
A Game-Theoretic Approach to Coalition
Formation in Fog Provider Federations

Please, cite this paper as:
Cosimo Anglano, Massimo Canonico, Paolo Castagno, Marco Guazzone, Matteo

Sereno
“A Game-Theoretic Approach to Coalition Formation in Fog Provider Federations,”

Proc. of the 3rd IEEE International Conference on Fog and Mobile Edge
Computing (FMEC), Barcelona, Spain, Apr 23–26, 2018, pp. 123–130.

DOI:10.1109/FMEC.2018.8364054
Publisher: https://doi.org/10.1109/FMEC.2018.8364054

A Game-Theoretic Approach to Coalition Formation in Fog Provider Federations

Cosimo Anglano∗, Massimo Canonico∗, Paolo Castagno†, Marco Guazzone∗ and Matteo Sereno†
∗DiSIT, Computer Science Institute, University of Piemonte Orientale, Italy

†Department of Computer Science, University of Torino, Italy

Abstract—In this paper we deal with the problem of making
a set of Fog Infrastructure Providers (FIPs) increase their
profits when allocating their resources to process the data
generated by IoT applications that need to meet specific
QoS targets in face of time-varying workloads. We show
that if FIPs cooperate among them, by mutually sharing
their workloads and resources, then each one of them can
improve its net profit. By using a game-theoretic framework,
we study the problem of forming stable coalitions among
FIPs. Furthermore, we propose a mathematical optimization
model for profit maximization to allocate IoT applications
to a set of FIPs, in order to reduce costs and, at the same
time, to meet the corresponding QoS targets. Based on this,
we propose an algorithm, based on cooperative game theory,
that enables each FIP to decide with whom to cooperate in
order to increase its profits. The effectiveness of the proposed
algorithm is demonstrated through an experimental evalu-
ation considering various workload intensities. The results
we obtain from these experiments show the ability of our
algorithm to form coalitions of FIPs that are stable and
profitable in all the scenarios we consider.

Index Terms—Fog computing, Fog federation, Game Theory,
Coalition Formation

1. Introduction

In Fog Computing, compute, storage, and network
resources are provided by fog nodes that are placed at the
edge of the network, in close proximity to where data are
generated. In this way, the data generated by IoT devices
can be processed at the edge of the network, thus greatly
reducing latency and avoiding to congest the core network,
with respect to centralized cloud solutions.

The reduction of latency, however, may be quite costly
in terms of resources, since it is proportional to the inverse
square root of the number of fog nodes [1]. This cost may
be prohibitive for enterprises whose population of users
is spread across different geographic areas, as they would
need to purchase, operate, and manage a large number of
fog nodes distributed over these areas.

It has been anticipated [1] that Fog Infrastructure
Providers (FIPs), i.e., operators that provide individual
enterprises with the computing and networking infras-
tructure needed to host their fog nodes on a pay-per-
use basis, will eliminate these costs. Indeed, on the one
hand individual enterprises would not have to purchase,
deploy, and manage their own fog infrastructures, while
FIPs would amortize these costs by multiplexing the same
physical infrastructure among multiple tenants, given that
each enterprise would use only a fraction of the physical

capacity of fog nodes because of the variations in volume,
variety, and velocity of generated data [2].

Furthermore, it has also been anticipated [1] that in
many cases (e.g., small urban centers or rural areas) FIPs
will be regional providers that exploit co-location facilities
to cut down operational costs, a solution that is growing
fast in the small-to-medium-size enterprise arena [3].

In the case where several FIPs share the same co-
location facility (and, hence, their resources are indis-
tinguishable from the perspective of latency perceived
by a user), their profits can be further increased if they
cooperate among them by mutually sharing their users and
infrastructures. In particular, each FIP can improve its net
profit by either (a) reducing energy costs by switching
off (a part of) its infrastructure and offloading its users
to resources belonging to other cooperating FIPs, or (b)
increasing its earnings by attracting users from other FIPs,
or (c) relying on resources of other FIPs to accept more
users than what could do by working alone.

Obviously, it is unreasonable to expect that a FIP is
willing to unconditionally cooperate with the other ones
regardless the benefits it receives. Such a cooperation
arises indeed only if suitable benefits result from it, and
if the risks of monetary losses (caused by violations in
the QoS parameters negotiated with its clients) are kept
within acceptable limits.

In this paper, we devise a decision algorithm that
provides a set of FIPs with suitable means to decide
whether to cooperate with other FIPs, and if so with
whom to cooperate. Our algorithm is based on game-
theoretic techniques, where the process of establishing
cooperation among the FIPs is modeled as a cooperative
game with transferable utility (in particular, as a hedonic
game, whereby each FIP bases its decision on its own
preferences).

More specifically, we propose a game-theoretic frame-
work to study the problem of forming stable coalitions
among FIPs, and a mathematical optimization model to
allocate IoT services to a set of resources, in order to
improve profits and, at the same time, to meet service
QoS for FIPs inside the same coalition. We achieve our
goal by devising a coalition formation algorithm to form
stable coalitions that allows each FIP to autonomously and
selfishly decide whether to leave the current coalition to
join a different one or not on the basis of the net profit it
receives for doing so.

In our approach, each FIP pays for the energy con-
sumed to serve each service, whether it belongs to it or to
another FIP, but receives a payoff (computed as discussed
later) for doing so. We use the game theory framework
proposed in [4] to obtain Nash-stable coalitions [5], where
no FIP can benefit to leave the current coalition to join

Figure 1. System architecture.

a different one. The solution we propose can be easily
implemented in a distributed fashion.

