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Summary

A typical problem that arises when devising a novel resource management strategy for vir-

tualized infrastructures is how to experimentally assess its ability of achieving its design

goals and whether it advances the state-of-the-art. Among the available options, the use

of a physical testbed is usually considered to be the most appropriate because of its

high degree of accuracy. Unfortunately, however, physical testbeds are characterized by a

limited controllability of the experimental conditions. Moreover, their implementation is

usually a complex and time-consuming task, that requires the integration of many software

components that need to interact among them in non-trivial ways.

In this paper, we address the above issues by proposing Prometheus, a toolkit specifically

designed to support the configuration, deployment, and use of physical testbeds suitable to

perform experimental studies of resource management strategies, and that provides a high

degree of controllability and low implementation costs. We discuss the design, implemen-

tation and use of Prometheus, and we show how it can be used in practice to configure and

deploy a physical testbed by providing various examples of experimental activities that can

be carried out by means of it.
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1 INTRODUCTION

The advent of virtualization technologies able to run on commodity processors has reshaped thewaywe do computing. The possibility of efficiently
multiplexing a physical system across different Virtual Machines (VMs) has indeed opened the door to cloud computing (1) first and, more recently,
to fog computing (2). Virtualization brings indeed various advantages (3), such as partitioning (many VMs can share the same physical machine),
isolation (these VMs can coexist without conflicting among them), and encapsulation (the whole software stack of a VM is encapsulated into a set
of files).
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However, what really makes virtualization a real option for production use, is the ability of efficiently multiplex a set of VMs on a physical
machine in order to obtain, at the same time, good performance for individual applications/services running into a VM, performance isolation
across different VMs, and high consolidation levels for physical hosts, in face of the time-varying and bursty workloads they must process.

To obtain this goal, it is crucial that resource management – for both physical and virtualized applications – is carried out in such a way to
dynamically allocate physical resource capacity to individual VMs so that the above goals are met. However, in spite of the vast body of research
carried out in the past years on this topic (see (4) for a survey), resource management for virtualized systems is still an open research problem, and
represents a very active area of research.

A typical problem that arises when devising a novel resource management algorithm of this type is how to assess its ability of solving the
problems mentioned before, and whether it advances or not the state-of-the-art (i.e., it performs better than available alternatives). Typically, this
is carried out by means of an experimentation where the proposed algorithm is evaluated and compared with existing ones by means of a suitable
methodology, that ensures both the accuracy of results (i.e., how well these results map to the actual results observed on a real system) and their
reproducibility (i.e., whether a third-party replicating the experiments under the same conditions obtains the same results).

Among the methodology available to carry out the above experimentation, namely analytical modeling, (discrete-event) simulation, and usage
of a physical testbed, the latter one is usually considered to be the most appropriate because it features a level of accuracy higher than the other
ones. A physical testbed is indeed a real systems running real applications exposed to real workloads, while the other methodologies resort to
abstract models of systems, applications, and workloads, whose accuracy is necessarily hindered by the simplifying assumptions required to make
viable their analysis.

Unfortunately, however, physical testbeds are characterized by a limited controllability of the experimental conditions, that limits the repro-
ducibility of results, since real applications, systems, and workloads cannot be completely controlled by the experimenter. Furthermore, they are
also considerably hard to implement (5, 6), since typically the entire systemmust be implemented, albeit at a smaller scale than a system that would
go in production use. To make physical testbeds a real experimentation option, it is thus necessary to properly address these problems that, at the
best of our knowledge, have no solution in the current literature.

In this paper we aim to fill this gap, and we address the issues mentioned above by proposing Prometheus, a toolkit specifically conceived to
support the configuration, deployment, and use of physical testbeds suitable to perform experimental studies of resource management algorithms,
and that provides a high degree of controllability and low implementation costs.

Prometheus is designed and implemented in such a way to (a) allow to quickly provision a virtualized platform featuring user-defined VMs
running multi-tier applications, (b) easily incorporate into it different resource management algorithms with limited implementation efforts, (c) carry
out experiments where these algorithms operate on the above applications, and (d) precisely control the workload submitted to each one of these
applications.

To achieve the above goals, Prometheus provides a set of easily customizable and extensible components that supply to its users the various
mechanisms that the toolkit exposes to (a) implement user-defined resource management algorithms (e.g., dynamic resource allocation to VMs),
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(b) generate user-defined and application-specific workloads, and (c) coordinate the various components in such a way to ensure full controllability
and reproducibility of the experimental conditions. The ability of Prometheus to successfully support the experimental evaluation is shown in our
previous works (7, 8, 9), where it was extensively used to assess the performance of various management algorithms for physical and virtualized
resources.

Prometheus is written in standard C++, which ensures high performance and maximum portability. In order to foster further research and to
provide reproducibility, the source code of Prometheus is publicly available on (10).

In the rest of this paper we discuss the design, implementation, and use of Prometheus, and we demonstrate its possible utilization by illustrating
the type of experiments that it allows to carry out. We start by describing the architecture of Prometheus (Section 2), and then we provide internal
details about the design of Prometheus (Section 3). In Section 4, we illustrate how it can be used in practice to configure and deploy a physical
testbed. Then, we show examples of experimental activities that can be carried on a physical testbed by means of it (Section 5). Finally, we discuss
related works (Section 6), and then we conclude the paper by outlining future research work (Section 7).

2 ARCHITECTURE OF Prometheus

The configuration, deployment, and use of a physical testbed for the experimentation with virtualized applications requires the ability of performing
the following tasks in an easy, quick, and effective way:

• Interacting with the virtualization platform (to manage VMs running on the physical testbed and the virtual resources allocated them).

• Generating the workload for the virtualized applications (to stress these applications with different and peculiar usage patterns).

• Gathering observations from these applications and the virtual resources allocated them (to monitor application performance and resource
utilization).

• Enforcing a resource management policy (to assess its efficacy in achieving its design goals).

The Prometheus toolkit, whose architecture is depicted in Figure 1 with solid boxes (while dashed boxes represent the components of the
virtualized infrastructures it handles), has been conceived in such a way to properly carry out all the above tasks.

As can be seen from this figure, we assume that a virtualized computing infrastructure, managed by a specific Virtualization Platform, runs a set
of virtualized multi-tier applicationsAPP1, . . . ,APPk , each one providing services to a population of clients that generate a set of requests. Each
tier of an application A is usually deployed in a separate VM (although this is not a requirement, as Prometheus is able to handle also cases where
all the tiers of an application run in a single VM), which is hosted on anyone of the physical servers of the infrastructure. Thus, VMs running tiers
of the same application may be possibly hosted by different physical servers.

