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SUMMARY

Cloud Providers (CPs) rely on server consolidation (the allocation of several Virtual Machines (VMs) on
the same physical server) to minimize their costs. Maximizing the consolidation level is thus become one
of the major goals of CPs. This is a challenging task since it requires the ability of estimating, in a resource
contention scenario, multidimensional resource demands for multi-tier cloud applications that must meet
Service Level Agreements (SLAs) in face of non-stationary workloads. In this paper, we cope with the
problem of jointly allocating CPU and memory capacity to (a) precisely estimate their capacity required
by each VM to meet its SLAs, and (b) coordinate their allocation to limit the negative effects due to the
interactions of dynamic allocation mechanisms, which, if ignored, can lead to SLA violations. We tackle
this problem by devising FCMS, a feedback fuzzy controller that is able to dynamically adjust the CPU
and memory capacity allocated to each VM in a coordinated way, to precisely match the needs induced
by the incoming workload. By means of an extensive experimental evaluation, we show that FCMS is
able to achieve the above goals and works better than existing state-of-the-art alternative solution in all
the considered experimental scenarios. Copyright c⃝ 0000 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

One of the key factor for the success of the cloud computing paradigm is its ability to provide the
appearance of infinite computing resources available on demand, thereby eliminating the need for
its users to make long-term provisioning plans for their applications [1, 2, 3].

To provide such illusion, Cloud Providers (CPs), like Amazon [4] and Rackspace [5], host
customer applications on their data centers by encapsulating each one of them into a set of Virtual
Machines (VMs), that are run on their physical infrastructures. To increase their profit, CPs typically
resort to server consolidation [6], which consists in allocating several VMs on each physical
server, in the attempt to use as little servers as possible to run the VMs of their customers. Server
consolidation allows a CP to reduce the number of physical resources that must be turned-on to run
the VMs of its customers and, at the same time, to raise their utilization, so as to reduce both their
electricity and amortized costs [7, 8, 9, 10]. The maximization of the consolidation level, that is
achieved by allocating on each physical server as many VMs as possible, has thus become one of
the major goals of CPs.

However, the consolidation level cannot be increased freely. As a matter of fact, typically CPs
negotiate with customers suitable Service Level Agreements (SLAs) – specifying the minimum
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level of service that must be guaranteed – for their applications [11]. An SLA consist of several
components, including a description of the services to be delivered, the monetary penalties that a CP
must pay in case of violations, and the Service Level Objectives (SLOs), expressing the measurable
service level characteristics of the SLA (e.g., stated in terms of availability and performance), that
must be fulfilled by the CP in order to avoid paying penalties to its customers. For example, the SLA
for Amazon EC2 [12] specifies that the Monthly Uptime Percentage (MUP) during any monthly
billing cycle must be of at least 99.95%, and that, in the event Amazon EC2 does not meet this goal,
the customer is eligible to receive a service credit. In this case, the SLA is the whole statement and
the associated SLO defines the constraint that MUP ≤ 99.95% in a monthly billing cycle.

Consequently, when consolidating these VMs on their physical infrastructures, CPs have to
consider the trade-off existing between the number of VMs allocated on a given server and the
amount of physical resource capacity that is assigned to each one of them. Indeed, the higher the
consolidation level, the lower the amount of physical server capacity that can be allocated to each
VM that, if too low, may yield to violations of its SLAs. The best consolidation level that can be
attained on a given physical server is therefore the one that maximizes the number of VMs allocated
on it, without inducing SLA violations in the corresponding applications.

Finding the best consolidation level is a challenging task, as it requires the ability of both (a)
precisely estimating the smallest amount of physical capacity each VM needs to meet its SLAs
in face of highly dynamic, non-stationary and bursty workloads [13, 14], and (b) enforcing its
allocation when multiple VMs compete for the same physical resources.

One of these challenges is posed by the multidimensional resource demand of applications (e.g.,
CPU and memory capacity, as well as network and I/O bandwidth), that calls for strategies able to
coordinate the allocation of multiple resource types to the various applications.

In this paper, we focus on the problem of jointly allocating CPU and memory capacity, that are
usually considered the most representative ones for determining both application performance and
the effective usage of physical servers [15, 16]. To suitably solve this problem, it is necessary to
address two distinct issues, namely to (a) precisely estimate and allocate the CPU and memory
capacity required by each VM to meet the SLAs of the application it runs under non-stationary
workloads, and (b) coordinate the allocations of CPU and memory to limit the negative effects
due to the interactions of the mechanisms used to carry out them, which, if ignored, can affects
application performance and thus lead to the violation of SLAs [17, 18] (as discussed in Section 2).

This problem has been already addressed in the literature [19, 20], but – to the best of our
knowledge – none of the existing solutions is able to address both the issues mentioned above. To fill
this gap, in this paper we propose the Fuzzy Controller for CPU and Memory Consolidation under
SLA Constraints (FCMS), a dynamic resource allocation framework that is able to dynamically
adjust the CPU and memory capacity allocated to the set of VMs hosting a given multi-tier
application in such a way to meet its SLAs in face of (a) bursty and non-stationary workloads,
whose intensity varies over time, and (b) the presence of other VMs that compete for the same set of
physical resources, as well as to avoid any negative interaction between the corresponding allocation
mechanisms.

The heart of our proposal is a Multiple-Input Multiple-Output controller based on the fuzzy logic
that, in face of non-stationary workloads and resource contention, continuously adjusts the CPU
and memory capacity allocation of each VM in a coordinated fashion to meet the corresponding
application-level SLAs and to avoid the negative effects resulting from the interactions of dynamic
resource allocation mechanisms. As a result, it is able to provide percentile-based performance
guarantees for both throughput and response time.

As discussed in literature (e.g., [19, 20, 21, 22]), approaches based on fuzzy control have shown
to be better to cope with non-stationary workloads than those based on linear feedback control
[23, 24]. The inherent nonlinearities of computing systems [25] make indeed the design of such
controllers very challenging. As a matter of fact, to the best of our knowledge existing model-based
linear controllers are unsuitable to properly tackle the issues arising in the scenarios considered in
this paper, because of the linearization operations they have to perform, whose side-effect is to lead
the controller to make inaccurate or even wrong allocation decisions. Conversely, fuzzy controllers
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4 C. ANGLANO ET AL.

have been shown [26, 27] to be able to suitably approximate any nonlinear function, and as such to
be able to properly deal with such nonlinearities.

To demonstrate the ability of FCMS of meeting its design goals, we implement it on a real testbed,
and use this implementation to carry out a comprehensive experimental evaluation involving a set of
real-world cloud applications and workloads. Furthermore, we compare the performance achieved
by FCMS against those attained by two existing state-of-the-art alternative solutions (that we also
implemented).

Our results show that FCMS, unlike its counterparts, is able to meet the SLAs of all applications
and to provide the highest consolidation level by allocating the minimum CPU and memory
capacity. Specifically, we show that – while existing alternatives either fail to meet application-
level SLAs, or over-allocate CPU and memory capacity, or both – FCMS is always able to allocate
to each application as little CPU and memory capacities as needed to meet its SLA, thus achieving
a better consolidation level without violating any SLA.

Our Contributions

In this paper, we extend our previous work [21], focused on the dynamic provisioning of CPU
capacity, in such a way to properly handle both CPU and memory capacity. To the best of our
knowledge, this is the first work in which the allocation of both resource types is performed in a
coordinated way, so that the negative effects of their interactions are avoided.

In this work, we present FCMS, a resource management framework, based on feedback fuzzy
control, which significantly extends the above paper as follows:

1. we design a novel fuzzy controller able to precisely allocate memory capacity to VMs,
while simultaneously avoiding to perform memory allocations when such an action would
negatively impact on application performance, and we couple it with our existing CPU fuzzy
controller [21];

2. we enhance the design of the fuzzy controller by means of suitable algorithms for the
estimation of application performance indices that improve existing ones [21];

3. we implement FCMS, as well as two existing state-of-the-art feedback controllers, and
compare FCMS against them for a larger set of real-world cloud applications;

4. we show that FCMS outperforms these existing alternatives in all the experimental scenarios
we consider.