To demonstrate the effectiveness of the algorithm we
propose, we carry out a set of experimental evaluations.
The results we obtain indicate that our algorithm allows
indeed a population of FIPs to significantly improve their
profits thanks to the combination of energy reduction and
satisfaction of QoS requirements.

The contributions of this paper can be summarized as
follows:

• we consider the problem of improving the profit
of a set of FIPs that share the same co-location
facility;

• we model the problem as a cooperative game with
transferable utility;

• we devise a distributed algorithm enabling oper-
ators to find the coalition improving their profits
under stability concerns.

The rest of this paper is organized as follows. Section 2
describes the details of the system model, then in Section 3
we present the problem statement. Section 4 introduces the
coalition formation game and we evaluate the system in
Section 5 using simulations. Finally, we end the paper with
related work (in Section 6) and conclusions (in Section 7).

2. System Model

We consider a typical configuration [6] of a fog
system, whose architecture is schematically depicted in
Figure 1, where a large population of geo-distributed IoT
devices, located in a set of n distinct geographic areas,
generates very large amounts of data that require real-
time or near-real-time processing. These devices may be
either stationary (e.g., smart homes, IP cameras, smart
traffic lights, etc.) or mobile (e.g., smartphones, tablets,
connected cars, etc.).

Without loss of generality, we assume that each area
j is covered by a single co-location facility, each one
hosting a set of fog nodes that run a set of applications
in charge of processing the data generated by the devices.
These applications are encapsulated into a set of Virtual
Machines (VMs), hosted on the fog nodes. In the rest of
this section, we describe the characteristics of the three
main components of the system, namely the fog nodes,
the applications, and the VMs.

2.1. The Fog Nodes

We assume that each co-location facility hosts a set
of resource-rich fog nodes [7] (e.g., Cloudlets or Micro
Data Centers) belonging to a population of m FIPs. For
instance, the co-location facility of area j in Figure 1 hosts
fog nodes belonging to FIPs x and y.

Each fog node z is characterized by its CPU capacity
cz , which is measured by means of a suitable benchmark,
and by its power consumption wz(u), which is computed
as in [8] by the following equation:

wz(u) = Wmin
z + u ·

(
Wmax
z −Wmin

z

)
(1)

where u ∈ [0, 1] is the CPU utilization of the fog node,
and Wmin

z and Wmax
z denote its power consumption (in

Watts) when its CPU is in the idle state and when it is
fully utilized, respectively. 1

We assume all the fog nodes of the same FIP i located
in a given area j are identical among them, i.e. they
are characterized by the same CPU capacity and energy
consumption. We also assume that they are provided by
suitable dynamic resource allocation mechanisms (e.g. [9],
[10], [11]) enabling them to partition their physical capac-
ity across the VMs they run.

2.2. The Applications

The data generated by the IoT devices are pro-
cessed by a set of K distributed applications S =
{S1, S2, . . . , SK}. Each application Si is associated with
its reference FIP Ref (Si), i.e., the FIP that hosts the
VMs running the instances of Si, and we assume that
a given FIP k can be the reference FIP of several distinct
applications, that we denote as App(k).

We assume that each application Si is characterized by
its QoS target, quantified by the maximum value Qi that
the average request processing time Ti can take (in other
words, it must be ensured that Ti ≤ Qi). To achieve its
QoS target, the owner of application Si makes an agree-
ment with Ref (Si) stating that it will pay to Ref (Si) a
certain amount of money per each unit of time, computed
according to an agreed-upon revenue rate RRef (Si),i. In
addition, Ref (Si) will pay the owner of Si an amount of
money per each unit of time during which the QoS target
of Si is not met, computed according to the agreed-upon
penalty rate LRef (Si),i.

To cover all the various areas of its interest, application
Si is present with one or more instances in the various
areas, whereby each instance corresponds to a VM, and
its instances located in a given area j process all the data
generated for Si by the devices located in that area. We
assume that the load of data processing requests submitted
to application Si in any area j varies over time, and is
described by its load profile curve l(i, j) expressing, as
function of time, the rate at which requests are submitted.
We also assume that, for each application Si and area j,
l(i, j) is known in advance. The load profile curve can
be indeed accurately built by estimating both the request
rates generated by stationary devices and mobile users,
and by aggregating them into a single measure.

1. This model, albeit simple, has been shown to provide accurate
estimates of power consumption for different host types when running
several benchmarks representative of real-world applications [8].

2.3. The Virtual Machines

The instances of any application Sj are embedded into
a set of identical VMs, each one hosting a single instance,
that are instantiated from a common master VM, denoted
as VM j .

VM j is characterized by the amount of time τj it takes
to process a single request that, without loss of generality,
it is assumed to be determined only by the amount of
physical CPU capacity allocated to that VM, 2 and that
this amount is the same for all its instances, and remains
constant for all their lifetimes.

To ensure that all the instances of VM j exhibit the
same value of τj , we assume that each one of them
receives, on the fog node k on which it runs, a suitable
amount of CPU capacity Uk,j computed by Eq. 2 [12]
(see [13] for more details):

Uk,j = Ux,j
cx
ck

(2)

where ck and cx denote the physical CPU capacity of fog
node k and x, respectively, that are measured as discussed
in Section 2.1.

In order to meet the QoS target of Si in area j, it
is necessary to suitably choose the number Ni,j of VMs
allocated on fog nodes located in that area so as to ensure
that Ti ≤ Qi. This value, however, depends on the value
of the load intensity λi,j(t), which is not constant but
varies, as already discussed, according to the load profile
l(i, j).

