values
of x larger than 120, the CCDF values decreases in a way
smoother than in the uncensored case (Fig. 4a), at least until
the value ofx = 170. For instance, the probability of find-
ing at least 150 available resources is 0.85, while the one of
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Fig. 3: ShareGrid daily availability and usage pattern. Each point is the average of daily observations (taken every half-hour)
with the associated 95% confidence interval. The dot-dashedlines mark the begin and the end of the low-availability period.

finding at least 180 resources is 0.29. The average number of
available resources (see Fig. 5b) now becomes 167.92, cor-
responding to 70.3% of the average number of connected
resources (238.69), and to 65.6% of the maximum number
of connected resources (256). The low coefficient of vari-
ation indicates that these two values might better represent
the typical ShareGrid availability.

Finally, for what regards usage patterns, the results in
column# Busy Resourcesof both Fig. 4b and Fig. 5b show
that daily utilization was rather low. More specifically, the
average number of busy resources is approximately 15% of
the average number of available ones in both cases.

4.2 Distributed Scene Rendering (DSR)

The experiments involving the DSR application were per-
formed by means of the Blender [31] open-source 3D con-
tent creation suite (version 2.49a). In all these experiments,
the work to be carried out by the application (the render-
ing of an animated scene) was split into 200 work units,

each one corresponding to an independent scene frame. The
size of the input data for each task was independent from
its granularity, and amounted to about 50 MB, including
both the scene file and the Blender executable (together with
a collection of third-party libraries and tools required by
Blender). We performed experiments with task granularities
of 100, 40, 20, 10, 5, 2, and 1 frames/task, corresponding
to jobs composed of 2, 5, 10, 20, 40, 100, and 200 tasks,
respectively. Furthermore, for each task granularity we per-
formed experiments with both theSTOREand thePUT trans-
fer mode, for an overall number of 14 experiments (each one
consisting of 5 sequential runs). In all the experiments we
restricted tasks to use only Linux-based machines equipped
with at least 1,024 MB of RAM, since we used the Linux
version of Blender, and this application is memory-intensive.

Fig. 6 and Fig. 7 show the results of the experiments
for thePUT and theSTOREtransfer mode, respectively; for
the sake of comparison, we also report the results of the ex-
periments performed on the reference machine (denoted by
labelR in the figures). For each scenario, we report the av-
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(a) Complementary cumulative distribution function (log scale).

Statistics # Connected # Available # Busy # Idle
Resources Resources Resources Resources

Mean 207.16 128.44 20.08 108.40
S.D. 57.80 55.26 18.56 48.75
CoV 0.28 0.43 0.92 0.45
Median 236.25 154.66 14.53 125.00
IQR 92.99 88.67 31.74 82.47
Max 256.00 200.23 80.23 186.20
Min 0.00 0.00 0.00 0.00

(b) Sample statistics.

Fig. 4: ShareGrid availability during the overall experimental period.
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Statistics # Connected # Available # Busy # Idle
Resources Resources Resources Resources

Mean 238.69 167.92 25.52 142.40
S.D. 11.61 16.94 20.25 19.91
CoV 0.05 0.10 0.79 0.14
Median 239.33 168.50 29.44 143.40
IQR 10.67 19.88 34.60 27.10
Max 256.00 200.23 80.23 186.23
Min 190.83 120.35 0.00 91.13

(b) Sample statistics.

Fig. 5: ShareGrid availability without the maintenance/vacation periods.

erage job completion time and average task completion time
for increasing values of the job size (expressed as the num-
ber of tasks composing each job), along with their associated
upper 95% confidence interval (shown as half error-bars).

Let us consider the results measured for thePUT transfer
mode first, shown in Fig. 6, that clearly indicate that scene
rendering with ShareGrid always outperforms the one done
on the reference machine. Fig. 6a shows indeed that the av-

erage job completion time decreases as the job size increases
up to 10 and 20 tasks/job; for these sizes, we observe a 4-
fold reduction of the job completion time with respect to the
sequential execution on the reference machine. For values of
job size larger than 20 tasks/job, however, we observe that
the average job completion time monotonically increases.