The rest of the paper is organized as follows. In Section 2, we define the model of the system
that we consider as well as the context for the problem that we tackle. In Section 3, we describe the
design of the FCMS framework. In Section 4, we illustrate the implementation of FCMS on a real
testbed, that we use to carry out an experimental evaluation to assess its efficacy, and in Section 5,
we present the results obtained from it. In Section 6, we discuss related works. Finally, in Section 7,
we conclude the paper and discuss possible future works.

2. SYSTEM MODEL AND PROBLEM DEFINITION

2.1. System Model

We consider a computing infrastructure, sketched in Figure 1, consisting in a set of physical servers
that are managed by a virtualization platform, through a suitable Virtualization Management System.
The infrastructure hosts a set of multi-tier cloud applications, each one providing services to a
population of clients. Each tier Ai (i = 1, . . . , nA) of an application A is deployed in a VM, which
is hosted on one of the physical servers of the infrastructure. Each VM is equipped with a suitable
number of virtual CPUs (vCPUs), and suitable amounts of RAM and disk space. Each vCPU of a
VM is allocated (typically non-exclusively) on a physical CPU core, and to each VM is allocated
a portion of the physical RAM. In the following, we use the terms “application tier” and “VM”
interchangeably.
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Figure 1. Architecture of the computing infrastructure. Dashed boxes represent components outside the
scope of this paper.

We assume that the initial placement of VMs onto the hosts of the computing infrastructure,
and the allocation of physical resources to them, is carried out by means of suitable capacity
planning [28] or resource over-commitment techniques [29].

The workload of each application A consists of a stream of requests for service coming from the
population of its clients according to a given distribution WA(t) of arrivals at time t. We assume
that the workload is non-stationary, i.e. that WA(t) changes over time.

Each application is characterized by percentile-based SLOs [30], which are expressed as bounds
on a suitable percentile of the distribution of the performance measure of interest. Percentile-based
SLOs are indeed considered preferable for many applications than others based on simpler metrics
like average [31], since they are more robust to variations over multiple time scales that are typical
of cloud workloads [32, 33], but they are very challenging to meet [34].

Specifically, the SLO of an application A is expressed as a pair (p, r)A, where r (the SLO value)
is the upper bound on the pth percentile of the distribution of the measured performance indicator,
and states that p% of the observed values must be lower than or equal to r during a prescribed time
interval. For instance, a SLO (95, 0.1 sec)A on response time states that the 95% of the observed
response times of the requests to application A must be lower than or equal to 0.1 sec, in a prescribed
interval.

Given an application A, the Dynamic Resource Allocation module (see Figure 1) is in charge of
allocating to each one of its tiers Ai a suitable fraction of the capacity of the physical resources on
which the corresponding VM is running in order to meet the SLO (p, r)A. This module is the focus
of this paper.

In particular, we focus on the management of the amounts of physical CPU capacity CAi
(t)

and physical memory capacity MAi
(t) allocated to each tier Ai at time t in order to meet (p, r)A.

CPU and memory are indeed considered the most relevant ones, as they determine both application
performance and the efficient usage of physical resources [15, 16], as demonstrated also by the
commercial offerings of most CPs (e.g., Amazon Web Services [35], Google Cloud Platform [36],
and Rackspace [37]), that charge their customers based on their CPU and RAM consumption only.
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We postulate that the Virtualization Management System provides suitable mechanisms to
perform dynamic CPU (in particular, non-work-conserving CPU scheduling [38]) and memory
management (e.g., ballooning drivers or memory hotplug [18]). †

We finally assume that the system we consider complements dynamic resource allocation (the
focus of our work) with two additional mechanisms, namely Admission Control (to make sure that
the workload intensity experienced by application A never exceeds the maximum level W ∗

A agreed
upon by the CP and the customer), and Dynamic VM Placement (that is in charge of reallocating
VMs in order to ensure that each server has enough capacity to meet the SLOs of all the applications
using it). To minimize the interference of VMs co-located on the same physical server [42], we
assume that dynamic VM placement is carried out so as to place on each server only VMs exhibiting
as little interference as possible. These mechanisms, however, are outside the scope of this paper,
and we assume that existing techniques are used (e.g., see [43, 44] for admission control, and
[45, 46, 47, 48] for dynamic and contention-aware VM placement).

2.2. Problem Definition

As discussed in the previous subsection, we focus on the problem of the joint dynamic allocation of
CPU and memory capacity to the various application tiers, that can be stated as follows: given the
number NA(t) of requests for application A that must be processed at time t, allocate to each tier
Ai the smallest amounts of CPU and memory capacity (i.e., suitable values of CAi

(t) and MAi
(t),

respectively) so that (p, r)A is met. By smallest amount of capacity, we mean that the aggregate
capacity allocated to each VM over a medium to long time scale is, on average, the minimum
required to meet the SLO of the corresponding application.

The need of allocating the smallest amount of resource capacity stems from the desire of
simultaneously meeting application SLAs and maximizing the consolidation level. On the one hand,
under-allocating CPU capacity to a VM limits its ability to process incoming requests in a timely
fashion, while under-allocating memory capacity results in increases in swapping activity and may
even result in the forced terminations because of the lack of memory. On the other hand, over-
allocating CPU and memory capacities to a VM limits consolidation opportunities.

To solve this problem, two issues must be properly faced. First, we must be able to precisely
estimate the resource needs of each application tier, in face of the non-stationarity of the workload,
and allocate that capacity as time goes by. This problem has been already addressed in the literature,
where various approaches exist to dynamically allocate the capacity of a single resource type (see,
for instance, [21] for the CPU, and [49] for the memory).

Second, we must be able to coordinate the allocation of CPU and memory, in order to avoid
the arising of the effects caused by the interactions of the mechanisms used to carry out them. In
particular, as reported in the literature [17, 18], when the amount of memory allocated to a given
VM is changed, the utilization of the corresponding vCPU suddenly increases for a magnitude and
a duration that vary according to the magnitude of memory variation and the type of operation (i.e.,
memory increment or decrement), and shows a bursty behavior. ‡

If, when reallocating memory to a VM, it is using almost all the CPU capacity it has been
allocated, then the memory adjustment operation will subtract a (usually) large amount of CPU
capacity to the applications running in the VM until CPU capacity reallocation is not performed
again. During that time, application performance will suffer, and the SLO will be missed. When
CPU capacity is reallocated, the new value will be possibly set to a value that takes into account
also the effects induced by memory reallocation. However, when this latter operation has been
completed, the extra CPU capacity will be wasted, thus lowering the consolidation level that can be
attained.

†These mechanisms are provided by the most common virtualization platforms, e.g. VMware [39], Xen [40], and
KVM [41].
‡For instance, in some experiments we performed with Xen 4.4, we observed that an increment (decrement) of 9.6 GiB
results in an increase of 80% (70%) of the vCPU utilization for 6 (11) sec, while for variations of 1.6 GiB this utilization
amounts to about 42% for 3 sec.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe.3968



FCMS: A FUZZY CONTROLLER FOR CPU AND MEMORY CONSOLIDATION. . . 7

Figure 2. Architecture of FCMS.

For these reasons, the dynamic management of CPU and memory cannot be done independently
from each other. In this paper, we propose FCMS, a dynamic management approach that – by
coordinating CPU and memory allocations – is able to take into account their interactions and avoid
the negative effects illustrated above.

3. THE FCMS FRAMEWORK

The architecture of FCMS is shown in Figure 2 where – to enhance readability – we show only the
components corresponding to a specific application (i.e., the architecture shown in the figure should
be replicated for each application running on the infrastructure), and we drop the identifier of the
application from all the subscripts whenever it is clear from the context (i.e., we denote as i instead
of Ai the entities and the quantities corresponding to tier i of application A).