To determine λi,j(t), we proceed as follows: we dis-
cretize l(i, j) by splitting the time axis into uniform
disjoint sub-intervals [r, r + ∆t) of length ∆t time units.
Then, the value λi,j(s) for any sub-interval s is approxi-
mated as a constant value set to the peak load in that sub-
interval. Once the values of λi,j(s) have been computed
as above, they are fed as input into a queuing model
representing the set of VMs of Si allocated in area j. The
solution of this model yields the minimum number Ni,j(s)
of VMs in sub-interval s that results in the satisfaction of
the inequality Ti ≤ Qi.

In particular, the set of VMs associated to application
Si in area j is modeled as an M/M/c-FCFS queuing
station [14] with c = Ni,j(s), given that the service times
of all the instances of VM i are identical and the incoming
stream of processing requests is fairly distributed among
them.

For these queuing systems, it can be shown that in any
time interval – and in particular in each sub-interval s –
the average response time Ti is given by Eq. (3) (where,
for readability purposes, we drop the dependence on s):

Ti =
n̄

λi,j
=

C

µNi,j − λi,j
+

1

µ
(3)

where:

• µ = 1
τi

is the request service rate;
• n̄ = ρ

1−ρC + ρNi,j is the average number of
requests in the station, both in the queue and

2. The extension to multiple types of physical resources (e.g., RAM
and storage) and to multiple classes of VMs, each one with different
physical resource requirements, is straightforward (e.g., see [12]).

receiving service, and ρ =
λi,j

µNi,j
is the offered

load to the station;
• C = [1 + (1− ρ)(

Ni,j !

(ρNi,j)Ni,j
)
∑Ni,j−1

k=0
(Ni,jρ)

k

k!]−1

is the probability of a request to be enqueued
before being served.

From Eq. (3) it follows that, in order to have Ti ≤ Qi,
Ni,j must satisfy the following inequality:

Ni,j ≥
C

Qi − 1
µ

+
λi,j
µ

(4)

Furthermore, to ensure the stability of the system, we must
have that:

Ni,j >
λi,j
µ

(5)

3. Problem Statement

Let us now describe the problem that is faced by a FIP
i that has to allocate, for each application Sk ∈ App(i),
the corresponding set of VMs on its fog nodes located in
area j (denoted as FN(i, j)). Without loss of generality,
we focus on a single area, given that FIPs allocate their
respective VMs submitted in a given area independently
from those submitted to other areas. The extension to other
areas is thus straightforward.

FIP i aims at getting a net profit (i.e., the difference
between its revenues and costs) as high as possible, given
the set of requests for the allocation of all the applications
Sk ∈ App(i).

The net profit rate Pi,j (i.e., the profit FIP i makes per
unit of time) is computed as the following difference:

Pi,j =
∑

Sk∈App(i)

Ri,knk,j −
(∑
f∈FN (i,j)

wf (uf)Ei,j+

∑
Sk∈App(i)

1[0,Nk,j)(nk,j)Li,k

)
(6)

where nk,j ≤ Nk,j is the number of VMs for Sk that are
actually allocated (see below), Ei,j is the energy cost for
FIP i in area j (expressed as a cost rate per unit of time),
uf is the overall physical capacity of fog node FN(i, j)
allocated to the VMs it hosts, and 1Ω(x) is the indicator
function which has value 1 if x ∈ Ω and 0 otherwise.

Eq.(6) has the following meaning:

• the first term of the difference is the sum of the
revenue rates Ri,k that FIP i charges (per unit of
time) to each application Sk for hosting nk,j of
its VMs;

• the second term of the difference represents the
costs that FIP i incurs (per unit of time) to run
the above VMs. This cost, in turn, is given by
the sum of two costs, namely (a) the energy cost
rates resulting from the execution of overall CPU
capacity allocated to all the VMs it hosts (see
Eq. 1), and (b) the possible monetary penalty rates
Li,k that FIP i incurs when the QoS of some
application Sk ∈ App(i) is not met (i.e., when
nk,j < Nk,j).

Maximizing the net profit rate is a challenging task
which involves solving an optimization problem that takes

into account the current workload, the electricity price and
the application penalties. In Section 4.2, we provide more
details about the solution to this optimization problem.

Intuitively, when the number of VMs to allocate on a
fog node FN(i, j) is so small that the resulting net profit
is negative, FIP i must decide whether it is more profitable
to not allocate any VM on FN(i, j) (thus opting to pay
the monetary penalties for violating the QoS of the related
applications), or it is instead better to allocate the VMs
anyways to avoid paying high application penalties. Also,
when the number of VMs is so large that it needs more
than one fog node to allocate them, FIP i must decide
whether it is more profitable to allocate all of them, or
it is instead better to allocate only the ones that leads to
a positive profit (thus paying the monetary penalties for
those applications whose QoS is not met).

In this paper, we show that a way to improve the net
profit of a FIP is through cooperation, meaning that two
or more FIPs in the same area of interest join to form a
coalition where they share their workloads and their fog
nodes to serve them.

Specifically, with cooperation, FIP i can try to reduce
its energy consumption costs by allocating (some of) its
VMs to the fog nodes of other FIPs, so that its fog nodes
can be turned off. Also, FIP i can try to increase its
revenues either by hosting VMs from other FIPs (so that
it can better amortize its energy consumption costs) or by
relying on fog nodes of other FIPs to allocate VMs that,
if working alone, it could not host (thus incurring into
monetary penalties for violating the QoS of the related
applications).