This phenomenon can be explained by looking at the re-
sults depicted in Fig. 6b, reporting the average task comple-
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Fig. 6: DSR (PUT transfer mode) – label “R” represents the reference machineexperiment.

tion time, broken down into stage-in, execution, and stage-
out time. As a matter of fact, as can be seen from Fig. 6b, the
higher the number of tasks/job (i.e., the smaller the amount
of work assigned to each task), the higher the amount of
stage-in time, that grows from 0.6% with 2 tasks/job to 84.1%
with 200 tasks/job. This is due to the combination of the two
following phenomena:

– the size of the input data (~50 MB) is independent of
the task granularity, so very short tasks are not able to
amortize the long stage-in times;

– the larger the number of tasks that are started concur-
rently, the larger the number of stage-in operations that
must be performed at the same time. All these opera-
tions, however, compete for the outbound network band-
width of the machine running the submitting peer (that,
in our experiments, was the one associated with the Share-
Grid Portal). Therefore, the network bandwidth avail-
able to each stage-in operation amounts to 1/n, where
n is the number of stage-in operation performed simul-
taneously.

Therefore, while the relative increase of stage-in time with
respect to execution time is due to the first phenomenon, its
absolute increase is due to the second one. The effects of
the stage-out time are instead less evident (its value never
exceeded 1% of the completion time) since (a) the amount
of output data, for each task, is directly proportional to the
task granularity (i.e., the finer the granularity, the smaller
the amount of data that have to be staged-out for each task),
and (b) each working machine sends the output data of its
running tasks separately from the other ones, thus avoiding
the bottleneck affecting the stage-in operations.

One might wonder whether a 4-fold reduction of the ex-
ecution time can be considered a good result, provided that
ShareGrid offered – in the experimental period – about 130
resources, on average. To answer this questions, let us con-

sider the ERM values (see Eq. (1)) delivered by ShareGrid
for the various scenarios considered in our experiments.

The valuesRelPerf(DSR) of the relative performance
delivered by the machines of the various sites for the DSR
application are listed in Table 2. The fractionswi of ma-

Site RelPerf(DSR)

TOP-IX 0.83
UniGE – DISI 0.16
UniTO – Re.Te. 0.78
UniTO – CS (I) 0.75
UniTO – ECO 0.98

Table 2: DSR – relative performance of involved machines
(grouped by site).

chines provided by each site for the execution of DSR tasks
are instead reported in Table 3a, while the resulting values
of ρ , as well as the values ofπ and the final ERM values,
are reported in Table 3b.

As can be observed by Table 3b, the best average ERM
value (6.16) was obtained for a job size of 40 tasks/job,
meaning that in the best case ShareGrid provided to the ap-
plication, on average, the equivalent of about 6 reference
machines. Hence, the 4-fold reduction of the job execution
time that we observed as maximum performance gain at-
tained by the DSR application can be considered a good
achievement, especially if also the stage-in and stage-out
times are taken into account.

Let us discuss now the results concerning theSTORE
transfer mode, that are shown in Fig. 7. As for thePUT
transfer mode, we observe that ShareGrid enables the ap-
plication to achieve performance better than its sequential
version for all the granularity values, but in this case the per-



15

Job Size Site
(tasks/job) TOP-IX UniGE – DISI UniTO – Re.Te. UniTO – CS (I) UniTO – ECO

2 1.00 0.00 0.00 0.00 0.00
5 1.00 0.00 0.00 0.00 0.00

10 0.42 0.00 0.58 0.00 0.00
20 0.44 0.02 0.54 0.00 0.00
40 0.30 0.29 0.27 0.06 0.08

100 0.21 0.28 0.52 0.00 0.00
200 0.32 0.33 0.33 0.00 0.03

(a)wi values.