As shown in Figure 2, each application tier VM i is associated with a Tier Controller Ti, § which
periodically computes the amount of vCPU capacity Ci and of memory capacity Mi to be assigned
to VM i in order to meet the application SLO (p, r)A. Both Ci and Mi are real numbers taking values
in the interval [0, 1], that represent the overall fraction of CPU time and memory size, respectively,
normalized over the corresponding maximum values.

To carry out its task, Ti is activated regularly at equispaced points in time (the interval elapsing
between 2 consecutive activations is called control interval). During each control interval, Ti takes
as input (a) the currently observed application performance Y (i.e., the one used for defining the
SLO) provided by the Application Performance Collector, (b) the SLO specification (p, r)A, and (c)
the vCPU utilization Ui and the memory demand Di of VM i, and computes the values of Ci and Mi

that will be allocated during the next control interval. To properly handle multi-tier applications, Tier
Controllers that are associated to the same application are kept synchronized, i.e., they are activated
at the same time, so that they make decisions with respect to the same workload conditions. The
effectiveness of this solution is clearly demonstrated experimentally in Sec. 5, where we show that
FCMS is able to achieve its design goals, namely to achieve a consolidation level better than other
state-of-the-art controllers without violating any application SLA, for several real-world multi-tier
cloud applications exposed to challenging time-varying, non-stationary, and bursty workloads.

To compute Ci and Mi, Ti uses two distinct Multiple-Input-Single-Output static fuzzy
controllers [50] (i.e., feedback controllers based on fuzzy logic [51, 52]), namely the Fuzzy CPU

§FCMS can be easily extended to deal also with situations where the same tier is replicated into multiple distinct VMs
for load balancing, by simply associating each VM of the same tier with a different Tier Controller.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe.3968



8 C. ANGLANO ET AL.

Figure 3. Architecture of the Tier Controller.

Controller and the Fuzzy Mem Controller, whose structure and interconnections are shown in
Figure 3. As indicated by their respective names, these controllers are in charge of allocating CPU
and memory capacity, respectively, to the corresponding tier.

In particular, the Fuzzy CPU Controller (simply CPU Controller in the following) computes the
CPU capacity allocated to the corresponding tier during control interval k + 1 as in Eq. (1):

Ci(k + 1) = max

{
Ûi(k),min

{
Ci(k)·

(
1 + ∆Ci(k + 1)

)
, 1
}}

(1)

where ∆Ci(k + 1) represents the percentage adjustment, and the final value is bound between an
estimate of the currently used capacity Ûi(k) and the maximum achievable value 1.

Similarly, the Fuzzy Mem Controller (simply Mem Controller in the following) computes the
memory size allocated during control interval k + 1 as in Eq. (2):

Mi(k + 1) = max

{
D̂i(k),min

{
Mi(k)·

(
1 + ∆Mi(k + 1)

)
, 1
}}

(2)

where ∆Mi(k + 1) represents the percentage change and D̂i(k) is an estimate of the current memory
demand. In Figure 3, these two equations are denoted by ⊕.

Given that ∆Ci(k + 1) and ∆Mi(k + 1) can take both positive and negative values, the CPU and
memory capacity allocated in interval k + 1 may be either higher or lower than those in interval k
(and, of course, they may remain unchanged as well).

To avoid the negative effects originated by the lack of coordination between CPU and memory
allocation discussed in Section 2, the above controllers interact according to the cascade control
strategy [25], whereby the “outer” CPU Controller controls, through its output vCPU capacity,
the “inner” Mem Controller, which takes that vCPU capacity as input (see the related blocks in
Figure 3). In particular, the former controller provides the value of Ci(k + 1) as input to the latter
one, that in turn can adjust ∆Mi(k + 1) to be proportional to the available vCPU capacity in the
same control interval. By doing so, we avoid that a too large memory variation reduces too much
the amount of CPU capacity available to applications.

In the rest of this section, we describe the structure and the behavior of the fuzzy controllers
composing the Tier Controller. More precisely, for conciseness, we will focus on the Mem
Controller, and we will omit the discussion of the CPU Controller. As a matter of fact, in this
paper we use the same CPU Controller that we developed in the past [21], whose behavior does
not significantly differ from that of the Mem Controller; furthermore, the expressions for the
Cres,i(k), Ûi(k), ∆Ci(k + 1) and Ci(k + 1) (see Figure 3) can be simply obtained by replacing
the corresponding symbols in the formulas for their counterparts Mres,i(k), D̂i(k), ∆Mi(k + 1),
and Mi(k + 1), respectively, in the Mem Controller.
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3.1. The Fuzzy Mem Controller

The purpose of the Mem Controller is to determine the amount of memory capacity to allocate to
tier i in the next control interval k + 1. As any fuzzy controller, it contains the following 4 building
blocks (see Figure 3):

• the rule base, that stores a set of fuzzy rules through which control decisions are made;
• the fuzzyfier, that converts the real input values e(k), Mres,i(k), and Ĉres,i(k) into equivalent

fuzzy values;
• the inference system, that decides which rules can be applied to the current system state on

the basis of the values computed by the fuzzyfier, and determines a fuzzy output;
• the defuzzifiers, that combines the fuzzy output into a single real value ∆Mi(k + 1).

3.1.1. Controller inputs and outputs As shown in Figure 3, the Mem Controller uses three inputs,
namely the relative error e(k), the relative residual memory capacity Mres,i(k), and the relative
estimated residual vCPU capacity Ĉres,i(k), to compute its single output ∆Mi(k + 1).

The relative error e(k) represents the normalized difference between the desired value r and
the incremental estimate of the achieved one Ŷ (k), and is computed as in Eq. (3) (in Figure 3
this operation is denoted by ⊖), where we distinguish response time-based from throughput-based
SLOs:

e(k) =

{
r−Ŷ (k)

r , for response time SLOs,
Ŷ (k)−r

r , for throughput SLOs.
(3)

where Ŷ (k) is computed by means of the t-digest algorithm [53, 54]. The error e(k) is used to
determine whether the SLO is actually respected (e(k) ≥ 0) or not (e(k) < 0).

The relative residual memory capacity Mres,i(k) represents the normalized difference between
Mi(k) and an estimate of the actual memory demand D̂i(k) of the VM, and is computed as shown
in Eq. (4):

Mres,i(k) =
Mi(k)− D̂i(k)

Mi(k)
(4)

where D̂i(k) is a smoothed value that suitably combines past observations of memory demand Di

by means of the Exponentially Weighted Moving Average (EWMA), that is:

D̂i(k) = β ·Di(k) + (1− β) · D̂i(k − 1) (5)

where β is the smoothing factor (a real number taking values in the [0, 1] interval).
Finally, the relative estimated vCPU capacity Ĉres,i(k) represents the normalized difference

between the new vCPU allocation Ci(k + 1), provided by the CPU Controller, and the estimate
of the vCPU utilization Ûi(k), and is computed as in Eq. (6):

Ĉres,i(k) =
Ci(k + 1)− Ûi(k)

Ci(k + 1)
(6)

3.1.2. The rule base The actual fuzzy logic is implemented as a set of if-then rules, stored in the
rule base, that translate human expert’s control knowledge into a form that can be used by the
inference system.

Fuzzy rules are defined by means of linguistic variables that take linguistic values (or terms),
and represent the control inputs and outputs. In particular, each rule defines the conditions under
which it can be applied (the “if” part, or antecedent), and the output deriving from its application
(the “then” part, or consequent).

The design of the rule base takes into account (a) the objective of the Mem Controller, namely
to meet the SLO (i.e., to keep e(k) ≥ 0) and, at the same time, to minimize the allocated memory
capacity (i.e., to keep Mres,i(k) ∼= 0), and (b) the effects of dynamic memory adjustments on the
vCPU utilization (as discussed in Section 2).