Clearly, FIPs are willing to cooperate with each other
only if they receive suitable incentives to do so that make
cooperation at least as profitable as working alone. The
lack of these suitable incentives leads to the so called un-
stable coalitions, that is to coalitions where a participating
FIP prefers either to leave its current coalition to move to
a more profitable one or to work alone.

4. The coalition formation game

We assume that the agents (also called players) may
join/leave a coalition without any permission require-
ments, that is, a player is always accepted by a coalition
to which it is willing to join, and it can leave a coalition
without any permission. One way to describe such a
process is to model it as a coalition formation game.
In particular, in this paper we use a type of coalition
formation games, known as hedonic coalition formation
games (also called hedonic games) [5].

An hedonic game is a game where: i) the gain of any
player depends solely on the members of the coalition
to which the player belongs, and ii) the coalitions arise
as a result of the preferences of the players over their
possible set of coalitions. The hedonic games are usually
analyzed in terms of the stability of coalition structures:
the focus lies on finding the conditions for the existence
of stable outcomes (i.e., a coalition or a set of coalitions).
An outcome (e.g., a set of coalitions) is said to be stable
if no player (or possibly no coalition of players) can
deviate from the outcome so as to reach a subjectively
better outcome. Several notions of stability have been
defined in literature some of which allow to guarantee

stability against single player moves, i.e. Nash stability,
while others also allow group movements, i.e.the core (see
[5] for details).

A coalition C ⊆ N represents an agreement among
the players in C to act as a single entity (i.e., they must
agree to share their own resources and users among them).
At any given time, the set of players is partitioned into
a coalition partition Π, that we define as the set Π =
{C1, C2, . . . , Cl, }. That is, for k = 1, . . . , l, each Ck ⊂
N is a disjoint coalition such that

⋃l
k=1 Ck = N and

Cj ∩ Ck = ∅ for j 6= k. Given a coalition partition Π,
for any player i ∈ N , we denote by CΠ(i) the coalition
Ck ∈ Π such that i ∈ Ck.

An hedonic coalition formation game is a pair (N ,�
), where N is the set of players, and �i a preference
profile that specifies, for every player i ∈ N , a reflexive,
complete, and transitive binary relation �i on Ni (set of
all coalitions that include player i). The binary relation
�i is called preference relation.

In its partition form, a coalition game is defined on
the set N by associating a utility value u(C|Π) to each
subset of any partition Π of N . For hedonic games the
utility value of a coalition C is independent of the other
coalitions, that is, and therefore, u(C|Π) = u(C). In
particular, we define the coalition value u(C) as the net
profit rate of coalition C that we compute as the solution
of the profit maximization problem that is presented in
Section 4.2.

To set up the coalition formation process, we need
to specify the preference relation so that each player can
order and compare all the possible coalitions it belongs to,
and hence it can build preferences over them. This can be
done by using a preference function πi(C) that describes
the preference of player i (with i ∈ N) for any coalition
C ∈ 2N . Formally the preference function for player i can
be defined as πi : 2N −→ R. In this manner we can say
that a player i prefers the coalition C to T iff,

πi(C) ≥ πi(T)⇐⇒ C �i T . (7)

We assume that the preference relation is chosen to be
equal to the utility allocated to the player in a coalition.
In other words, we have that πi(C) = φi(C), where φi(C)
is the utility received by player i in coalition C.

An allocation is said to be efficient if for any coalition
C ∈ Π, the sum of the individual utilities allocated to the
coalition participants is equal to the coalition utility, that
is ∑

i∈C

φi(C) = u(C). (8)

A partition Π is said to be Nash-stable if no player can
benefit from moving from his coalition CΠ(i) to another
existing coalition Ck, that is,

∀i, k : i ∈ CΠ(i) �i Ck ∪ {i},where Ck ∈ Π ∪ {∅}. (9)

Note that, as pointed out in [5], the Nash-stability is a
noncooperative notion of stability in the sense that players
do not need permission to leave/join a coalition.

In this paper we use the approach to the Nash-stability
proposed in [4]. Due to the lack of space in this paper we
present a summary of the main steps of this approach; all
the details can be found in [13].

In [4] the set of efficient allocations of a Nash-stable
coalition partition has been called Nash-stable core, and
the Nash-stability has been rephrased to an optimization
problem aiming at deriving the functions v(·, ·) (for any
player i ∈ N) satisfying the property defined by the
following equation

C1 �i C2 ⇐⇒
∑
j∈C1

v(i, j) ≥
∑
j∈C2

v(i, j), (10)

with v(i, i) = 0. The method presented in [4] derives
the functions v(·, ·) satisfying the property defined by
Equation (10), and the preference relations �i that satisfy
the Nash-stability condition.

According to the results presented in [4], a feasible
solution of the following linear program guarantees the
Nash-stability condition

max
∑
∀C∈2C

∑
i,j∈C:j>i

v(i, j) subject to

∑
i,j∈C:j>i

v(i, j) ≤ 1

2
∆(C), ∀C ∈ 2C , (11)

where ∆(C) = u(C) −
∑

i∈C u({i}) is the profit due to
coalition C.
A three players example. We illustrate the previous
concepts by means of a simple three players game, where

u({1}) = u({2}) = u({3}) = −0.002,

u({1, 2}) = −0.001, u({1, 3}) = −0.005,

u({2, 3}) = −0.003, u({1, 2, 3}) = −0.0035.