Job Size ρ π ERM
(tasks/job)

2 0.83 2.00 1.66
5 0.83 5.00 4.15

10 0.80 5.80 4.64
20 0.79 4.60 3.63
40 0.63 9.78 6.16

100 0.62 5.02 3.11
200 0.60 6.10 3.66

(b) ρ , π and ERM values.

Table 3: DSR (PUT transfer mode) –wi values and the equivalent reference machine (ERM) metric.
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Fig. 7: DSR (STOREtransfer mode) – label “R” represents the reference machineexperiment.

formance gains are even larger, as can be seen from Fig. 7
that shows – for job sizes larger than 20 tasks/jobs – an 8-
fold performance gain with respect to the reference machine.
Furthermore, unlike thePUT case, the average job comple-
tion time remains practically constant for job sizes larger
than 20. The reason for this behavior lies in the weaker in-
fluence of the stage-in time on the completion time. This
can be observed from Fig. 7b, where the stacked-bar for the
stage-in time seems to have disappeared; in fact, its influ-
ence accounts, on average, only for 0.07% with 2 tasks/job,
and increases to just 3.8% with 200 tasks/job. This depends
on the fact that, although the number of tasks started concur-
rently does not change with respect to thePUT mode, the
number of concurrent stage-in operations is much smaller,
since input data have to be transferred on a given resource
only the first time a task is scheduled. Furthermore, as for
thePUT transfer mode case, the stage-out time has a negli-
gible impact on the completion time (it never exceeded 1%).

In order to assess whether the 8-fold performance gain
observed for DSR when using theSTOREtransfer mode, let
us consider again the ERM values measured for this case,

reported in Table 4b, that have been computed by using the
wi values listed in Table 4a.

As can be observed from Table 4b, the maximum ERM
value we observed (corresponding to the job size of 200
tasks/job) was 6.94, meaning that on average ShareGrid pro-
vided to DSR the equivalent of about 7 dedicated reference
machines. Therefore, an 8-fold performance gain can be con-
sidered a very good achievement.

As a final note, we report that the we observed a rela-
tively low number of failures for both transfer modes. More
specifically, we observed a number of failures ranging from
0.4 to 8.4 failures per run (for thePUT transfer mode), and
from 0.4 to 1.6 (for theSTOREtransfer mode).

4.3 Simulation of Economic Systems (SES)

The second application we considered for our performance
evaluation study was thePareiapplication that, as discussed
in Section 3, simulates the behavior of economic systems by
using an agent-based model.
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Job Size Site
(tasks/job) TOP-IX UniGE – DISI UniTO – Re.Te. UniTO – CS (I) UniTO – ECO

2 1.00 0.00 0.00 0.00 0.00
5 0.84 0.00 0.00 0.00 0.16

10 0.52 0.00 0.28 0.06 0.14
20 0.33 0.00 0.45 0.07 0.15
40 0.35 0.00 0.46 0.08 0.12

100 0.29 0.00 0.45 0.09 0.17
200 0.26 0.00 0.46 0.09 0.18

(a)wi values.

Job Size ρ π ERM
(tasks/job)

2 0.83 2.00 1.66
5 0.85 3.90 3.32

10 0.83 4.70 3.90
20 0.82 6.53 5.35
40 0.82 6.20 5.08

100 0.83 5.90 4.90
200 0.83 8.36 6.94

(b) ρ , π and ERM values.

Table 4: DSR (STOREtransfer mode) –wi values and the equivalent reference machine (ERM) metric.