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe.3968



10 C. ANGLANO ET AL.

(a) Case: “Ĉres” is LOW.

“e”
NEG FINE POS

“Mres”
LOW STY STY STY
FINE STY STY STY
HIGH STY STY STY

(b) Case: “Ĉres” is FINE.

“e”
NEG FINE POS

“Mres”
LOW UP STY UP
FINE UP STY DWN
HIGH STY STY DWN

(c) Case: “Ĉres” is HIGH.

“e”
NEG FINE POS

“Mres”
LOW BUP UP UP
FINE UP STY DWN
HIGH STY DWN BDW

Table I. The rule base.

To define the rule base, we must first define the linguistic variables and values corresponding to
the numerical inputs and output of the controller, as follows:

• “e” (the linguistic counterpart of the e(k) control input), that can take NEG, FINE, or POS as
linguistic values to denote negative, zero, and positive values of e(k), respectively;

• “Mres” (the linguistic counterpart of the Mres,i(k) control input), that can take LOW, FINE,
or HIGH as linguistic values to denote values close to 0, equal to 0, and larger than 0,
respectively;

• “Ĉres” (the linguistic counterpart of the Ĉres,i(k) control input), that takes the same linguistic
terms as the “Mres” linguistic variable;

• “∆M” (the linguistic counterpart of the ∆Mi(k + 1) control output), that can take BUP, UP,
STY, DWN, or BDW as linguistic terms, whose meaning is defined as follows: large increment
(BUP), small increment (UP), stationary (STY), small decrease (DWN), and large decrease
(BDW).

Intuitively, the various rules in the rule base determine how the controller decides if memory
allocation should be changed, and the amount of such variation, when the residual CPU capacity (a)
is being used completely (i.e., Ĉres,i(k) = 0), or (b) is almost depleted (i.e., Ĉres,i(k) ∼= 0), or (c) is
available in a large amount (i.e., Ĉres,i(k) > 0).

In each one of the above scenarios, the magnitude of memory variation is determined according to
the values of e(k) and Mres,i(k). Intuitively, if the SLO is not being met (i.e., e(k) < 0), the amount
of allocated memory is increased, while in the opposite case the controller tends to leave memory
allocation unchanged if the SLO value is being tracked very closely (i.e., e(k) = 0), and to decrease
it if the SLO is abundantly exceeded (i.e., e(k) > 0).

The resulting rule base is expressed in a compact form as a set of tables (see Table I), one for
each one of the scenarios mentioned above. In each table, the cell (B,C) contains the term taken by
“∆M” when “Ĉres” is A, “Mres” is B, and “e” is C (we simply denote this as ⟨A, (B,C)⟩).

To exemplify, let us consider the case ⟨HIGH , (LOW ,NEG)⟩ in Table Ic, that corresponds to
the rule if “Ĉres” is HIGH and “Mres” is LOW and “e” is NEG then “∆M” is BUP. This rule
encodes the control knowledge stating that if the CPU capacity value used by the VM is smaller
than that allocated by the CPU Controller (encoded by the “Ĉres” is HIGH condition), and the
memory capacity value demanded by VM is close to that allocated by the Mem Controller (encoded
by the “Mres” is LOW condition), and the interested percentile of the observed SLO performance
metric is close to or worse than the reference one (encoded by the “e” is NEG condition), then the
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(a) MFs for the “e” input variable.
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(b) MFs for the “Mres” input variable.
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(c) MFs for the “Ĉres” input variable.

Figure 4. MFs for the input variables “e”, “Mres”, and “Ĉres”.

Mem Controller has to significantly increase the allocated memory capacity value (encoded by the
“∆M” is BUP proposition).

It is worth to point out that the rule base does not take into account the workload characteristics.
This agnosticism is a purposely-designed feature of our approach. Indeed, any change in the
workload behavior is reflected in the values taken by the performance measures of interest (e.g.,
a steep increase of the arrival rate induces smaller values of Mres,i(k) and negative values of e(k)).
Therefore, given that the rule base (and the membership functions, see below) has been conceived
in such a way to deal only with changes on the performance measures of interest as induced by the
workload, our controller is able to closely follow any change in the workload, provided that it does
not saturate the maximum capacity of the physical resource.

3.1.3. The fuzzifier The fuzzifier converts each real input value (either e(k), Mres,i(k) or Ĉres,i(k))
into the equivalent linguistic variable (either “e”, “Mres” or “Ĉres”, respectively), and assigns it
one or more linguistic terms. In fuzzy logic, indeed, a single real value may correspond to different
linguistic terms, each one characterized by a (possibly different) degree of certainty. The fuzzifier,
therefore, given a numeric input value x and the corresponding linguistic variable “x”, computes
for each possible linguistic term T of “x” the membership µ ∈ [0, 1], representing the grade of
certainty that x belongs to T . This is accomplished by using a Membership Function (MF) for each
(numeric) input variable x that quantifies, for each possible linguistic term T that the corresponding
linguistic variable “x” may take, the grade of certainty µ of x in T , and we denote it as µT (“x”). In
our controller, we use the triangular-shaped and ramp-shaped MFs, which are the most commonly
used MFs in practice, that are shown in Figure 4.

As shown in this figure, for each input variable, there is one MF for each linguistic term.
Specifically, for the “e” linguistic variable, there are two ramp-shaped MFs corresponding to
the linguistic terms NEG and POS, and one triangular-shaped MF for the linguistic term FINE.
For the “Mres” linguistic variable, there are two ramp-shaped MFs for the linguistic terms LOW
and HIGH, and one triangular-shaped MF for the linguistic term FINE. Finally, for the “Ĉres”
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linguistic variable, there are two ramp-shaped MFs for the linguistic terms LOW and HIGH, and
one triangular-shaped MF for the linguistic term FINE.

To exemplify, if e(k) = 0.2, the MF in Figure 4a associates to this input the value FINE with
certainty 1.0, since in the MF the value 0.2 projects up to the peak of the MF corresponding to the
linguistic term FINE. This corresponds to state that the linguistic variable “e” takes the value FINE
with certainty 1.0, i.e., that µFINE (“e”) = 1.0.

Note also that, if e(k) = 0.15, then “e” takes two linguistic terms (namely, NEG and FINE), since
its projection up intersects the MFs of both these terms, each one characterized by its own certainty
value greater than 0.

3.1.4. The inference system The inference system determines the active rules (i.e., the rules that
will be applied to compute the fuzzy output) by checking for each rule whether at least one of the
linguistic expressions in its antecedent (i.e., the “if” part) has a membership value greater than 0,
and, to do so, it applies the min or the max operator depending on whether the terms in the antecedent
are joined by a conjunction (i.e., “and”) or by a disjunction (i.e., “or”), respectively.

To exemplify, assume that µHIGH (“Ĉres”) = 1.0, µHIGH (“Mres”) = 1.0 and µNEG(“e”) = 0.6
(and that the certainties of all the other linguistic values are 0). By looking at Table Ic, we see that
only the rule corresponding to ⟨HIGH , (HIGH ,NEG)⟩ applies, thus resulting in a consequent with
a certainty of 0 for all the linguistic values but STY, whose certainty is given by:

µSTY (“∆M”) = min
(
µHIGH (“Ĉres”), µHIGH (“Mres”), µNEG(“e”)

)
= min(1.0, 1.0, 0.6) = 0.6

Conversely, if µHIGH (“Ĉres”) = 1.0, µLOW (“Mres”) = 0.24, µFINE (“Mres”) = 0.6, and
µFINE (“e”) = 1.0 (while the certainties of all the other linguistic values are 0), then two rules apply,
namely ⟨HIGH , (LOW ,FINE )⟩ and ⟨HIGH , (FINE ,FINE )⟩, each one with a different certainty
degree. According to the rule base (see Table Ic), the consequent of ⟨HIGH , (LOW ,FINE )⟩ is UP,
while the one of ⟨HIGH , (FINE ,FINE )⟩ is STY. The certainty of these two consequents, namely
µUP (“∆M”) and µSTY (“∆M”), is computed as:

µUP (“∆M”) = min
(
µHIGH (“Ĉres”), µLOW (“Mres”), µFINE (“e”)

)
= min(1.0, 0.24, 1.0) = 0.24,

µSTY (“∆M”) = min
(
µHIGH (“Ĉres”), µFINE (“Mres”), µFINE (“e”)

)
= min(1.0, 0.6, 1.0) = 0.6.