A utility allocation method based on the relaxed effi-
ciency can be found by solving the linear program defined
in (11). In particular we have that

max {v(1, 2) + v(1, 3) + v(2, 3)} subject to

v(1, 2) ≤ 0.003

2
, v(1, 3) ≤ −0.001

2
, v(2, 3) ≤ 0.001

2
,

v(1, 2) + v(1, 3) + v(2, 3) ≤ 0.0025

2
,

which produces the following values:

v(1, 2) = 0.00125; v(1, 3) = −0.0005; v(2, 3) = 0.0005.

From this we can derive the following preference profile

{1, 2} �1 {1, 2, 3} �1 {1} �1 {1, 3}
{1, 2, 3} �2 {1, 2} �2 {2, 3} �2 {2}
{2, 3} �3 {3} �3 {1, 2, 3} �3 {1, 3}.

By assigning φi(C) = u({i})+
∑

j∈C v(i, j) we have that

φ1({1, 2}) = φ2({1, 2}) = −0.00075;

φ1({1, 3}) = φ3({1, 3}) = −0.0025;

φ2({2, 3}) = φ3({2, 3}) = −0.0015;

φ1({1, 2, 3}) = −0.00125;φ2({1, 2, 3}) = −0.00025;

φ3({1, 2, 3}) = −0.002.

TABLE 1. A POSSIBLE EVOLUTION OF THE DECENTRALIZED
ALGORITHM

Round / Schedule Step Player Strategy tuple Partition
0 {s1,s2,s3} {(1), (2), (3)}

1 - (3,1,2)
1 3 {s1,s2,s2,3} {1, (2, 3)}
2 1 {s1,2,3,s2,s2,3} {(1, 2, 3)}
3 2 {s1,2,3,s1,2,3,s2,3}

2 - (2,3,1) 1 2 {s1,2,3,s1,2,3,s2,3} {(1, 2, 3)}
2 3 {S1,2,3, S1,2,3, S1,2,3}
3 1 {s1,2,3,s1,2,3,s1,2,3}

4.1. The Coalition Formation Algorithm

In this section, we succinctly describe a decentralized
algorithm to reach a Nash-stable partition inspired to the
proposal of [4]. All the details of this algorithm can be
found in [13], and for the theoretical foundations in [4].
We assume that the game evolves in turns and players are
allowed to choose their strategies once in each turn.

To describe the decentralized coalition forma-
tion algorithm we denote a scheduler by Σ =
{s(1),s(2), . . . ,s(N)}. A scheduler is a random permu-
tation of players’ indices and, in particular, the sched-
uler of l-th round denoted by s(l) is a tuple s(l) =
{s1(l), s2(l), . . . , sN (l)}, where si(l) identifies the i-th
player selected to play in the round l. Hence, each round
includes N steps that correspond to single players’ deci-
sions. It is important to notice that in this game, the set
of actions available to each player is equal to the number
of coalitions in the game in that moment. For example,
in the case of all players apart and considering singletons
as coalitions a player may join any other agent or not to
move.

A strategy tuple in step s is denoted as σ(s) =

{σ(s)
1 , σ

(s)
2 , . . . , σ

(s)
N }, where σ(s)

i is the strategy of player
i in step s. The strategy tuples σ(s) and σ(s−1) differ in at
most one position. That is, the position corresponding to
the player that takes its turn in step s. On the other hand
σ(s) and σ(s−1) are identical if the player that takes its
turn in step s does not change its previous strategy. We
denote by Π

(s)
l the partition in step s of the l-th round,

and by Πl the partition obtained at the end of the l-th
round.

Furthermore, we denote by C(s)
i = {j : σ

(s)
j =

σ
(s)
i ,∀j ∈ N} the set of players that share the same

strategy with player i. In this manner we have that pref-
erence relation of player i, denoted by πi(C), verifies the
following relation

πi(C(s)
i) > πi(C(s−1)

i)⇐⇒ C(s)
i �i C(s−1)

i .

It is easy to verify that a Nash-stable partition is reached,
at a given l + 1-th round, when Πl = Πl+1.
A three players example (cont’d). The algorithm starts
from the Π0 = {(1), (2), (3)}, that is the partition where
each player is alone. This corresponds to the strategy tuple
{s1,s2,s3} (each player chooses a different strategy).
Table 1 shows a possible evolution of the example in the
previous section.

In the first example, the game begins with all players
apart and the extracted scheduler is (3, 1, 2). Player 3
begins and coalesces with Player 2. Player 1 is the next
to play, and the only move available to him better than
playing alone is to join the grand coalition. Therefore,
at this point of the game, the formed coalition gathers

all the players. For Player 2, the coalition {1, 2, 3} is
the most preferable and it is happy to be part of it.
After Player 2 moves the round is over and the second
round begins with scheduling (2, 3, 1). Now is Player 1
turn and it faces the same choice as before; since at the
previous step Player 1 chose the best it could and now the
situation is unchanged, it will choose again to stay in the
grand coalition. Eventually is Player 3 turn which does
not get any benefit from leaving the grand coalition an
so it will remain there. Given that there is no any player
who benefits from unilaterally deviate from the strategy
profile {s1,2,3,s1,2,3,s1,2,3} a Nash-stable equilibrium is
reached.

4.2. Computation of the Optimal Coalition Allo-
cation Profit

The coalition formation process described in the above
sections requires the computation of the coalition net profit
rate u(C) for any coalition C of FIPs that may form.

As discussed in Section 3, this computation involves
solving an optimization problem that, given a geographic
area h and a coalition C of FIPs located in this area, seeks
to find the optimal allocation of the set V of VMs where
to run instances of the applications A =

⋃
i∈C App(i)

to host in this area onto the set F =
⋃
i∈C FN (i, h) of

fog nodes, so as to maximize the overall net profit rate of
coalition C. The set V is given by the union of the Nj,h(t)
VMs required by each application j ∈ A to meet its target
QoS in the discretization interval t.