The architecture of Prometheus consists instead in the following subsystems:
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FIGURE 1 Architectural diagram of Prometheus. Dashed boxes represent components outside the scope of this paper. Arrows denote the direction
of interaction between two components (i.e., C1 → C2 means that component C1 interacts with component C2 to use its functionalities).

• the Experiment Management subsystem, that manages the life-cycle of the experimentations carried out over the virtualized system by
interacting with both the Application Management and the Workload Generation subsystems;

• the Application Management subsystem, that implements suitable mechanisms that can be leveraged by a resource management strategy
to dynamically allocate physical resource capacity to the various tiers of an application, possibly on the basis of the inputs provided by the
Data Collection subsystem;

• the Data Collection subsystem, that provides various functionalities to gather and manipulate observations from the virtualized applications
and the virtual resources allocated them;

• the Workload Generation subsystem, that provides various functionalities to generate the workload submitted to the applications running
on the virtualized infrastructure;

• the VM Management subsystem, that enables interactions between the other subsystems of Prometheus and the VMs associated with the
applications, by communicating directly with the Virtualization Platform.

Each subsystem of Prometheus consists in one or more software components, and has been designed with a pluggable and extensible architecture,
meaning that its modules can be easily replaced or extended with new ones to provide new functionalities or to enhance those already available
(see Section 4 for a discussion on how to carry out this extension).

Prometheus supports an experimentation model in which a set of experimental sessions are carried out sequentially, one after the other. Each
session consists in the execution of one or more concurrent experiments, each one consisting in running an application for a given amount of
time under a specific workload. In the same experimental session there can be multiple instances of the same subsystem, each one associated
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with a different experiment or implementing a different functionality. For instance, there can be multiple instances of the Workload Generation
subsystem, each of which driving the workload of a different application and possibly using a different workload generator. The instances of the
same subsystem that are associated with different experiments of the same session are run as separate and independent threads, that do not need
to synchronize among them, or that have to synchronize rather infrequently, so as to avoid bottlenecks that would hinder scalability.

In the rest of this section, we describe the functionality provided by each subsystem of Prometheus.

2.1 The Experiment Management Subsystem

The Experiment Management subsystem is in charge of the life-cycle management of the experimentations carried out over the target virtualized
system. Specifically, it starts the workload generators (from the Workload Generation subsystem), to generate workloads for the virtualized appli-
cations, as well as the associated resource management strategies (from the Application Management subsystem), to manage these virtualized
applications.

It also provides other functionalities, like execution tracking for the purpose of collecting summarizing statistics from applications and VMs (e.g.,
the average CPU capacity used by the VMs of the managed applications).

2.2 The Application Management Subsystem

The Application Management subsystem is responsible for dynamically allocating physical resources to the various VMs of a given application,
according to user-defined management policies. Thanks to the pluggable architecture of the Application Management, these policies are specified
as C++ plugins, that can be easily integrated in it. The pluggable architecture allows also an easy selection of the specific policy to be used in a given
experiment, thus enabling experiments in which the same strategy is used to manage different applications (e.g., to assess the efficacy of a strategy
to handle heterogeneous applications), or in which the same application can be managed by different strategies (e.g., to compare the performance
of a strategy against other ones).

The Application Management subsystem interacts with the Data Collection subsystem, to obtain the information that are given as input to the
above policies, and with the VM Management subsystem, to implement the decisions made by these strategies.

It is worth to mention that we already provide various application managers that implement the resource management policies presented in
(7, 8, 9, 11, 12, 13, 14). In this way, an experimenter may easily compare her/his novel resource management policy against existing ones.

2.3 The Data Collection Subsystem

The Data Collection subsystem provides sensors to gather measures that can be used to monitor the behavior of both the virtualized applications
and the associated VMs. It also provides algorithms for data smoothing and data estimation to filter out noise from collected data, and compute
statistics from them, respectively.
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Specifically, this subsystem is responsible for gathering application-specific performance measures (e.g., response time or throughput) from the
virtualized applications, and utilization measures for the resources allocated to the VMs. These measures can then be used by the Application
Management subsystem tomonitor application performance andmake resource allocation decisions, such as increasing the number of virtual CPUs
of some VMs when their utilization exceeds some prescribed threshold, and/or when the performance measures drop below given thresholds.

The Data Collection subsystem exposes to the other subsystems a uniform interface for the collection and retrieval of the above measures,
which is independent from any specific virtualized application and virtualization platform. Hence, a different implementation of this interface must
be provided for each one of the supported application and Virtualization Platforms. Clearly, in order to collect this data both the application and
the Virtualization Platform must provide suitable mechanisms to do so, either natively or by properly instrumenting it at deployment time.

Currently, Prometheus provides several built-in sensors for gathering application-specific performance measures, that are based on the data
logged by the workload generators it supports natively (namely, RAIN (15) and YCSB (16), see Sec. 2.4). These generators, indeed, write various
application-specific data to their log files, so the corresponding sensors simply read periodically these files to extract from them the application
performance measures of interest (independently from the specific application at hand). Prometheus also provides sensors for utilization measures
for the resources allocated to the VMs that exploit the libvirt (17) API (and, in some cases, also some peculiarities of the operating system running
in a VM) to get utilization measures for the virtual resources allocated to the VMs.

Finally, as already mentioned, Prometheus provides also the implementation of several data smoothing and estimation algorithms, including
those for exponential smoothing (18) and for incremental quantile estimation (19, 20).

2.4 The Workload Generation Subsystem

TheWorkload Generation subsystem is in charge of theworkload generation for the applications hosted by the virtualized infrastructure. It consists
of several pluggable components that provide different workload generation strategies through a common interface. The need of having different
strategies is twofold.

First, a workload generation strategy is usually tied to a specific application (or to a class of applications) because each application defines
unique workload characteristics and usage patterns. For instance, the operations that can be performed by users of an e-commerce Web appli-
cation are usually very different from the ones of a data-analytics application (21). Thus, in this subsystem, multiple workload generators can run
simultaneously, each one of them driving the workload of a different application.

Second, the same application may face different (time-varying) usage patterns that depends on specific parameters, like the number of its clients,
the rate at which clients submit requests, and themix of the requested operations, just to name a few. To assess the effectiveness of a given resource
management strategy, it is important to vary such parameters in a controlled way. However, a single workload generator may not be able to model
all such characteristics. For instance, burstiness and self-similarity are two workload characteristics that may have a serious impact on application
performance (22) but, unfortunately, many workload generators do not model these characteristics or they focus on only one of them (23). Thus,
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the Workload Generation subsystem allows the experimenter to inject different load patterns into the same application by simply replacing the
workload generator for that application with another one, implementing a different strategy or modelling different workload characteristics.

As mentioned before, in Prometheus we already support two widely-used workload generators, namely RAIN (15) and Yahoo! Cloud Serving
Benchmark (YCSB) (16). These generators provide various workload generation strategies and are able to drive the workload for a large variety of
real-world applications.