3.1.5. The defuzzifier Finally, the defuzzifier combines the conclusions (i.e., the “then” part) of the
active rules, identified by the inference system, by means of the centroid method [52] to obtain a
single numeric value, representing the value for the ∆Mi(k + 1) output variable.

In the centroid method, the numeric value of the control output is computed as a weighted average
of the certainty of the conclusions of the active rules, where the weight of each conclusion is the
center point of the MF associated to the output linguistic term (indeed, this is equivalent to compute
the center of the area under the curve resulting by joining the MFs involved in the active rules). To
do so, we quantify the linguistic values associated to the output variable “∆M” by means of the
triangular-shaped MFs shown in Figure 5.

For instance, if µUP (“∆M”) = 0.24 and µSTY (“∆M”) = 0.6, the area under these MFs is the
gray one shown in Figure 6. As expected, the gray area for the STY MF is greater than the gray area
for the UP MF. This is due to the fact that the degree of certainty of STY is higher than the one of UP.
Figure 6 also shows the centroid of the gray area (i.e., the black-filled circle at (0.029, 0.177)). The x-
coordinate of the centroid is the output of the defuzzification process which in our case corresponds
to the value for ∆Mi(k + 1). In particular, in our example, ∆Mi(k + 1) = 0.029 which means that
the Mem Controller has to increase the allocated memory capacity value by 2.9% of the current
capacity.
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Figure 5. MFs for the output variable “∆M”.

∆M

µ

−1.0 −0.2 0.2 1.0

0
1

0.029

0
.2

4
0
.6

0

BDW DWNSTY UP BUP

Figure 6. Defuzzification of the aggregate output with the centroid method. The black-filled circle at
(0.029, 0.177) is the centroid of the gray area.

4. SYSTEM IMPLEMENTATION

To assess the capability of FCMS to achieve its design goals, we implemented its various modules in
C++, and integrated them into a testbed that provides various software components that are needed
to run them. To foster further research, and to provide reproducibility, all these modules are publicly
available on [55].

The architecture of the resulting system is shown in Figure 7. As shown in the figure,
the testbed includes a virtualized computing infrastructure, running a set of cloud applications
APP1, . . . ,APPk, exposed to a suitably chosen workload (generated by the Workload Driver).
The Application Manager implements suitable mechanisms that can be leveraged by a controller to
allocate resource capacity to the various applications on the basis of the inputs provided by the VM
Utilization Collector and the Application Performance Collector. FCMS has been implemented as
a module sitting on top of the Application Manager.

Virtualization support is provided by means of Xen [40] (version 4.4), whose credit scheduler
and balloon driver are used to provide non-work-conserving scheduling and dynamic memory
management, respectively, as follows:

• non-work-conserving scheduling: under the credit scheduler, each VM i is associated a cap
Γi, an integer number taking values in the interval [0, 100 ·mi] (where mi is the number of
physical CPU cores allocated to VM i), representing the maximum percentage of CPU cycles
that VM i is entitled to consume (even if the host has idle CPU cycles). Non-work-conserving
scheduling is implemented by setting, at each control interval k, Γi = ⌈Ci(k) · 100 ·mi⌉
(recall that Ci(k) ∈ [0, 1]);

• dynamic memory management: under the memory ballooning technique, each VM i is
characterized by the maximum memory Ψmax,i it can use, and by the current memory Ψi

is using. Thus, the balloon driver hands back to Xen the memory given by (Ψmax,i −Ψi).
To implement dynamic memory allocation with the memory ballooning technique, at each
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Figure 7. Architectural diagram of our testbed.

control interval k, we adjust the current memory in use by VM i to the value Ψi = ⌈Mi(k) ·
Ψmax,i⌉ (recall that Mi(k) ∈ [0, 1]).

Xen is coupled with the libvirt daemon [56] to enable the Application Manager to interact with
Xen to set the CPU and memory capacity of the various VMs as described above. This daemon
is also used by the VM Utilization Collector to harvest the CPU utilization values for the various
VMs, while memory utilization is collected via the /proc/meminfo special file of the Linux operating
system (running inside each VM).

5. EXPERIMENTAL RESULTS

To assess the ability of FCMS to allocate as little CPU and memory capacity as needed to meet
applications SLOs, we carry out a thorough experimental evaluation by means of the testbed
described in Section 4, on which we run several cloud applications, each one processing a suitably
chosen workload, whose CPU and memory capacity is allocated by our controller.

For the experiments, we use 2 Fujitsu Server PRIMERGY RX300 S7, connected via a Gigabit
Ethernet switch, each one equipped with two 2.4 GHz Intel Xeon E5-2665 processors with 8 cores
each, and with 96 GiB of RAM, both running the Linux kernel version 4.1.13 and Xen 4.4. One
of these machines is used to run all the VMs corresponding to the cloud applications used in our
evaluation, while the other one is used to run all the software modules composing the testbed.

To compare FCMS against state-of-the-art alternative solutions, we implement two additional
state-of-the-art controllers, namely APPLEware [19] (which uses a model predictive controller and a
neuro-fuzzy inference system) and FMPC [20] (which uses a predictive controller, based on genetic
algorithms, and a neuro-fuzzy inference system), that have been chosen thanks to their ability to
allocate both CPU and memory capacity, and carry out the same experiments also with them.

The results we obtained in the experiments demonstrate the ability of FCMS to achieve its design
goals, and to outperform its alternative counterparts in all the scenarios considered in our evaluation.

In this section, after describing the performance metrics (Section 5.1), and the experimental
settings (Section 5.2 and Section 5.3), we discuss the results of our experiments (Section 5.4).
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Cloud Web or Single Tier VM DB Tier VM
Apllication vCPUs RAM (GiB) Disk (GiB) vCPUs RAM (GiB) Disk (GiB)

Cassandra 1 4 30 − − −
Olio 1 3 30 1 3 30
Redis 1 16 30 − − −
RUBBoS 1 3 30 1 3 30
RUBiS 1 3 30 1 3 30

Table II. Resource capacities allocated to each VM of the cloud applications. Cassandra and Redis are single-
tier applications.

5.1. Performance Metrics

To quantify the performance attained by FCMS, as well as by the other controllers we consider for
comparison purposes, we use the following three metrics:

• the Mean CPU Capacity (MCC ) assigned to each application tier, defined as the average of
the CPU capacity allocated in each control interval;

• the Mean Memory Capacity (MMC ) allocated to each application tier, defined as the average
of the memory capacity allocated in each control interval;

• the Percent Error Ê, defined as the relative percentage change between the achieved value Ŷ
and the SLO value r, that is:

Ê = 100 · Ŷ − r

r
(7)

These metrics are used to rank controllers as follows: if Ê > 0, then the controller is violating
the SLO, so it is placed at the bottom of the ranking. If, instead, Ê ≤ 0, then the lower MCC and
MMC values, the better the controller (i.e., among two controllers that both meet the SLO, the best
one is that which uses less CPU and memory capacity).

To take into account variability, we run each experiment 3 times, and we compute each metric as
an average of the results collected in each individual run.

5.2. Cloud Applications and Workloads

For our evaluation, we consider 5 applications that are considered to be representative of those that
run on today’s virtualized infrastructures [57], namely:

• Cassandra [58], a Java-based NoSQL data serving application (originally developed by
Facebook) designed to handle large amounts of data across many commodity servers.