To this purpose, we define a Mixed Integer Linear
Program (MILP) to model the problem of allocating a set
V of VMs onto a set F of fog nodes so that the overall
net profit rate of the coalition C is maximized.

The resulting optimization model is shown in Figure 2,
where we use the same notation defined in Section 2 and
where we denote as p(·) the function p : F → C which
maps, in the given area of interest h, a fog node to its
FIP, and as s(·) the function s : V → A which maps a
VM to the (instance of) application it runs. Also, to ease
readability, we simplify the model by dropping from it
the dependence from the discretization interval t (e.g., we
denote as Nj,h, instead of Nj,h(t), the required number of
VMs to allocate in order to meet the QoS of application
j).

In the optimization model, we define the following
decision variables:

• xi: a binary decision variable which is equal to 1
if fog node i is powered on, and 0 otherwise;

• yi,j : a binary decision variable which is equal
to 1 if VM j is allocated on fog node i, and 0
otherwise;

• ui: a non-negative real decision variable which
represents the total fraction of CPU capacity of
fog node i that has been allocated to the VMs it
hosts;

• nk: a non-negative integer decision variable which
denotes the number of VMs allocated to run in-
stances of application k.

The objective function of the optimization model rep-
resents the overall net profit rate earned by the coalition

maximize u(C) =
∑
k∈A

RRef (k),knk,h

−
[∑
i∈F

(
xiW

min
i + (Wmax

i −Wmin
i)ui

)
Ep(i),h

+
∑
k∈A

(
nk,h < Nk,h

)
LRef (k),k

]
(12a)

subject to∑
j∈V

yi,j ≤ |V|xi, ∀i ∈ F , (12b)∑
i∈F

yi,j ≤ 1, ∀j ∈ V, (12c)

ui =
∑
j∈V

yi,jUi,j , ∀i ∈ F , (12d)

ui ≤ xi, ∀i ∈ F , (12e)

nk =
∑
i∈F

∑
j∈V,

s(j)=k

yi,j , ∀k ∈ S, (12f)

nk ≤ Nk,h, ∀k ∈ A, (12g)
xi ∈

{
0, 1
}
, ∀i ∈ F , (12h)

yi,j ∈
{
0, 1
}
, ∀i ∈ F , j ∈ V, (12i)

ui ∈ R∗, ∀i ∈ F , (12j)
nk ∈ N, ∀k ∈ A. (12k)

Figure 2. The optimization model for the maximization of the coalition
net profit rate.

C of FIPs, which is defined as the difference between
the revenues obtained by the allocation of VMs, and the
costs due both to the electricity power absorbed by the
powered-on fog nodes and to QoS violations (if any).

The maximization of this objective function is bound
to the following constraints:

• Eq. (12b) assures that no VM is allocated on a fog
node that will be powered off;

• Eq. (12c) states that each VM is hosted by no more
than one fog node;

• Eq. (12d) defines the value of the variable ui as
the sum of the CPU capacity requirements of the
VMs allocated on fog node i;

• Eq. (12e) ensures that the allocated CPU capacity
of a powered-on fog node is not exceeded;

• Eq. (12f) defines the value of the variable nk as the
number of allocated VMs where to run instances
of application k;

• Eq. (12g) ensures that for each application no
more VMs are allocated than needed;

• Eqs. 12h–12k define the domain of decision vari-
ables xi, yi,j , ui and nk, , respectively.

5. Experimental Evaluation

To assess the effectiveness of the proposed coalition
formation algorithm, we perform an experimental evalua-
tion in which we run our algorithm for various scenarios,
whose parameters are summarised in Table 2. In these
scenarios, we vary the workload of each application and
we assess the impact of it on the performance of the
proposed algorithm.

In a given geographic area h, we consider m = 3
identical FIPs, each of which is in charge of running

TABLE 2. PARAMETERS USED IN THE EXPERIMENTAL SCENARIOS.
SUBSCRIPTS i AND j TAKE VALUES ON THE SET {1, 2, 3}.

Parameter Value

|App(i)| Number of applications associated to FIP i 1
Ei,j Electricity price for FIP i in area j 0.0001 $/Wh

|FN (i, j)| Number of fog nodes for FIP i in area j 3
Li,j Penalty rate for FIP i and application j 0.022 $/h
m Number of FIPs 3
n Number of applications 3
Qi Max request processing time for application i 0.7 sec
Ri,j Revenue rate for FIP i and application j 0.0022 $/h
Ui,j CPU demand for any VM j and fog node i 0.05
Wmax

j Max power consumption of fog node j 200 W
Wmin

j Idle power consumption of fog node j 100 W
τj Request processing time of any VM j 0.5 sec

instances of a different application (i.e., App(i) = {Si},
for i = 1, . . . , 3). The physical infrastructure of each FIP
consists of 3 identical fog nodes whose idle and maximum
power consumptions Wmin

j and Wmax
j are set to 100 W

and 200 W, respectively (for j = 1, . . . , 3). For each
application j, its master VM VM j is characterized by a
request processing time τj of 0.5 sec and, to achieve this
value, it requires a physical CPU capacity Ui,j of 0.05 for
every fog node i (i.e., each VM of application j consumes
5% of the physical CPU capacity of each fog node i).

We assume that the electricity price Ei,h charged
hourly to each FIP i is the same for all FIPs and we
set it to 0.0001 $/Wh. Also, we set the revenue rate Ri,j
that each FIP i earns for hosting a VM for application j
to 0.0022 $/hour.