Each execution of Parei takes as input a tuple of param-
eters describing the initial conditions of the systems under
analysis. In all the experiments the total amount of work to
be performed consisted of 1,000 distinct tuples (represent-
ing the work units), that were split among a set of identical
tasks, each one receiving the same amount of work units.
We performed experiments with granularities of 100, 20,
10, 2, and 1 tuples/task, corresponding to jobs composed of
10, 50, 100, 500, and 1,000 tasks, respectively. For the sake
of brevity, in this paper we report only the results obtained
for theSTOREtransfer mode. The results corresponding to
thePUT transfer mode, however, do not differ significantly,
since the negligible size of the input and output data (less
that 5 MB) implies that there is very little differences with
respect to theSTOREmode. Again, all our experiments were
executed on Linux-based machines, as dictated by the re-
quirements of the Parei application.

The results of these experiments are reported in Fig. 8,
where we show both the average job completion time and the
average task completion time. As for the distributed scene
rendering case (see Section 4.2), we observe that the Bag-
of-Tasks version of Parei always outperforms its sequen-
tial version, regardless of the task granularity, and in the
best case the performance gain is about 4-fold. Furthermore,
we observe again that the average job completion time de-
creases for increasing numbers of tasks/job until the opti-
mal value of 100 tasks/job is reached, and then it monotoni-
cally increases for larger tasks/job values. Also in this case,
this phenomenon is due to the impact of the stage-in and
stage-out time on the task execution time which, as shown
in Fig. 8b (where a logarithmic scale is used for the re-
sults in order to enhance readability), is always rather large,
and grows from about 42% with 10 tasks/job to about 85%
with 1,000 tasks/job. This rather steep increase is due, as al-
ready discussed for the distributed rendering case (see Sec-
tion 4.2), to the bottleneck arising when multiple stage-in
operations are performed simultaneously.

The ERM values (see Eq. (1)) measured for the SES ap-
plications, reported in Table 6b, corresponding to theRelPerf

andwi values listed in Table 5 and Table 6a, respectively, in-
dicate that the maximum ERM values is 6.67, meaning that
on average ShareGrid provides to this application the equiv-
alent of about 6.5 reference machines. Therefore, a 4-fold
performance gain can still be considered a good achieve-
ment, although less satisfactory than those observed for the
DSR application.

Site RelPerf(SES)

TOP-IX 0.86
UniGE – DISI 0.85
UniTO – Re.Te. 0.51
UniTO – CS (I) 0.88
UniTO – ECO 0.77 (±0.07)

Table 5: SES – relative performance of involved machines.

As a final note, we observe that for the SES we observed
a relatively low number of failed tasks. More specifically, we
experienced failures only for job sizes of 1,000 tasks, where
on average we had 0.20±0.45 failures for each run, with a
maximum of 1 failure.

4.4 Simulation of Scheduling Algorithms (SSA)

The last set of results we report in this paper are concerned
with the discrete-event simulation of scheduling algorithms
for distributed systems. In order to study the behavior of
these algorithms, different system scenarios need to be sim-
ulated. The input for each simulation is a set of parameters
describing a specific scenario, and the simulation of each
scenario is totally independent from the other ones.

In all the experiments the total amount of work to be
performed consisted in the simulation of 100 scenarios (rep-
resenting the work units), that were split among a set of
identical tasks, each one receiving the same amount of work
units. We performed experiments for granularities of 20, 10,
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Fig. 8: SES (STOREtransfer mode) – label “R” represents the reference machineexperiment.

Job Size Site
(tasks/job) TOP-IX UniGE – DISI UniTO – Re.Te. UniTO – CS (I) UniTO – ECO

10 0.60 0.04 0.18 0.00 0.18
50 0.43 0.00 0.35 0.00 0.22

100 0.52 0.00 0.30 0.00 0.17
500 0.39 0.26 0.23 0.00 0.12

1,000 0.23 0.42 0.25 0.01 0.09

(a)wi values.

Job Size ρ π ERM
(tasks/job)

10 0.78 2.87 2.24
50 0.72 2.70 1.94

100 0.74 3.41 2.52
500 0.77 2.21 1.70

1,000 0.76 8.78 6.67

(b) ρ , π and ERM values.

Table 6: SES (STOREtransfer mode) –wi values and the equivalent reference machine (ERM) metric.