• Olio [59, 60], a two-tier PHP-based Web 2.0 Internet application for social events modeled
after the Yahoo! Upcoming service.

• Redis [61], an in-memory data structure store, used as NoSQL key-value database, cache and
message broker.

• RUBBoS [62], a two-tier PHP-based Web 1.0 Internet application that implements a bulletin
board system modeled after an online news forum like Slashdot.org.

• RUBiS [63, 64], a two-tier PHP-based Web 1.0 Internet application that implements an auction
site prototype modeled after eBay.com.

We deploy and run each application tier inside a separate VM, whose settings are reported on
Table II (note that both Cassandra and Redis are single-tier applications).

To drive the workload of the above applications, we rely on the RAIN toolkit [65], a widely used
workload generator for cloud applications that we extended whenever needed to make it suitable for
our purposes (these extensions are now part of its official repository).

Each workload features a number of users, each one alternating its activity between thinking and
waiting for a response to the request issued to the cloud application after stop thinking. For all
applications, we use a negative exponentially distributed think-time whose mean is set to 7 sec.
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Cloud Mix of Operations Load (Number of Users)
Application Phase 1 Phase 2 Phase 3

Cassandra Zipfian distribution of key values, 40% reads, 40% writes, 20% deletes 400 800 200
Olio default RAIN Olio mix 100 150 50
Redis Zipfian distribution of key values, 40% reads, 40% writes, 20% deletes 500 1000 250
RUBBoS default RAIN RUBBoS mix 150 200 100
RUBiS default RAIN RUBiS mix 30 45 15

Table III. Three-phase workload parameters.

Cloud r
Application (sec)

Cassandra 0.068
Olio 0.366
Redis 0.034
RUBBoS 0.167
RUBiS 0.915

Table IV. Application SLOs. The SLO performance metric is the response time.

Different types of operations may be requested to each cloud application, as indicated in Table III,
where we specify the proportions of each request mix for the various applications.

To reproduce realistic operational conditions, characterized by time-varying and bursty
workloads, the number of users is not kept constant for the entire duration of the experiments,
but it is instead varied in a step-wise fashion. In particular, for each cloud application we create
a step-like workload pattern with 3 phases (1 phase for each burst), each one characterized by a
specific intensity, as shown in Table III, and whose duration is set for all applications to 750 sec for
the first and third phases and to 300 sec for the second phase.

As shown in Table III, each workload starts with a medium intensity phase (Phase 1), then
continues with a higher intensity phase (Phase 2), and then it ends with a lower intensity phase
(Phase 3). In every experiment, each step-like workload pattern is submitted twice sequentially,
thus making each experiment 1 hour long.

The SLO (p, r) for each cloud application, shown in Table IV, has been set in such a way to make
it, at the same time, achievable with the physical resources available in our testbed and a nontrivial
target to meet. In particular, we computed the empirical distribution of the response times of each
application when running it in isolation – under the maximal intensity workload (i.e., under Phase
2) – after allocating each one of its vCPUs on a distinct physical CPU core. We then computed the
value r corresponding to the 95th percentile, and we set the SLO to (95, r). In this way, the chosen
SLO value is not so small that could not be achieved by any controller even by using the whole
resource capacity, and not so large to be trivial to achieve even when resource capacity is low.

5.3. Controllers Parameters and Setup

All the controllers considered in our evaluation require to set the value of the sampling time ts
(representing the distance in time between 2 consecutive measurements of the SLO performance
metric of interest), and of the control time tc (representing the distance in time between 2 consecutive
controller activations). In our experiments, we set ts = 2 sec and tc = 10 sec for all the controllers.
Also, to ensure that (in each experiment) each controller starts with the same initial VM resource
allocations, we set the CPU and memory shares of each VM to 100%.

The values of the remaining parameters are reported in Table V, where there is a distinct table for
each controller. For the alternative solutions to FCMS, we use, whenever possible, the parameter
values found in their respective papers; in cases where the respective paper did not define them, we
set them to convenient values or to the best values we obtain by means of a trial-and-error approach.
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(a) Parameters for FCMS (see
Section 3 for details).

Parameter Value

Smoothing Factor β 0.9

(b) Parameters for APPLEware (see [19] for details).

Parameter Value

Control Horizon Hc 5
Control Penalty R 1
Output Order ϱ 1
Prediction Horizon Hp 20
RLS Forgetting Factor γ 0.9
Subtractive Clustering Radius for Cassandra 0.35
Subtractive Clustering Radius for Olio 0.30
Subtractive Clustering Radius for Redis 0.35
Subtractive Clustering Radius for RUBBoS 0.35
Subtractive Clustering Radius for RUBiS 0.30
Tracking Error Weight P 1

(c) Parameters for FMPC (see [20] for details).

Parameter Value

Control Horizon M 1
Control Penalty R 1
Genetic Algorithm Parameters MATLAB’s default [66]
Input Order m 1
Prediction Horizon P 1
Output Order n 1
RLS Forgetting Factor 0.9
Subtractive Clustering Radius for Cassandra 0.40
Subtractive Clustering Radius for Olio 0.30
Subtractive Clustering Radius for Redis 0.35
Subtractive Clustering Radius for RUBBoS 0.50
Subtractive Clustering Radius for RUBiS 0.30
Tracking Error Weight Q 1

Table V. Controllers parameters.

In addition to the above parameters, both APPLEware and FMPC need, for each cloud
application, an offline step to build their initial neuro-fuzzy model from previously collected data. In
their respective papers, there are not enough details to reproduce this step, so that we use a trial-and-
error approach where, for each cloud application and for each controller, we use standard system
identification techniques [67, 68] to select the best neuro-fuzzy model.

5.4. Results

Let us now discuss the results collected in our experiments. We run experiments in which a pair of
distinct applications is executed on the same cores of the physical CPU, so that resource contention
arises. More specifically, we consider all the 10 distinct pairs that can be obtained by combining the
5 cloud applications. To reduce space, in this paper we report the results for 3 of these pairs namely,
⟨RUBiS ,Olio⟩, ⟨RUBBoS ,Olio⟩, and ⟨Cassandra,Redis⟩ (however, the results for the remaining
pairs do not differ significantly from these ones).

To ensure that competing VMs are executed on the same physical CPU cores, we use vCPU
pinning as follows. For the ⟨RUBiS ,Olio⟩ and ⟨RUBBoS ,Olio⟩ pairs, we pin the VMs running the
same application tier (either Web or DB) to the same physical CPU core (e.g., the 2 VMs running the
Web tiers were assigned to the physical CPU core 0). Conversely, for the ⟨Cassandra,Redis⟩ pair,
we pin the single VM of each application to the same physical CPU core. The remaining physical
CPU cores are allocated to Xen’s Domain-0.

The results corresponding to the ⟨RUBiS ,Olio⟩, to the ⟨RUBBoS ,Olio⟩, and to the
⟨Cassandra,Redis⟩ pairs are shown in Table VI, Table VII, and Table VIII, respectively. The rows
of each table correspond to controllers, and columns report the values of Ê (together with a textual
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(a) RUBiS Application.

SLO MCC MMC

Satisfied? Ê Web (%) DB (%) Web (%) DB (%)

FCMS Yes −16.35 37.29 72.81 35.35 34.72
APPLEware No 1513.43 6.24 16.88 23.51 18.39
FMPC No 1506.53 13.86 37.02 56.28 54.46

(b) Olio Application.

SLO MCC MMC

Satisfied? Ê Web (%) DB (%) Web (%) DB (%)

FCMS Yes −12.15 42.18 22.81 76.66 89.71
APPLEware No 920.90 17.38 5.75 34.63 65.27
FMPC No 547.64 22.56 13.63 60.89 72.12

Table VI. Results for ⟨RUBiS ,Olio⟩.

(a) RUBBoS Application.