2.5 The VM Management Subsystem

The VM Management subsystem is responsible for the management of the VMs run by the Virtualization Platform.
All the interactions between the subsystems of Prometheus and the VMs are carried out by this subsystem by means of the Application

Programming Interface (API) exposed by the Virtualization Platform. Typical interactions include starting, stopping, restarting VMs, migrating VMs
from a physical server to another one, changing the allocation of physical resources allocated to the VMs, and querying their status.

This subsystem hides the details about the real virtualization system used by exposing a common interface to the other subsystems of
Prometheus. This way, Prometheus can support multiple Virtualization Platforms by simply replacing the actual concrete implementation of this
interface with another one that provides the mechanisms to interact with a different virtualization system.

In Prometheus, we support several Virtualization Platforms by means of libvirt, which provides a hypervisor-agnostic virtualization API and
supports the most common hypervisors like Xen (24), VMware ESXi (25) and KVM (26). Also, through the libvirt daemon (i.e., a server-side daemon
that runs on the same physical machine of the hypervisor), we support remote interactions with the hypervisor, so that Prometheus and the
Virtualization Platform can run on different machines.

3 DESIGN OF Prometheus

In this section, we provide details about the internal design of Prometheus. In particular, in Section 3.1, we describe the classes composing the
core of Prometheus, and in Section 3.2, we show the main interactions among them.

3.1 Core Classes of Prometheus

Figure 2 shows the class diagram of Prometheus in Unified Modeling Language (UML) notation (27). 1 This diagram shows only the key classes of
Prometheus (and their static relationships) that are used to model the core functionalities of the subsystems described in Section 2.

In the class diagram of Figure 2 , a class is represented with a box whose label is the class name. In particular, we distinguish between a concrete
class (denoted by a box with a label in regular font) and an abstract class (denoted by a box with a label in italic font). In the following, unless

1In Figure 2 , we replaced underscore characters with spaces to enhance readability.
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FIGURE 2 UML class diagram for the core classes of Prometheus.

explicitly stated, the terms “concrete class” and “class” are used interchangeably. In the same diagram, a static relationship among two classes is
denoted by a line whose style varies according to the type of the UML relation.

For instance, from Figure 2 , we note that the application class is a concrete subclass of the base_application abstract class, and that an
instance of this latter class may contain zero or more instances of the base_sensor abstract class, to which it communicates unidirectionally. Also,
we observe that an instance of the base_application abstract class is in turn contained by an instance of the base_application_manager abstract
class (to model the relationship that an application manager manages the resources assigned with a specific application) as well as by an instance
of the base_workload_driver abstract class (to model the relationship that a workload driver generates the workload for a given application).
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The diagram of Figure 2 also shows which subsystems of Prometheus these core classes belong to and thus how these subsystems are
related to each other. For instance, the VM Management subsystem contains two abstract classes, namely base_virtual_machine_manager and
base_virtual_machine, and depends on the Data Collection subsystem because an instance of base_virtual_machine contains zero or more
instances of base_sensor (from the Data Collection subsystem), each one of them can be used to collect VM-specific data (e.g., the utilization of
the allocated virtual resources).

To extend the functionality of a subsystem, concrete classes must implement its interface, which consists of all the abstract classes it
contains. For instance, to support a new virtualization platform, concrete classes must implement both base_virtual_machine_manager and
base_virtual_machine.

In the rest of this section, we provide, for each subsystem, an overview of the responsibility of the classes presented in Figure 2 .

3.1.1 Classes of the Application Management Subsystem

The application Class.

The application class inherits from the base_application abstract class (see below) to provide an implementation suitable for modelling generic
virtualized applications.

The base_application Class.

The base_application abstract class models an instance of a virtualized application as a set of VMs (e.g., one for each application tier). If multiple
instances of the same application are running in the virtualized infrastructure, each one of them must be associated with a separate instance of
this class.

The base_application_manager Class.

The base_application_manager abstract class represents a resource management strategy for a virtualized application. Typically, an instance of
this class periodically collects data from the monitored application and from the associated VMs, and enforce the resource management policy it
implements.

3.1.2 Classes of the Data Collection Subsystem

The base_estimator Class.

The base_estimator abstract class models data estimation algorithms like, for instance, incremental quantile estimation. It can be used to compute
an estimate of a given quantity based on the collected data. This class is typically used by instances of the base_application_manager class
(Section 3.1.1) to compute an incremental estimate of the performance measure of interest from data collected from the monitored application.
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The base_sensor Class.

The base_sensor abstract classmodels the concept of sensors gathering some type of rawmeasurements. In Prometheus, this class is used tomodel
sensors for both application-specific performance measures (e.g., to collect response time measures from a given application) and VM-specific
measures (e.g., to collect the utilization values of the virtual CPUs allocated to a VM).

The base_smoother Class.

The base_smoother abstract class models data smoothing strategies like, for instance, exponential smoothing. It can be used to filter out noise
from data to capture relevant patterns. This class is typically used by instances of the base_application_manager class to smooth the collected
“noisy” data (e.g., the utilization of a virtual resource) before using them to enforce the implemented management policy.

The sensor_observation Class.

The sensor_observation class models an observation collected by a sensor through an instance of the base_sensor class. An observation is
characterized by three attributes, specifically:

• a timestamp (expressed as Unix epochs), representing the date and the time an observation has been collected;

• a textual label (e.g., used for tagging an observation according to its type or to the operation that generated it);

• a numeric real value, representing the collected value.

3.1.3 Classes of the Experiment Management Subsystem

The application_experiment Class.

The application_experiment class models an application experiment (which consists in running an application for a given amount of time under
a specific workload) and is in charge of starting the workload generator for the associated application and of periodically invoking the application
manager for the same application. Thus, this class is coupled with an instance of the base_workload_driver class (Section 3.1.5), to inject a
specific workload to the associated application, and with an instance of the base_application_manager class (Section 3.1.1) – and, hence, with
an instance of the base_application class – to manage the resources of the associated application.

The base_experiment_tracker Class.

The base_experiment_tracker abstract class is responsible for tracking an experimental session represented by an instance of the
system_experiment class (see below). For instance, a concrete classes may extend this abstract class to monitor the whole experimental session
and thus to show, at the end of the session, a report containing summary statistics.
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The system_experiment Class.

The system_experiment class drives the concurrent execution of one or more application experiments, each one of them registered to this class
as an instance of the application_experiment class.

3.1.4 Classes of the VM Management Subsystem

The base_virtual_machine Class.