4, 2, and 1 scenarios/task, corresponding to jobs consist-
ing of 5, 10, 25, 50, and 100 tasks, respectively. The stage-
in and stage-out requirements for this applications are re-
ally minimal, as the total amount of data that needs to be
transferred does not exceed 2 MB. As in the SES case (see
Section 4.3), we report only the results obtained with the
STOREtransfer mode only, since those corresponding to the
PUT transfer mode do not differ significantly. All the ex-
periments were performed on Linux-based resources, since
the discrete-event simulator was available for this platform
only.

The results of the experiments are reported in Fig. 9,
where again we note the significantly better performance
provided by the Bag-of-Tasks version of the simulator with
respect to the sequential one, that in the best case results
in a 6-fold increase. Unlike the majority of the experiments
discussed in previous subsections, however, in this case we
do not observe the “bathtub”-like shape of the average job
completion time. Conversely, we see that the average job
completion time linearly decreases for increasing number of
tasks per job (i.e., for lower granularity values). This is due
to the fact that the time to complete the job is dominated by
the job execution time, since the stage-in and stage-out times

are negligible (in all our experiments it never exceeded 1%
of the total execution time), as can be seen in Fig. 9b, where
the corresponding areas of each vertical bar are not even vis-
ible. This is due to the small size of input and output files,
resulting in negligible transfer times even in the presenceof
contention for the network capacity of the submitting peer.

The ERM values (see Eq. (1)) observed for the SSA ap-
plication, reported in Table 8b, corresponding to the values
of wi and RelPerf reported in Table 8a and Table 7, indi-
cate that in the best case ShareGrid provides, on average,
the equivalent of about 24 reference machines.

Site RelPerf(SSA)

TOP-IX 0.80
UniTO – CS (I) 0.96
UniTO – DSTF (I) 0.58
UniTO – DSTF (II) 0.70
UniTO – ECO 0.76

Table 7: SSA – relative performance of involved machines.
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Fig. 9: SSA (STOREtransfer mode) – label “R” represents the reference machineexperiment.

Therefore, the 6-fold performance gain cannot be con-
sidered, per se, a good achievement if only the ERM val-
ues are considered, since this quantity does not take into
account the number of failures experienced by the running
tasks, that can greatly reduce performance. As a matter of
fact, if failures occur relatively often, the ability of provid-
ing a relatively high ERM is thwarted by the fact that most of
the tasks executed simultaneously do not complete their ex-
ecution and must be therefore resubmitted. This is precisely
what happened for the SSA application, that experienced a
number of failures ranging from 4% (for jobs of size 5) to
70% (for jobs of size 10) of the job size. As a result, the per-
formance gain attained by ShareGrid was significantly lower
than the ERM values that were observed.

5 Related Work

The work described in this paper has its roots in the areas
of Desktop Grids and of Grid Portals. In this section we re-
view the previous works carried out in these areas, and we
compare them with our work.

5.1 Desktop Grid Middleware Platforms

The Desktop Grid paradigm has been received an increasing
attention in the past few years. Most of the previous work in
this field has focused on the design and development of suit-
able middleware platforms able to support the deployment,
use, and management of Desktop Grid infrastructures.

A large part of research efforts have focused on Volun-
teer Computing systems, and have lead to the development
of various middleware platforms supporting this paradigms,
such asBOINC[41] and its variants [42], andXtremWeb[43].
Compared to OurGrid (and, hence, to ShareGrid), these sys-
tems present a centralized architecture in which all the re-

source donors are coordinated by a single master server.
Furthermore, they are based on an operational model (of-
ten referred to aspull model) in which a user that needs to
execute an application has to register it into anapplication
repository, has to submit work units to the system, and then
the other contributing clients have to download these unitsto
process them. Therefore, these platforms are not application
agnostic (as we required in Section 2), since the submitting
user has to set-up the system in an application-specific way
prior to the submission. Conversely, OurGrid supports the
operational model adopted in batch scheduling systems (of-
ten referred to aspushmodel), where a user simply submits
a batch of tasks, that are subsequently spread over the var-
ious resources belonging to the system, without having to
perform any set-up operation before the submission.