SLO MCC MMC

Satisfied? Ê Web (%) DB (%) Web (%) DB (%)

FCMS Yes −3.90 45.84 54.52 86.05 37.68
APPLEware No 2183.36 7.91 7.24 67.79 19.60
FMPC No 3079.03 18.99 25.25 63.58 45.35

(b) Olio Application.

SLO MCC MMC

Satisfied? Ê Web (%) DB (%) Web (%) DB (%)

FCMS Yes −11.95 33.10 16.01 73.32 89.08
APPLEware No 1053.62 22.85 7.04 54.61 73.15
FMPC No 526.77 22.23 14.28 53.32 68.49

Table VII. Results for ⟨RUBBoS ,Olio⟩.

annotation indicating whether the SLO has been satisfied or not) and those of both MCC and MMC
metrics attained by every controller for each application.

From these results, we conclude that FCMS is the best approach, since it is the only one able
to simultaneously meet the SLO of every application (i.e., Ê is negative) and provide the best
consolidation level. Conversely, none of the alternative solutions is able to do the same, since each
one of them is unable to meet the SLO for both applications.

The poor performance of APPLEware and FMPC is mainly due to their inability to quickly adapt
to time-varying workloads. This primarily depends by the low accuracy and generalization ability
of the neuro-fuzzy model built offline (see Section 5.3), that both approaches use to model the
controlled applications and thus to take their control decisions. Indeed, a too accurate model leads
to poor prediction accuracy when the input space is not completely covered by the fuzzy rules, and
a too generic model leads to poor prediction accuracy as well, since it is too coarse. This, in turn,
affects the online adaptation algorithms of the two approaches. Specifically, in the former case, the
model cannot be effectively trained online with inputs that it is not able to cover, whereas in the
latter case, the speed of adaptation is low. In both cases, the model adaptation is not sufficiently

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe.3968



FCMS: A FUZZY CONTROLLER FOR CPU AND MEMORY CONSOLIDATION. . . 19

(a) Cassandra Application.

SLO MCC MMC

Satisfied? Ê Single Tier (%) Single Tier (%)

FCMS Yes −11.82 29.28 63.09
APPLEware No 9126.67 6.69 26.60
FMPC No 4783.15 12.61 42.17

(b) Redis Application.

SLO MCC MMC

Satisfied? Ê Single Tier (%) Single Tier (%)

FCMS Yes −14.58 33.61 57.80
APPLEware No 3785.25 6.08 26.28
FMPC No 1755.66 6.60 90.53

Table VIII. Results for ⟨Cassandra,Redis⟩.

fast to keep the pace of the changes of the incoming workload. In addition to this issue, we also
note that another determining factor for the poor performance of APPLEware is the linearization
step used for building the linear state-space model for the model predictive controller, which may
significantly deteriorate the performance of the controller in case of strong nonlinearities in the
controlled application. This issue does not affect FMPC (which indeed exhibits better performance
than APPLEware) since the linearization step is not needed because the nonlinear optimization
control problem is solved by means of genetic algorithms.

Unlike the other controllers, FCMS is the only one that is able to meet the SLO of every
application (i.e., Ê is negative) and to provide the highest consolidation level by allocating the
minimum resource capacity (i.e., it obtains the smallest values for MCC and MMC with respect to
its competitors). It is able to do so thanks to its ability to (a) take control decisions by considering,
at each control interval, the available capacity of each managed resource, in addition to the
performance error, and (b) take memory allocation decisions by taking into account the currently
available CPU capacity.

To explain the above results, in Figures 8, 9 and 10 we plot the CPU and memory shares allocated
to every tier by each of the 3 controllers, as well as the actual CPU and memory utilizations of
that tier, and the percent error Ê as a function of time, respectively, for the Olio application in the
⟨RUBiS ,Olio⟩ pair (the results for the other pairs, do not significantly differ from those reported
here). In the figure, to better explain the evolution of the CPU and memory utilizations in each tier
and of the percent error, we highlight the regions corresponding to the different workload phases,
where a vertical dashed line marks the boundary between each phase and the next one (i.e., when
the workload intensity changes), and a label denotes the phase to which a region is associated, with
P1, P2, and P3 representing the Phase 1, Phase 2, and Phase 3 of the workload, respectively.

As shown in Figures 8b, 8e, 9b, and 9e for APPLEware and in Figures 8c, 8f, 9c, and 9f for FMPC,
both controllers are unable to track workload changes since the assigned resource shares (the solid
lines) remains essentially constant over time, instead of tracking the related resource utilizations (the
dotted lines), and often they are lower than the actual resource demands. We note that this behavior
is mainly determined by the inability of the neuro-fuzzy model, used by each controller, to quickly
adapt to the time-varying workload.

In particular, the initial decision taken by both APPLEware and FMPC for assigning to each tier
of Olio a too low share of memory capacity (in the figures, the solid line for MWeb and MDB in
the first P1 region) with respect to the actual demand (in the figures, the dotted line for DWeb and
DDB in the first P1 region), leads to the situation where both tiers are not capable to serve incoming
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tions under APPLEware.
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Figure 8. Resource allocations and utilizations for the Olio Web tier in the ⟨RUBiS ,Olio⟩ pair under
different controllers. Visual markers (•) represent only a subset of actual observations; they are used for

improving the readability of the plots.

requests due to lack of memory (e.g., they are unable to spawn new worker threads or processes)
and start refusing them.

This, in turn, impacts on the behavior of the RAIN workload generator as follows. When a request
is refused, the thread used by RAIN to emulate a user dies, with the consequence that it does not
generate any additional request. The resulting effect is that the request rate drops, and the CPU
utilization of both tiers drops as well (see the dotted line for UWeb and UDB ).

The inability of APPLEware and FMPC to track workload changes and thus to take right control
decisions, causes the application SLO to be always violated. This can be seen in Figure 10b for
APPLEware and in Figure 10c for FMPC, where the value of the percent error Ê (which has been
limited in the range between −100% and 100%, for the sake of readability) is always positive.

Unlike APPLEware and FMPC, the CPU and memory shares allocated by FCMS to each tier (the
solid lines in Figures 8a, 8d, 9a, and 9d ) as time goes by exhibits practically the same profile of the
corresponding actual utilizations (the dotted lines in the same figures). This means that FCMS is
able to determine the actual CPU and memory capacity needs of each tier, and to allocate it suitable
CPU and memory shares.

As can be noted from the figures, FCMS always allocate to each tier more CPU and memory
capacity than strictly needed. In particular, the difference between allocated and used CPU is
reasonably small most of the time and, for all tiers and applications, it ranges between 20% and
25%. This effect is not unexpected, but it is instead a design choice that has been encoded into the
membership function for “Cres”.

For the memory, the situation is somewhat different since FCMS is less aggressive and adjusts the
memory in use by a VM according to its available CPU capacity (to avoid the issues discussed in
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(e) Memory allocations and utiliza-
tions under APPLEware.
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Figure 9. Resource allocations and utilizations for the Olio DB tier in the ⟨RUBiS ,Olio⟩ pair under different
controllers. Visual markers (•) represent only a subset of actual observations; they are used for improving

the readability of the plots.
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Figure 10. Evolution of Ê for Olio in the ⟨RUBiS ,Olio⟩ pair under different controllers.

Section 2). Again, this behavior is by design, and has been encoded into the membership functions
for “Mres”.
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6. RELATED WORKS

The dynamic management and provisioning of physical resources for virtualized cloud applications
with SLO constraints is a topic that has been widely studied in the past years. However, to the best
of our knowledge, our work is the only one that focuses on the maximization of the consolidation
level under application performance constraints by taking into account the effects of the dynamic
allocation of the memory in use by VMs on the CPU utilization.