The base_virtual_machine abstract class models a generic VM. It provides functionality for managing and querying a VM like, for instance,
starting and gracefully shutting down a VM, or telling if a VM is currently running. It also provides methods for managing and querying virtual
resources allocated to the associated VM like, for instance, setting/getting the maximum amount of memory or of the total physical CPU capacity
that can be allocated to a VM.

The base_virtual_machine_manager Class.

The base_virtual_machine_manager abstract class models a generic VM hypervisor. This class provides functionality for querying both the
hypervisor and the physical host where the hypervisor runs. For instance, there are functions for getting information about the status of the
hypervisor (e.g., if the remote connection to the hypervisor is still alive) or about the physical host underneath (e.g., the host name or the maximum
number of supported virtual CPUs).

3.1.5 Classes of the Workload Generation Subsystem

The base_workload_driver Class.

The base_workload_driver abstract class represents a workload generator for virtualized applications.

3.2 Interactions among Core Classes

The class diagram of Figure 2 only shows static relationships among the core classes of Prometheus. In this section, we show the dynamic behavior
of instances of the above classes.

In Prometheus, class instances (hereafter, objects for short) may collaborate in various ways according to the scenario where they interact. One
of the key scenarios is the execution of an experimental session to run a set of virtualized applications under specific workloads and particular
resource management policies. We present the interactions for this scenario by means of the UML sequence diagram (27) shown in Figure 3 .

In this diagram, the interaction begins with client (i.e., a user of Prometheus) that tells sys_1 (a previously configured instance of the
system_experiment class) to start the experimental session by calling its run() method. Consequently, sys_1 concurrently starts its previously
registered instances of the application_experiment class, corresponding to participants exp_1 and exp_2 in the figure, by asynchronously calling
for each one of them the run() method.
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FIGURE 3 UML sequence diagram for the experimental session use-case in Prometheus.

When exp_1 starts, (1) it resets the state of its associated workload generator, represented by the participant wkl_drv_1, and application
manager, represented by the participant app_mgr_1 (in the figure, this operation is shown as the reset() message sent to both participants), (2)
it concurrently starts the workload generation (in the figure, see the start() asynchronous message sent to wkl_drv_1), and (3) it loops until
workload generation is done to manage the associated application in face of the generated load (in the figure, see the loop combined fragment
and the loop condition done == false).
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At each iteration of the loop combined fragment, exp_1 checks if workload generation has reached a steady phase (in the figure, see the ready()
message). If so (i.e., in the figure, when condition ready == true of the alt combined fragment is satisfied), it performs two concurrent tasks: (1)
at every sample interval (a parameter previously defined by client) it tells app_mgr_1 to sample observations from either the managed application
or from each associated VM or from both of them (in the figure, see the sample() message and those generated during its activation, like the
sense() message sent by participant vm_1 to participant vcpu_sensor_1 to collect CPU utilization from a specific VM), and (2) at every control
interval (another parameter previously set by client) it tells app_mgr_1 to enforce its resource management policy which, in this example, decides
to change the CPU share of the VM represented by participant vm_1 by the quantity new_share (see the control()message and those generated
during its activation, like the cpu_share(new_share) message sent by app_mgr_1 to vm_1).

When workload generation is done (i.e., in the figure, when condition done == false in the loop combined fragment is no longer satisfied),
exp_1 tells wkl_drv_1 to stop the workload generation (in the figure, see the stop() message), and then terminates the run() operation by
returning to sys_1.

Similar communications takes place concurrently for exp_2, but concerning different participants than those involved with exp_1. However, we
do not report such interactions to keep the figure simple.

4 PHYSICAL TESTBED IMPLEMENTATION WITH Prometheus

Configuring and deploying a physical testbed for the experimentation with virtualized applications is a complex and time-consuming task, that
requires the integration of many software components that need to interact among them in non-trivial ways.

Prometheus has been specifically designed and implemented in such a way to reduce, as much as possible, these complexity and implementation
costs thanks to the focus on reusability, so that any change in one of these components (e.g., to support different virtualization platforms or
applications, or to add new resource management strategies) will not impact on the other ones.

This is achieved thanks to the adoption of a modular and extensible architecture (as discussed in Section 2), so that each one of the various tasks
that need to be performed is carried out by a software component which is logically separated from the other ones, and whose implementation
can be easily replaced or extended to support different functionalities.

In order to illustrate how Prometheus can be used in practice, in this section we discuss how to configure and deploy a testbed, by using as a
case study the instantiation of Prometheus that we exploit in (9) to experimentally evaluate a resource management strategy named FCMS.

Prometheus is implemented as a set of classes, that define the interface of the various software components of each subsystem. To implement
a given component, it is necessary to suitably implement these interfaces, that in turn requires to develop subclasses of the base classes defined in
Prometheus. For the sake of readability, in this section we do not report the definition of base classes and interfaces (that are, instead, discussed
in Section 3), but we limit ourselves to indicate the sub-classing operations, and to list the methods that must be implemented, using a simplified
C++-like pseudo-code in which we omit implementation details like template parameters, class constructors and destructors.
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The rest of this section is organized as follows. In Section 4.1, we present the case study we use throughout the whole section. In Section 4.2,
we present how to implement the VM Management subsystem to support virtualization platforms. In Section 4.3, we discuss how to implement
theWorkload Generation subsystem to add workload generation strategies. Finally, in Section 4.4, we show how to implement the Data Collection
subsystem to add data collection functionalities. In Section 4.5, we showhow to implement theApplicationManagement subsystem to add resource
management strategies.

4.1 The FCMS Case Study

FCMS (9) is a resourcemanagement strategy aimed at improving server consolidationwhile, at the same time, satisfying the Service Level Objectives
(SLOs) of multi-tier cloud applications exposed to time-varying and bursty workloads.

With FCMS, each application tier is associated with a tier controller that periodically computes the amount of CPU capacity and of memory
capacity to be allocated to the tier in order to meet the application SLO. In particular, at each activation, the tier controller (a) collects application-
performance measures (as defined by the SLO) as well as CPU utilizations and memory demands from the corresponding tier, and (b) according to
these collected data and to the SLO specification, it computes the new values of the CPU capacity and memory capacity to assign to the tier.

To assess the capability of FCMS to achieve its design goals, as well as to compare it against its state-of-the-art alternatives, we have configured
and deployed a testbed by instantiating Prometheus, as shown in Figure 4 , where we indicate (using rounded boxes) extensions of the various
subsystems reported in Figure 1 (for instance, the box labeled FCMS inside Application Management denotes the extension of the Application
Management subsystem that implements the FCMS resource management strategy).