A similar operational model is provided by Desktop Grids
created with theCondorsystem [44,45], a High-Throughput
Computing system that can be used both to manage work-
load on a dedicated clusters and to farm out work to idle
desktop computers. In Condor Desktop Grids, jobs are sub-
mitted into resource pools that can be either directly man-
aged by Condor or, by means of theCondor-G [46] sys-
tem, controlled by others systems. The scalability of Con-
dor Desktop Grids is limited by the centralized manage-
ment, in that jobs and resources are under control of a sin-
gle server. Furthermore, resources are generally provided
by a single institution. For these reasons, Condor Desktop
Grids are commonly referred to as centralized institutional
Desktop Grids [6]. In contrast, OurGrid allows the creation
of, distributed, multi-institutional Desktop Grids (as Share-
Grid), in that there is no central server and resources are
usually provided by different institutions.

Significant research efforts have also been focused on
the interoperability between service and opportunistic Grids
in order to bring each other the best of both worlds. This
kind of interoperation has been pioneered by theLattice
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Job Size Site
(tasks/job) TOP-IX UniGE – DISI UniTO – Re.Te. UniTO – CS (I) UniTO – ECO

5 1.00 0.00 0.00 0.00 0.00
10 0.90 0.02 0.02 0.02 0.04
25 0.70 0.04 0.02 0.15 0.10
50 0.52 0.05 0.01 0.17 0.26

100 0.70 0.02 0.00 0.00 0.27

(a)wi values.

Job Size ρ π ERM
(tasks/job)

5 0.80 5.00 4.00
10 0.80 7.00 5.60
25 0.79 19.80 15.64
50 0.78 31.00 24.18

100 0.79 19.60 15.48

(b) ρ , π and ERM values.

Table 8: SSA (STOREtransfer mode) –wi values and the equivalent reference machine (ERM) metric.

project [47] at University of Maryland and by theSZTAKI
Desktop Grid[42]. However, both of them offer interoper-
ability between a limited set of middlewares; furthermore,
the proposed approach (namely, thesuperworker approach)
has several drawbacks, primarily due to the centralized na-
ture of its architecture. TheEDGeSproject [48] focuses on
the design and development of a middleware-agnostic frame-
work that is able to provide interoperability between po-
tentially any kind of Grid middleware (at the moment, be-
tweenEGEE[49], BOINC and XtremWeb). This is achieved
by means of theGeneric Grid to Grid(3G) bridge [50], a
middleware-independent framework which provides a set of
four components, including interfaces for job management
and components for storing job information. With the 3G
bridge, in order to enable a middleware to accept jobs com-
ing from other middlewares, it is sufficient to provide an im-
plementation of the 3G bridgeGrid handler interface for
that specific middleware. Furthermore, to enable a middle-
ware to submit jobs to other middlewares, it is sufficient to
provide an implementation of the 3G bridgeGrid plug-in
interface for that specific middleware. Unfortunately, at the
time of this writing, there is no such implementation for the
version of the OurGrid middleware used by ShareGrid; so,
currently we are unable to take any advantage of the EDGeS
project.

In addition to Volunteer Computing systems, in the re-
cent past several research efforts have been devoted to the in-
vestigation of P2P Desktop Grid middleware platforms. As a
result, several platforms have been proposed in the literature,
such asJNGI [51] (which is based on the JXTA technol-
ogy [52] and is focused on scalability, reliability, and self-
organization), thePersonal Power Plant[53] (also based on
JXTA), and Cohesion[54]. However, some of these plat-
forms (notably, JNGI and the Personal Power Plant) support
only Java-based applications (in contrast, ShareGrid does
not suffer from this limitation), and require centralized man-
agement operations to manage and maintain the infrastruc-
ture.