Finally, for each application j, we set its QoS param-
eter Qj to 0.7 sec and the related monetary penalty rate
Li,j to 0.022 $/hour for each FIP i, which is 10 times the
revenue rate Ri,j . We choose this value for the penalty
rate so that an FIP always prefer allocating VMs for the
applications (s)he hosts than refuse them for reducing
energy consumption costs.

Given the above settings, we study the impact of the
workload on the coalition formation process by varying, in
a controlled way (i.e., by considering each discretization
interval of the traffic load curve separately), the workload
intensity of each application so that the induced load αi,
experienced by each FIP i (when (s)he works alone) on
the fog node where the Nh,i VMs have been allocated,
ranges from 0.1 (i.e., only 10% of the CPU capacity of
the fog node is allocated to VMs) to 0.9 (i.e., the total
allocated CPU capacity on the fog node is 90%), with
increments of 10% (see [13] for more details). To run
our experiments, we develop an ad hoc simulator in C++
where we use the IBM ILOG CPLEX solver 12.7.1 for
solving the optimization problem discussed in Section 4.2.

Figure 3 summarizes the behaviour of the coalition
formation algorithm for different values of the load (or
of the request arrival rates). In particular, we compare
the social welfare3 values in case that the providers work
independently (symbol ∗ in the figure) vs the case where
the providers set up coalition among them if this increases
their profits (symbol � in the figure). Despite the discrete
granularity we can identify three regions in the figure

3. The social welfare, i.e., the sum of the utilities of all the coalitions,
is one of the measures that can be defined for coalition formation
games (see for instance [15]). In particular, it provides a simple and
intuitive measure to compare different coalition partitions (in this paper
the partitions originated by our proposal vs a strategy that does not use
any coalition strategy).

Figure 3. Comparison between the case where the providers work
independently with the coalition formation algorithm.

that correspond to different coalition formation algorithm
outcomes. Region 1 characterizes the low load values. In
these cases the coalition formation algorithm yields the
grand coalition, and the coalition always increases social
welfare. On the other hand, Region 3 typecasts the high
(or relatively high) load values that saturate the nodes. In
this case the cooperation does not bring any advantage. In
the figure we can note that the social welfare values in this
region overlap. Note that in this very simple numerical
set of experiments we do not account for the coalition
formation algorithm costs and hence the social welfare
values of the two strategies (coalitions vs no-coalition)
coincide.

This set of experiments allows to point out that the
cooperation brings greater benefits in case of low loads.
On the other hands, in case of high loads the advantages
decrease as load increases. This behavior is due to the
reduction of waste of resources that occurs in case of
under utilized FIPs.

Despite of its simplicity, the set of experiments sum-
marized by Figure 3, illustrates how to use the distributed
coalition formation algorithm. The fog providers, based
on its own load profile estimates, can agree the timing
and the activation frequency of the distributed algorithm.
The goal should be an appropriate trade-off between the
benefits due to the algorithm (e.g., obtaining coalitions
that allow the reduction of costs) and the overhead derived
from too frequent and not very effective activations.

6. Related Works

The game theoretical approach to coalition formation
has been used in many other scenarios. In the field of
cloud computing there is a large body of research, see,
for instance [12], [16], [17], [18]. Similar approaches
have been used to study cooperative behavior in cellular
networks [19], [20]. Coalition formation frameworks for
femtocell networks have been used for different purposes
such as mitigating the interference, and resource and
power allocation; examples of such proposals can be found
in [21], [22], [23].

Compared to these works, in our contribution we
consider a much different system architecture, which is
characterized by different properties and, hence, requires
a different solution.

Approaches based on game theory have also been used
in the field of fog computing (or edge computing/femto-
cloud). In these scenarios the emphasis is on optimizing
resources [24], [25], optimization of latency and/or the
energy consumption [26], [27], offloading strategies [28],

[29], and approaches tailored for macro/micro cellular
network scenarios [30], [31].

In this paper we target a goal which is different from
those addressed by the above papers. In particular, we
focus on the problem of increasing the profit of different
FIPs in the presence of applications characterized by
different QoS targets and time-varying workloads.

7. Conclusions

In this paper we have dealt with the problem of making
a set of FIPs increase their profits when allocating their
resources to process the data generated by IoT applications
that need to meet specific QoS targets in face of time-
varying workloads.

To this end, we proposed a cooperative game-theoretic
framework to study the federation formation problem,
and a mathematical optimization model to allocate IoT
applications of the resources of a FIP in order to increase
its net profit.

In the proposed scheme, we model the cooperation
among FIPs as a coalition game with transferable utility
and we devise a distributed algorithm for coalition forma-
tion. With the proposed algorithm, each FIP individually
decides whether to leave the current coalition to join
a different one according to his preference, meanwhile
improving the perceived net profit. Furthermore, we show
that the proposed algorithm converges to a Nash-stable
partition which determines the resulting coalition struc-
ture. Numerical results exhibit the effectiveness of our
approach.

The future developments of this research is following
several directions. In particular, we would like to enhance
the coalition value function in order to account for pos-
sible request losses due to lack of physical resources.
Furthermore, we want to improve the game-theoretic and
optimization models in order to include costs in terms of
loss of revenues as well as other aspects like the ones
related to trustworthiness among FIPs. Finally, we want
to implement and validate the proposed algorithm on a
real testbed.

Acknowledgments
This research is original and has a partial financial

support of the Università del Piemonte Orientale.