As shown in the figure, the testbed relies on the Xen virtualization platform (24), whose credit scheduler and balloon driver are used to provide
non-work-conserving CPU scheduling and dynamic memory management, respectively. Any interaction between Xen and Prometheus takes place
through the libvirt daemon bymeans of the libvirt virtualization API, that has been integrated in Prometheus as an extension of theVMManagement
subsystem (see the libvirt box in Figure 4 ). The Application Management subsystem uses this libvirt component to set the CPU and memory
capacity of the various VMs, which is also used by the Data Collection subsystem to harvest the CPU and memory utilization values for the various
VMs (see the vCPU Sensor and RAM Sensor boxes in Figure 4 , respectively).

To generate time-varying and bursty workloads for the applications used in our experimentation (and deployed on the testbed) we use the RAIN
toolkit, that we have integrated in Prometheus as an extension of the Workload Generation subsystem (see the box RAIN in Figure 4 ).

Data collection is instead carried out by means of various sensors (as shown in the Data Collection box in Figure 4 ), that include extensions
implementing both resource-specific (vCPU Sensor and RAM Sensor) and application-specific (Response Time Sensor) sensors. The former ones are
implemented by suitable calls to the VM Management subsystem, while the latter one is implemented by an extension that reads response time
observations from the log files generated by RAIN. The Data Collection subsystem has been also extended with the t-digest Estimator and the SES
Smoother extensions, that provide algorithms (20, 18) for the estimation of the SLO-defined percentile of the response time and for the smoothing
of the resource utilizations from the collected observations.
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FIGURE 4 Architectural diagram of Prometheus as used in (9). Rounded solid boxes denote extensions to Prometheus’s subsystems. Dashed boxes
represent components outside the scope of this paper. Arrows denote the direction of interaction between two components (i.e.,C1 → C2 means
that component C1 interacts with component C2 to use its functionalities).

4.2 Supporting Virtualization Platforms

When implementing a physical testbed for virtualized applications, it is necessary to interact with the virtualization platform in order to manage
the VMs hosting the applications and the virtual resources allocated to them. Typical interactions comprise the life-cycle management of the VMs
(e.g., to start and stop a VM) and of the virtual resources allocated to the VMs (e.g., to increase and decrease the number of virtual CPUs allocated
to a VM), as well as the retrieval of state information of the physical machine hosting these VMs (e.g., to know limits about the capacity of physical
resources).

To do so, it is necessary to interact with the hypervisor, typically through the API provided by the virtualization platform or by an intermediate
software layer.

In Prometheus, we encapsulate this functionality in the VMManagement subsystem, so that supporting a virtualization platform simply requires
implementing the interface of this subsystem to provide the required functions. In particular, this corresponds to implement a subclass of the
base_virtual_machine class, and one of the base_virtual_machine_manager class (see Section 3.1.4).

For instance, the integration of the libvirt toolkit requires the implementation of the virtual_machine and virtual_machine_manager classes
as concrete subclasses of the base_virtual_machine and base_virtual_machine_manager classes, whose details are shown in Figure 5 .

From Figure 5 , we see that the virtual_machine class must implement methods for managing and querying a VM. For instance, the method
do_start() commands the hypervisor to start the VM, the method do_shutdown() commands the operating system running inside the VM to
shut down itself, and the method do_is_running() tells whether the VM is currently running. In addition, the concrete subclass must implement
methods for managing and querying the virtual resources allocated to a VM. For instance, the method do_max_memory() sets or returns the
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1 class virtual_machine: public base_virtual_machine {

2 void do_start() { ... } // Starts this VM

3 void do_shutdown() { ... } // Commands the VM to gracefully shut down itself

4 bool do_is_running() const { ... } // Tells whether this VM is running

5 void do_max_memory(unsigned long value) { ... } // Sets the maximum amount of memory this VM can use

6 unsigned long do_max_memory() const { ... } // Returns the maximum amount of memory this VM can use

7 void do_cpu_share(double value) { ... } // Sets the CPU share for this VM

8 double do_cpu_share() const { ... } // Returns the CPU share assigned to this VM

9 void do_memory_share(double value) { ... } // Sets the memory share to this VM

10 double do_memory_share() const { ... } // Returns the memory share assigned to this VM

11 ...

12 };

13 class virtual_machine_manager: public base_virtual_machine_manager {

14 bool do_alive() const { ... } // Tells whether the connection to the hypervisor is valid

15 unsigned long do_max_supported_num_vcpus() const { ... } // Returns the maximum number of virtual CPUs

16 std::string do_hostname() const { ... } // Returns the name of the physical node hosting the hypervisor

17 ...

18 };

FIGURE 5 Implementation outline for the integration of the libvirt virtualization toolkit (see files libvirt/virtual_machine.hpp and
libvirt/virtual_machine_manager.hpp in (10) for more details).

maximum amount of memory that can be allocated to a given VM, while the method do_cpu_share() sets or returns the fraction of the total
capacity of the CPUs allocated to a given VM.

Also, from the same figure, we see that the virtual_machine_manager classmust implementmethods formanaging and querying the hypervisor
as well as the physical host where it runs. For instance, the method do_max_supported_num_vcpus() returns the maximum number of virtual
CPUs that can be allocated to the VMs running on the same physical machine, while the method do_alive() tells whether the connection to the
real hypervisor is still valid.

For implementing all these methods, we rely on the various functions provided by the libvirt API. For instance, in the do_start() method of
the virtual_machine class, we call the virDomainCreate() function of libvirt by passing as parameters the internal handles used by libvirt to
represent the connections to the VM to be started and to the hypervisor that hosts this VM.

4.3 Adding Workload Generators

Adding a workload generator to the testbed requires to implement the interface of the Workload Generation subsystem (see Section 2.4).
In the case of RAIN, which is the generator used in our example testbed, this entails to implement the workload_driver class as a concrete

subclass of base_workload_driver (see Section 3.1.5), as shown in Figure 6 . In this class, the RAIN toolkit is run as an external process and any
interaction with RAIN take places by sending signals to this process and by reading log files generated by RAIN. These log files are monitored by a
separate thread to keep track of the progress of the RAIN’s workload generation (e.g., to know if it has already reached the desired load level).

As shown in Figure 6 , a concrete subclass of base_workload_driver must implement the following methods:
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1 class workload_driver: public base_workload_driver {

2 void do_reset() { ... } // Resets the state of the workload driver

3 void do_start() { ... } // Starts workload generation

4 void do_stop() { ... } // Stops workload generation

5 bool do_done() const { ... } // Tells whether workload generation is done

6 bool do_ready() const { ... } // Tells whether workload generation has reached the prescribed load level

7 };

FIGURE 6 Implementation outline for the integration of the RAIN toolkit (see file rain/workload_driver.hpp in (10) for more details).

• do_reset(): clears the workload generator’s state so that it can be restarted. This method is used by Prometheus to reset the state of the
workload generator for a given application before running a new experimental session. In the workload_driver class, we reset the state of
RAIN by stopping the currently running RAIN process (if any) as well as the thread used for monitoring the RAIN’s log files.