Other P2P Desktop Grid platforms, e.g. theOrganic Grid
[55], Messor[56], and the one described in [57], are still at

the prototype stage and, as such, do not provide a solid sub-
strate enabling the deployment, use, and management of a
production Desktop Grid.

5.2 Grid Portals

Most of the existing Grid platforms provide a Web-based
access to their user communities through aportal, in order
to enable them to use Grid resources and services, and to
submit and monitor their Grid applications. The majority
of these portals are based on theGridSphereproject [58],
an open-source portal framework which provides aportlet-
based JSR-168 compliant Web portal [59]. GridSphere sup-
ports various middleware platforms, like theGlobus toolkit
[60], Unicore [61], andgLite [62], through portlet compo-
nents calledGridPortlets, that define a single and consistent
high-level API between portlets and underlying Grid ser-
vices.

TheOpen Grid Computing Environments(OGCE) project
[63] is another open-source collaborative project that lever-
ages Grid portal research and development from various uni-
versities and research institutions. Similarly to GridSphere,
theOGCE Portalis a portlet-based JSR-168 compliant por-
tal framework which uses theJava CoGtoolkits [64] and
GridPort [65] as its main service APIs for accessing Grid
resources.

The ShareGrid Portal is a portal framework too. The
main architectural difference with the above two portal frame-
works, is the mechanism used for supporting a new Grid
middleware. As a matter of fact, while the GridSphere and
OGCE approach makes use of portlet components for ex-
tending the range of supported middlewares, the ShareGrid
Portal extension mechanism consists in a series ofPlain
Old Java Object(POJO) [66] interfaces, defining the high-
level behaviour of a middleware, which are deployed in the
portal by means of simple Java libraries (JARs). For what
concerns the functional aspect, a possible difference is that
GridSphere and OGCE delegate each middleware portlet for
providing its user interface, while the ShareGrid Portal pro-
vides a uniform view independent from the underlying mid-
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dleware. Another difference is that, compared to GridSphere
and OGCE, users are not aware of the underlying Grid ser-
vices they are actually using; this behavior has been inten-
tionally provided in order to make user interaction as easy
as possible.

TheP-GRADE Portal[67] is a workflow-oriented Grid
portal which supports different types of middleware like the
Globus toolkit,LCG [68], gLite and XtremWeb. It is built
upon GridSphere, for the Web interface,JavaGAT[69], for
interacting with the middleware, andCondor DAGMan[70]
for managing a workflow application. The main difference
with the ShareGrid Portal is the nature of the supported Grid
applications; the P-GRADE Portal is oriented to workflow
applications, with some extensions for parameter sweep ap-
plications; the ShareGrid Portal currently supports Bag-of-
Tasks applications, which are a superset of the family of pa-
rameter sweep applications but are more limited than work-
flow applications. Another difference is the range of sup-
ported middlewares and the type of interaction with them.
The P-GRADE Portal is a Globus-based, multi-Grid collab-
orative portal. It is able to simultaneously connect to differ-
ent Globus-based Grid systems and let their user commu-
nities to migrate applications between Grids. Furthermore,
through the integration with theGrid Execution Manage-
ment for Legacy Code Applications(GEMLCA) project [71],
it enables both the deployment of legacy code applications
as a Grid service (without the need of rewriting them) and
the interoperability between different types of service-oriented
Grid middleware (like Globus toolkit version 4). The Share-
Grid Portal can be considered a multi-Grid portal as well but
with three important differences: 1) it is not strictly focused
to Globus-based middlewares since it relies to a high-level
middleware abstraction layer, 2) a running instance of it is
currently able to support only one type of middleware at a
time (which however can be changed at deployment time),
and 3) it does not take care of the multi-Grid collaboration
aspect by itself, but this is relied upon the underlying mid-
dleware.