Modern platform virtualization offer sophisticated automatic memory allocation mechanisms to
adjust the memory in use by the VMs they host, based on the current memory pressure regime
(e.g., [39, 69, 70]). Furthermore, other approaches (e.g., [18, 71, 72, 73, 74], just to name a few)
aim at improving existing memory management techniques by overcoming their limitations and
by reducing their overhead (and hence their impact) on the running VMs. However, all of these
mechanisms are unaware of application performance and thus may lead to SLO violations, unless
they are complemented by approaches like ours. Also, some of these approaches (e.g., [70, 72]) are
of limited applicability as they require either a para-virtualized system or a modified version of the
hypervisor.

Thus application performance-aware approaches are needed to make sure that application SLOs
are met. Many of these approaches (like ours) are based on the dynamic VM vertical scaling
technique, which focuses on dynamically provisioning physical resources to one or more VMs in
order to achieve the SLOs of the applications they run. Various approaches have been proposed in
the literature.

In [75], the authors propose a resource management system consisting of two parallel adaptive
linear feedback controllers for CPU and memory, aimed at assuring average-based application
SLO metrics. In [76], the authors present a hierarchical system based on adaptive and linear
quadratic optimal feedback control theory for the dynamic vertical scaling of VMs in a resource
pool hierarchy. In [77], the authors propose a resource management system where a fuzzy controller
coordinates two linear feedback controllers to dynamically adjust the amount of CPU and memory
required to assure average-based application response times. In this case, coordination only consists
in determining the degree of contribution of the CPU and memory controllers according to the actual
usage of the respective controlled resource, and it does not take into account the interferences due
to the dynamic allocation mechanisms, like we do. Both approaches suffer from the following two
drawbacks: (a) they do not coordinate CPU and memory allocation, thus making memory allocation
adversely impact on vCPU utilization that, in turn, causes SLA violations (see Section 2), and (b)
linear feedback controllers are usually less effective to cope with non-stationary workloads than
those based on fuzzy control [19, 21, 22].

In [19], the authors propose APPLEware, an autonomic middleware for the joint performance
and power control of co-located web applications in virtualized infrastructures, based on adaptive
neuro-fuzzy modeling and on model predictive control. In [20], the authors present FMPC, a
resource management system for dynamic VM vertical scaling that is based on adaptive neuro-
fuzzy modeling and genetic algorithms. Both approaches use a neuro-fuzzy model to describe the
relationships between the application performance (the control output) and the resource allocations
(the control inputs), and to design a predictive controller (either based on model predictive control or
on genetic algorithms) that aims at reducing the control error by minimizing the allocated physical
resources. Besides the uncoordinated allocation of CPU and memory capacity, these approaches
suffer from the following drawbacks.

First, the input-output model they use does not take into account the resource usage of the various
application tiers, so it cannot detect the tiers that represent a bottleneck and, consequently, suitably
differentiate the amount of capacity allocated to each tier.

Second, the control objective does not consider the sign of the performance error, thus making
them unable to distinguish between deviations from the SLO value due to SLO violations and ones
due to SLO achievement but with over-provisioned resources.

Third, the APPLEware approach, proposed in [19], needs to use linearization to design the model
predictive controller, with consequent errors deriving from this operation.
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In contrast, as already discussed in Section 5, FCMS is able to take into consideration resource
bottlenecks at different application tiers (thus assigning them a different resource capacity), to make
different decisions according to the sign of the control error (thus differentiating between conditions
where SLO is violated and others where it is surely met), and to take into account the interference
of dynamic adjustment of the memory in use by each tier on its CPU utilization.

Some recent works, like [78, 79], propose an approach based on application-level ballooning,
which extends the concept of memory ballooning to those applications that manage their own
memory. These works use a white-box approach, by leveraging the full knowledge of the managed
application. On the one hand, these works may be very effective in reaching high consolidation
levels and application SLOs since they use a white-box approach, by leveraging the full knowledge
of the managed applications. On the other hand, the white-box approach limits their flexibility since
they are specifically tailored to selected applications. Instead, we use a black-box approach which
is able to work with any application without any prior knowledge.

Our work differs from these related works in the following aspects: (a) it uses a black-box control
theoretic approach based on fuzzy logic, (b) it takes control decisions by considering, at each
control interval, the resource bottlenecks at different application tiers, the interference of dynamic
memory adjustment on vCPU utilization (and, thus, on application performance), and the sign of
the performance error, (c) it is able to provide service level assurance for percentile-based SLOs,
and (d) it does not require any modification neither to the kernel of the VMs (i.e., it can be applied
to fully virtualized systems) nor to the hypervisor, but it simply relies on the mechanisms already
offered by the virtualization software.

7. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented FCMS, a dynamic vertical scaling resource management framework,
based on feedback fuzzy control, that is able to achieve the best consolidation level (in term of CPU
and memory capacity) that can be attained on a physical infrastructure without violating the SLAs of
the applications running on it. FCMS works by constantly monitoring application performance and
resources usage in order to determine whether and how to adjust the amount of physical CPU and
memory capacity allocated to each application tier, so that it is able to properly cope with the highly
dynamic, non-stationary and bursty workloads that characterize modern cloud applications, and to
avoid the negative effects on application performance caused by the interactions of the mechanisms
used for the dynamic CPU and memory allocation.

To assess the efficacy and performance of FCMS, we implemented it on a real testbed, that we
used in an thorough experimental evaluation involving 5 real-world cloud applications (namely,
Cassandra, Olio, Redis, RUBBoS, and RUBiS), that can be considered representative of the
applications that run today on cloud infrastructures, exposed to time-varying and bursty workloads,
in presence of resource contention. Furthermore, we compare FCMS against two existing, state-of-
the-art dynamic vertical scaling controllers, namely APPLEware and FMPC, aiming at similar goals
of FCMS.

Our results show that, in all the experimental scenarios we considered, FCMS outperforms
the other approaches, as it is able to achieve a better consolidation level without violating any
application SLAs, unlike competing solutions that fail to achieve either one of these goals, or both
of them.

As future works, we plan to extend FCMS to incorporate other types of physical resources (e.g.,
network and disk bandwidth) in addition to CPU and memory. Also, we plan to investigate the use
of adaptive control techniques to dynamically adapt the parameters of the membership functions
to the incoming workload, and to evaluate its possible benefits in obtaining a better consolidation
level, while still achieving application SLAs and keeping the controller design and tuning as simple
as possible.
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74. Moltó G, Caballer M, de Alfonso C. Automatic memory-based vertical elasticity and oversubscription on cloud

platforms. Future Generation Computer Systems 2016; 56:1–10, doi:10.1016/j.future.2015.10.002.
75. Heo J, Zhu X, Padala P, Wang Z. Memory overbooking and dynamic control of xen virtual machines in consolidated

environments. Proc. of the IFIP/IEEE International Symposium on Integrated Network Management (IM), 2009;
630–637, doi:10.1109/INM.2009.5188871.

76. Lu L, Zhu X, Griffith R, Padala P, Parikh A, Shah P, Smirni E. Application-driven dynamic vertical scaling of virtual
machines in resource pools. Proc. of the 2014 IEEE Network Operations and Management Symposium (NOMS),
2014; 1–9, doi:10.1109/NOMS.2014.6838238.

77. Farokhi S, Lakew EB, Klein C, Brandic I, Elmroth E. Coordinating cpu and memory elasticity controllers to meet
service response time constraints. Proc. of the 2015 International Conference on Cloud and Autonomic Computing
(ICCAC), 2015; 69–80, doi:10.1109/ICCAC.2015.20.

78. Salomie TI, Alonso G, Roscoe T, Elphinstone K. Application level ballooning for efficient server consolidation.
Proc. of the 8th ACM European Conference on Computer Systems (EuroSys), ACM, 2013; 337–350, doi:10.1145/
2465351.2465384.

79. Spinner S, Herbst N, Kounev S, Zhu X, Lu L, Uysal M, Griffith R. Proactive memory scaling of virtualized
applications. Proc. of the 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), 2015; 277–
284, doi:10.1109/CLOUD.2015.45.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe.3968