• do_start(): starts generating theworkload for the configured application. This method is used by Prometheus to start generating thework-
load for a given application. In the workload_driver class, we start RAIN as an external process as well as the thread used for monitoring
its log files.

• do_stop(): stops generating the workload for the configured application. This method is used by Prometheus to stop generating the work-
load for a given application. For the workload_driver class, we stop the workload generation by terminating both the RAIN process and
the thread that have been launched in the do_start() method.

• do_done(): tells whether the workload generation is done. This method is used by Prometheus to know when workload generation for a
given application has finished. For the workload_driver class, we return true if the RAIN process has terminated, or false otherwise.

• do_ready(): tells whether the workload generator has reached the desired load level. This method is used by Prometheus to know when
it can start sampling data from application and VMs and enforcing the resource management policy. For the workload_driver class, we
return true if the workload generation in RAIN has already left its ramp-up phase, or false otherwise. This information is provided by the
thread that monitors the RAIN’s log files.

4.4 Adding Data Collection Functionality

Adding data collection functionality involves implementing the interface of the Data Collection subsystem (see Section 2.3), that entails to
implement a concrete subclass of (a) the base_sensor class to add sensors, (b) the base_estimator class to add data estimators, and (c) the
base_smoother class to add data smoothers (see Section 3.1.2).

For instance, as shown in Figure 7 , the Response Time Sensor, which is used in our case study to collect response time observations from a
running application, is implemented by the response_time_sensor class as a concrete subclass of the base_sensor class.

From this figure, we see that a concrete class of base_sensor must implement the following methods:
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1 class response_time_sensor: public base_sensor {

2 void do_reset() { ... } // Resets the state of the sensor

3 void do_sense() { ... } // Collects data

4 bool do_has_observations() const { ... } // Tells whether there are observations ready to be consumed

5 std::vector<observation> do_observations() const { ... } // Returns the last collected observations (if any)

6 };

FIGURE 7 Implementation outline of the response time sensor (see file rain/sensors.hpp in (10) for more details).

• do_reset(): resets the state of the sensor. This method is used by Prometheus to reset the sensor before running a new experimental
session. For the response_time_sensor class, we clear all the previously collected data.

• do_sense(): gathers observations from the monitored entity. This method is invoked by Prometheus to periodically collect application-
specific or VM-specific observations. For the response_time_sensor class, we gather response time observations from the log files
generated by RAIN and store them in an internal array.

• do_observations(): returns the last sensed data (if any). This method is used by Prometheus to retrieve the most recently collected
observations. For the response_time_sensor class, we return the values that we previously stored in the internal array in the do_sense()
method.

• do_has_observations(): tells whether there are observations waiting to be consumed. For the response_time_sensor class, we return
true if the internal array (used to hold the last collected observations) is not empty, or false otherwise.

As for the t-digest Estimator and the SES Smoother, which in our example testbed are used for application performance estimation and data
smoothing, their implementation is outlined in Figure 8 and in Figure 9 , respectively.

In particular, from Figure 8 , we see that the t-digest Estimator is implemented by the dunnings2013_tdigest_estimator class as a concrete
subclass of the base_estimator class which requires to implement the following methods:

1 class dunning2013_tdigest_quantile_estimator: public base_estimator {

2 void do_reset() { ... } // Resets the state of the data estimator

3 void do_collect(const std::vector<double>& data) { ... } // Collects the given data

4 double do_estimate() const { ... } // Applies the data estimation algorithm

5 };

FIGURE 8 Implementation outline of the t-digest algorithm (see file data_estimators.hpp in (10) for more details).

• do_reset(): clears the state of the data estimator. This method is used by Prometheus to reset the data estimator before running a new
experimental session. For the dunning2013_tdigest_quantile_estimator class, we reinitialize the internal data structures used by the
percentile estimation algorithm.
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• do_collect(data): updates the state of the data estimator with the provided data. This method is used by Prometheus to update the data
estimator when new data is available (e.g., when it is gathered from a sensor). For the dunning2013_tdigest_quantile_estimator class,
we add the provided data to the set of values that will be used for the percentile estimation.

• do_estimate(): applies the estimation algorithm and returns the computed estimate. This method is used by Prometheus to get the current
value of the estimate. For the dunning2013_tdigest_quantile_estimator class, we use the collected data to compute and return the
percentile estimate.

As for Figure 9 , we note that the SES Smoother is implemented by the brown_single_exponential_smoother class as a concrete subclass of
the base_smoother class which requires to implement the following methods:

1 class brown_single_exponential_smoother: public base_smoother {

2 void do_reset() { ... } // Resets the state of the data smoother

3 double do_smooth(const std::vector<double>& data) { ... } // Applies the smoothing algorithm

4 double do_forecast(unsigned int t) const { ... } // Predicts the next value at time t (t >= 0)

5 bool do_ready() const { ... } // Tells whether the data smoother is ready to forecast values

6 };

FIGURE 9 Implementation outline of the SES algorithm (see file data_smoothers.hpp in (10) for more details).

• do_reset(): resets the state of the data smoother. This method is used by Prometheus to reset the data smoother before running a new
experimental session. For the brown_single_exponential_smoother class, we clear the value of the SES statistic as well as some internal
flags.

• do_smooth(data): feeds the smoothing algorithm with the provided data. This method is used by Prometheus to update the state of the
data smoother when new data is available (e.g., when it is gathered from a sensor). For the brown_single_exponential_smoother class,
we apply the SES algorithm to the given data.

• do_forecast(t): predicts the next smoothing value at the given time t. This method is used by Prometheus to get the current value of the
smoothed statistic. For the brown_single_exponential_smoother class, we return the most recent value of the SES statistic.

• do_ready(): tells whether the data smoother is ready to forecast values. For the brown_single_exponential_smoother class, we return
the value of the internal flag that we set the first time the SES algorithm is applied after its last reset.
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4.5 Adding Resource Management Strategies

Adding resource management strategies requires implementing the interface of the Application Management subsystem, that entails in imple-
menting a concrete subclass of (a) the base_application class to add applications, and (b) the base_application_manager class to add resource
management strategies (see Section 3.1.1).

For instance, as outlined in Figure 10 , the FCMS resource management strategy used in the case study is implemented by the
fcms_application_manager class as a subclass of the base_application_manager class.

1 class fcms_application_manager: public base_application_manager {

2 void do_reset() { ... } // Resets the state of the application manager

3 void do_sample() { ... } // Samples application-specific and/or VM-specific observations

4 void do_control() { ... } // Applies the management strategy to the controlled application

5 };

FIGURE10 Implementation outline of the FCMS resourcemanagement strategy (see file fcms_application_manager.hpp in (10) formore details).