6 Conclusions and Future Work

In this paper we described ShareGrid, a Peer-to-Peer Desk-
top Grid that aggregates computational resources contributed
by independent research laboratories, and that enables its
users to use them in a very simple and transparent way. At
the moment of this writing, ShareGrid includes more than
250 machines contributed by 8 distinct institutions located
in the Northwestern Italian regions. Our experience with
ShareGrid indicates that P2P Desktop Grids can provide an
effective answer to the computing needs of small research
laboratories that do not have enough financial and human
resources to set up or participate to a traditional Grid in-
frastructure. As a matter of fact, the high usability levels

due to both OurGrid and to the ShareGrid Portal, and the
ease of management brought by the proper configuration of
OurGrid mechanisms, resulted in a high degree of user pro-
ductivity (and satisfaction as well). Furthermore, as demon-
strated by the results we obtained by running three distinct
applications (characterized by quite different resource re-
quirements and Bag-of-Tasks representations), ShareGridis
able to provide satisfactory performance even with low-end
machines characterized by a high degree of volatility. We be-
lieve that these results, although specific of ShareGrid, hold
in general for P2P Desktop Grids.

In ShareGrid still there are some issues that need to be
solved. One of the most important avenue of research we
plan to pursue is concerned with the provision and integra-
tion of an efficient data transfer mechanism within Share-
Grid in order to better support data-intensive applications in
addition to compute-intensive ones. In principle, data man-
agement in ShareGrid would not be an issue when jobs are
submitted through the MyGrid installed on the user local
machine. However, it becomes an issue when the ShareGrid
Portal is used as the primary mean for job submission. In-
deed, the ShareGrid Portal and the Storage Server can be
viewed as centralized components and thus they may be-
come a bottleneck when multiple data-intensive jobs are si-
multaneously transmitting or receiving data, since each of
them competes with the others for network bandwidth ca-
pacity (as discussed in Section 4.2). A natural way to miti-
gate this issue is to deploy instances of the Portal and of the
Storage Server on several sites. In this way, the inbound and
outbound data, that originally went through the single Portal
and Storage Servers, would be distributed among these in-
stances. However, it is worth noting that there still might be
“local” (i.e., per-site) bottlenecks if users of some of these
sites prevalently submit data-intensive jobs.

The problem of efficiently handling the transfer of in-
put and output files affects not only ShareGrid, but is con-
sidered of general relevance by the scientific community,
as demonstrated by the current research efforts devoted to
its solution. Most of these efforts are focused on the inte-
gration of Peer-to-Peer file transfer protocols into the Desk-
top Grid middleware. For instance, in [72] the BOINC mid-
dleware is properly modified in order to efficiently manage
huge data transmission through theBitTorrentprotocol [73].
For ShareGrid, however, we are interested in a more mod-
ular approach, where a Peer-to-Peer data distribution tech-
nology can be easily integrated without the need to change
the underlying middleware. A similar approach is pursued
in [74], where the BitTorrent protocol is integrated into the
XtremWeb middleware, and in [75], where theGridTorrent
protocol is proposed as a variant of the BitTorrent protocol
(using a Replica Location Service for managing and finding
file replicas, in place of traditional “.torrent” files), andin-
tegrated into thePlanetLabinfrastructure [76]. Our future
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work thus will be concerned with the integration in Share-
Grid of efficient data transfer systems, likeFile Mover [77],
BitDew[78], JuxMem[79], orFreeLoader[80], just to name
a few.

Finally, we are considering to upgrade ShareGrid to the
version 4 of the OurGrid middleware which, at the time of
this writing, has just reached its stable version. There are
several reasons to migrate to this new version. The most
important ones include a new and more stable underlying
communication protocol, and the possibility to interoper-
ate with service Grids (actually, with the gLite middleware)
by means of the EDGeS-like 3G bridge developed under
theEELA-2project [81], a multidisciplinary project involv-
ing more than 50 institutions both in Europe and in Latin
America, and aiming at enhance the e-infrastructure of Latin
American countries.
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