References

[1] J. Weinman, “The Economics of the Hybrid Multicloud Fog,” IEEE
Cloud Comput, vol. 4, no. 1, pp. 16–21, 2017.

[2] F. Bonomi et al., Fog Computing: A Platform for Internet of Things
and Analytics. Springer, 2014, pp. 169–186.

[3] 451 Research, “Customer Insight: Future-proofing your colocation
business.”

[4] C. Hasan et al., “On the nash stability in the hedonic coalition
formation games,” CoRR, vol. abs/1405.3360, 2014.

[5] A. Bogomolnaia et al., “The Stability of Hedonic Coalition Struc-
tures,” Game Econ Behav, vol. 38, pp. 201–230, 2002.

[6] P. Hu et al., “Survey on fog computing: architecture, key technolo-
gies, applications and open issues,” J Netw Comput Appl, vol. 98,
no. Supplement C, pp. 27 – 42, 2017.

[7] S. Yi et al., “A Survey of Fog Computing: Concepts, Applications
and Issues,” in Proc. of the Mobidata. ACM, 2015, pp. 37–42.

[8] S. Rivoire et al., “A comparison of high-level full-system power
models,” in Proc. of the HotPower. USENIX Association, 2008,
pp. 3–3.

[9] C. Anglano, M. Canonico, and M. Guazzone, “FC2Q: exploiting
fuzzy control in server consolidation for cloud applications with
SLA constraints,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 17, pp. 4491–4514, 2015.

[10] ——, “FCMS: A fuzzy controller for CPU and memory consol-
idation under SLA constraints,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 5, 2017.

[11] ——, “Prometheus: A flexible toolkit for the experimentation
with virtualized infrastructures,” Concurrency and Computation:
Practice and Experience, published online.

[12] C. Anglano, M. Guazzone, and M. Sereno, “A Game-Theoretic
Approach to Coalition Formation in Green Cloud Federations,” in
Proc. of the 2014 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2014, pp. 618–
625.

[13] C. Anglano et al., “A game-theoretic approach to coalition forma-
tion in fog provider federations (extended version),” UPO, Tech.
Rep. TR-INF-2018-02-01-UNIPMN, 2018, https://goo.gl/V2yXp3.

[14] G. Bolch et al., Queueing Networks and Markov Chains: Modeling
and Performance Evaluation With Computer Science Applications,
Second Edition. Wiley, 2006.

[15] W. Saad et al., “Coalitional game theory for communication net-
works,” IEEE Signal Processing Magazine, vol. 26, no. 5, pp. 77–
97, 2009.

[16] R. Kaewpuang et al., “A Framework for Cooperative Resource
Management in Mobile Cloud Computing,” IEEE J Sel Area
Comm, vol. 31, no. 12, pp. 2685–2700, 2013.

[17] C. Lee, “Cloud federation management and beyond: Requirements,
relevant standards, and gaps,” IEEE Cloud Comput, vol. 3, no. 1,
pp. 42–49, 2016.

[18] L. Mashayekhy et al., “Cloud Federations in the Sky: Formation
Game and Mechanism,” IEEE Trans Cloud Comput, vol. 3, no. 1,
pp. 14–27, 2015.

[19] C. Anglano, M. Guazzone, and M. Sereno, “Maximizing profit in
green cellular networks through collaborative games,” Computer
Networks, vol. 75, Part A, pp. 260 – 275, 2014.

[20] C. Hasan et al., “The coalitional switch-off game of service
providers,” in Proc. of the 9th WiMob, 2013, pp. 223–230.

[21] F. Pantisano et al., “Spectrum leasing as an incentive towards
uplink macrocell and femtocell cooperation,” IEEE J Sel Area
Comm, vol. 30, no. 3, pp. 617–630, 2012.

[22] Z. Zhang et al., “Coalitional games with overlapping coalitions
for interference management in small cell networks,” IEEE Trans
Wireless Commun, vol. 13, no. 5, pp. 2659–2669, 2014.

[23] F. Pantisano et al., “Interference alignment for cooperative fem-
tocell networks: a game-theoretic approach,” IEEE Trans Mobile
Comput, vol. 12, no. 11, pp. 2233–2246, 2013.

[24] S. Barbarossa et al., “Joint allocation of computation and commu-
nication resources in multiuser mobile cloud computing,” in Proc.
of the 14th SPAWC, 2013, pp. 26–30.

[25] S. Meng et al., “Joint optimization of wireless bandwidth and
computing resource in cloudlet-based mobile cloud computing
environment,” Peer-to-Peer Netw Appl, 2017.

[26] M. Chen et al., “Joint offloading decision and resource allocation
for mobile cloud with computing access point,” in Proc. of the
ICASSP, 2016, pp. 3516–3520.

[27] T. Dinh et al., “Offloading in mobile edge computing: Task alloca-
tion and computational frequency scaling,” Commun ACM, no. 99,
2017.

[28] S. Barbarossa et al., “Computation offloading strategies based on
energy minimization under computational rate constraints,” in Proc.
of the 23rd EuCNC, 2014, pp. 1–5.

[29] O. Munoz-Medina et al., “Optimization of radio and computational
resources for energy efficiency in latency-constrained application
offloading,” IEEE Trans Veh Technol, no. 99, 2014.

[30] J. Oueis et al., “Small cell clustering for efficient distributed cloud
computing,” in IEEE PIMRC, 2014, pp. 1474–1479.

[31] S. Tanzil et al., “A distributed coalition game approach to femto-
cloud formation,” IEEE Trans Cloud Comput, vol. 99, 2016.