Specifically, as shown in this figure, a concrete subclass of base_application_manager must implement the following methods:

• do_reset(): (re)initializes the state of the application manager so that any previously stored data used for making resource management
decisions is cleaned. This method is used by Prometheus to reset the state of the application manager before running a new experimental
session. In the fcms_application_manager class, we reset the state of the tier controllers and of their related vCPU Sensors and RAM
Sensors as well as the state of the Response Time Sensor, and initialize the SES Smoothers.

• do_sample(): collects observations from either application-specific sensors or VM-specific sensors or both of them. This method is
periodically invoked by Prometheus to collect data from the sensors associated with the monitored application and its VMs. In the
fcms_application_manager class, we collect response time observations with the Response Time Sensor and we pass them to the t-digest
Estimator. Also, we collect CPU and memory utilization data from application’s VMs by means of the vCPU Sensor and the RAM Sensor,
respectively, and we pass them to the respective SES Smoothers.

• do_control(): applies the resource management strategy, usually by making decisions on the basis of data collected so far in the
do_sample() method. This method is periodically invoked by Prometheus to apply the resource management strategy to the monitored
application. In the fcms_application_manager class, (a) we first estimate the achieved application SLO value by means of the t-digest Esti-
mator, (b) then for each application’s VM we predict the next CPU and memory utilization values by means of the SES Smoothers, and (c)
finally we set these values as input to the tier controllers in order to compute the right CPU andmemory shares to assign to the application’s
VMs for satisfying SLOs and maximizing the server consolidation level.
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5 EXPERIMENTAL EVALUATION

To demonstrate the effectiveness of Prometheus to support experimental activities involving virtualized applications, in this section we show how
to employ a testbed deployed using it to carry out two distinct experimental campaigns. The first one focuses on application performance profiling,
and is aimed at characterizing the performance of a virtualized application for varying levels of workload intensity and amounts of allocated resource
capacity. The second one focuses instead on resource management, and is aimed at comparing the effectiveness of several resource management
strategies when dealing with a set of distinct applications that compete for the same physical resources.

In the rest of this section, we first describe the setup of the physical testbed used in these experiments (Section 5.1), then we discuss the
application profiling experimental campaign (Section 5.2), and finally we conclude with the resource management one (Section 5.3).

5.1 Experimental Setup

For both the experimental campaign discussed in this section, we implement the testbed depicted in Figure 4 and described in Section 4.1, and
we deploy it on two Fujitsu Server PRIMERGY RX300 S7, connected via a Gigabit Ethernet switch, each one equipped with two 2.4 GHz Intel Xeon
E5-2665 processors with 8 cores and 96 GiB of RAM, and running the Linux kernel version 4.1.13 and Xen 4.4. One of these machines (henceforth,
“Host A”) is used to run all the VMs corresponding to the cloud applications used in our evaluation, while the other one (hereafter, “Host B”) is used
to run all the software components of Prometheus.

For our experiments, we consider two applications that are representative of those that run on current cloud computing infrastructures (28),
namely:

• Olio (29), a two-tier PHP-based Web 2.0 Internet application for social events modeled after the Yahoo! Upcoming service.

• RUBBoS (30), a two-tier PHP-based Web 1.0 Internet application that implements a bulletin board system modeled after an online news
forum like Slashdot.org.

We deploy and run each application tier inside a separate VM, each one equipped with a single virtual CPU (vCPU).
The workload for these applications is driven by the RAIN toolkit (15), using the implementation discussed in Section 4.3. The workloads of both

applications is generated by a population of N clients, each one issuing a request and waiting for the response, then sleeping for a given amount
of time (the think time), and then repeating the process again (the details of the workload used in each experimental campaign are given in the
corresponding subsection).

As described in Section 4, data collection is carried out by means of the built-in sensors of Prometheus, namely the Response Time Sensor, the
vCPU Sensor and the RAM Sensor. These sensors consume very little system resources as can be observed in Table 1 , where we report the results
of the profiling of 1000 invocations of each sensor, and where we note that each invocation takes, on average, less than 200 µsecs of CPU time
(which is comparable with the mean time taken by a context-switch on modern computing systems (31)). Furthermore, this CPU time is consumed
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only occasionally because sensors are invoked at user-defined time intervals which are usually set to a value larger than the time taken by each
invocation (e.g., every 2 secs, in our experiments). Finally, from the same table, we observe that the vCPU and RAM Sensors are the only sensors
that may affect the performance of the hosted applications since they are the only ones that may contend resources with the VMs of the physical
testbed (because they interact with the virtualization platform running on Host A). However, considering their low resource consumption, we
conclude that the use of these sensors has a negligible impact on the performance of the applications hosted by the physical testbed.

TABLE 1 Mean CPU time taken by the invocation of each sensor. Values inside parenthesis denote standard deviations.
Sensor Affected Host CPU Time

(µs)
vCPU Sensor Host A 147.01 (237.30)

RAM Sensor Host A 192.64 ( 18.16)

Response Time Sensor Host B 167.90 ( 5.20)

5.2 Application Performance Profiling

Performance profiling consists in studying how the performance of a given application is affected by changes in its workload, in the amount of
resource capacity allocated to it, or both. Performance profiling has various uses, including determining the right amount of physical resources that
must be allocated in order for the application to meet its performance goals, or to build a performance model that is able to dynamically predict
its performance under given operational conditions.

Prometheus offers two built-in application managers to carry out application performance profiling for varying levels of workload intensity and
for changing amounts of allocated resource capacity, namely the dummy_am and the sysid_am application managers.

The dummy_am application manager supports performance profiling as the workload changes, while keeping constant the amount of allocated
resources. This application manager periodically collects application performance and resource utilization data from the managed application,
without performing any resource allocation adjustment.

To give an example, let us assume we are interested in profiling the performance of RUBBoS when the number of users is increased from 100

to 200 and, finally, to 300 (while the think times of users are sampled from a random variable that is exponentially distributed with mean 7 sec). To
carry out this task, we configure RAIN to generate the above workload, and we start the Experiment Management subsystem, that starts in turn
the dummy_am manager and the RAIN extension of the Workload Generation subsystem.

The results of these profiling experiments are shown in Table 2 , where we report summary statistics for the associated response time empirical
distribution, which have been computed using the data collected by dummy_am.

The sysid_am application manager instead supports application performance profiling when the amount of resources allocated to the application
is dynamically changed according to a given pattern (e.g., according to a sinusoidal-like function or by generating random values from a certain
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TABLE 2 Response time statistics of RUBBoS under different number of users. All VMs were equipped with 3GiB of RAM. All values are expressed
in sec.

Number of Summary Statistics for the Response Time Empirical Distribution
Users Min 1st Quartile Median Mean 3rd Quartile Max

100 0.0000035 0.0027554 0.0066064 0.0173767 0.0173567 0.9561026

200 0.0000037 0.0037358 0.0102574 0.0376509 0.0446460 1.6610171

300 0.0000031 0.0028206 0.0082611 0.0403694 0.0452455 1.7688789

probability distribution). To do so, sysid_am periodically varies the amount of the capacity of the virtual resources allocated to the application’s VMs
according to the given pattern, and registers the effects of these changes by collecting performance and resource utilization observations from the
interested application.

To give an example, let us consider the case where wewant to quantify the effects on application performance of changes in the amount of RAM
allocated to the VM hosting that application. As reported in the literature (32, 33), indeed, the actual dynamic memory management mechanisms
used by a virtualization platform causes abrupt changes in the utilization of its vCPU, lasting a variable amount of time, when the amount of memory
allocated to a VM is changed.

To quantify these effects, we run a set of experiments on the physical testbed where, by means of the sysid_ammanager, we dynamically change
the memory allocated to a VM by a fixed magnitude and collect the utilization of its vCPU and its memory. In particular, we fix the minimum (1.6
GiB) and maximum (16GiB) size of the VMmemory, and then we run a sequence of experiments in which the RAM size of the VM is first decreased
from the maximum to the minimum values using increasing steps m from 10% to 90% of the maximum value, and then it is increased until the
maximum value is hit using steps of the same magnitude.

The results of these experiments are reported in Table 3 , and confirm the effects reported in the literature, that is we observe that increasing
or decreasing allocated memory make vCPU utilization to increase, and that the increase and its duration are proportional to the magnitude of
the variation. For instance, halving the memory size (i.e., m = 50%) raises the vCPU utilization up to 69.79% for 9 sec, while reducing it of just
m = 10% yields a vCPU utilization of 42.97% for 3.03 sec. A similar behavior can also be observed when memory size is increased.

5.3 Comparing resource management strategies

An activity often recurring when devising a novel resource management strategy, is the evaluation of its effectiveness and the comparison against
existing alternatives. Prometheus effectively supports this activity by providing a simple mean to add a new resource management strategy (see
Section 4.5), and by providing a set of built-in modules implementing alternative solutions already published in the literature, as listed in Table 4 .
All these modules use the mechanisms Prometheus offers to collect application performance and resource utilization measures, as well as those
to dynamically change CPU and memory capacity associated with a VM according to the implemented resource management strategy.
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TABLE 3 Effects of dynamic memory management on vCPU utilization. Values inside parenthesis denote standard deviations.
Magnitude Memory Increment Memory Decrement
of Changem Mean vCPU Utilization Mean Duration Mean vCPU Utilization Mean Duration

(%) (%) (s) (%) (s)
10 42.28 (59.04) 2.03 (0.17) 42.97 (39.82) 3.03 (0.17)

20 52.71 (50.14) 3.00 (0.00) 59.85 (39.80) 4.00 (0.00)

30 64.16 (46.90) 4.13 (0.35) 63.64 (31.72) 6.07 (0.26)

40 66.22 (47.52) 5.00 (0.00) 64.20 (29.86) 8.00 (0.00)

50 72.21 (44.80) 6.25 (0.50) 69.79 (26.35) 9.00 (0.00)

60 79.44 (39.92) 6.00 (0.00) 69.07 (23.06) 11.33 (0.58)

70 79.52 (38.56) 7.00 (0.00) 68.30 (23.30) 13.00 (0.00)

80 79.96 (38.57) 8.00 (0.00) 69.27 (22.69) 15.50 (0.71)

90 81.74 (37.28) 9.00 (0.00) 71.32 (23.60) 16.50 (0.71)

TABLE 4 Library of available application managers in Prometheus.
Module name Resource manager name Reference
fuzzyqe_am Fuzzy-Q&E (7)
fc2q_am FC2Q (8)
fcms_am FCMS (9)

appleware_am APPLEware (12)
autocontrol_am AutoControl (13)
dynaqos_am DynaQoS (34)
fmpc_am FMPC (14)

As an example, consider an experimentation aimed at comparing the effectiveness of FCMS, APPLEware, and FMPC in maximizing the con-
solidation level of the physical servers running a set of cloud applications that compete for the same physical resources without impacting on
application performance goals.

For this experimental campaign, we consider the RUBBoS and Olio applications, using the settings reported in Section 5.1, and we configure
the testbed to allocate competing VMs on the same CPU core using vCPU pinning. For all VMs, the maximum amount of RAM is set to 3 GiB, but
the applications managers are free to reduce this value when they deem it necessary. The performance goal of each application is set by fixing
a threshold value R for the response time (0.37 sec and 0.17 sec for Olio and RUBBoS, respectively), and by requiring that the 95th percentile R̂

of the observed response time values is below this threshold. We compute these thresholds in a way to make them achievable with the physical
resources available in our physical testbed and a nontrivial target tomeet. Specifically, we profile each application by running it in isolation under the
maximal workload intensity, we collect its response time observations, and then we compute the SLO value as the 95th percentile of the empirical
distribution built from these data (see (8, 9) for more details).

The following metrics are used to quantify the effectiveness of the resource managers:

• Mean CPU Capacity (MCC ): the average CPU capacity allocated to each application’s VM.
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• Mean Memory Capacity (MMC ): the average memory capacity allocated to each application’s VM.

• Percent Error Ê: relative percentage change between the observed 95th percentile R̂ of the response time values and the thresholdR, that
is:

Ê = 100
R̂−R

R
(1)

These metrics are used to rank the approaches as follows: if Ê > 0, then the approach is violating the performance goal, so it is placed at the
bottom of the ranking. If instead Ê ≤ 0, then the lower MCC and MMC values, the better the approach (i.e., among two approaches that both
meet the SLO, the best one is that which uses less CPU and memory capacity, thus allowing a higher consolidation level).

The results of the experiments are reported in Tables 5 and 6 , for RUBBoS and Olio, respectively.

TABLE 5 Results for the RUBBoS application.
Performance goal MCC MMC

Satisfied? Ê Web (%) DB (%) Web (%) DB (%)
FCMS Yes −3.90 45.84 54.52 86.05 37.68

APPLEware No 2183.36 7.91 7.24 67.79 19.60

FMPC No 3079.03 18.99 25.25 63.58 45.35

TABLE 6 Results for the Olio application.
Performance goal MCC MMC

Satisfied? Ê Web (%) DB (%) Web (%) DB (%)
FCMS Yes −11.95 33.10 16.01 73.32 89.08

APPLEware No 1053.62 22.85 7.04 54.61 73.15

FMPC No 526.77 22.23 14.28 53.32 68.49

From these results, we note the FCMS is able to meet the performance goal of both applications, while APPLEware and FMPC both fail to do
so. The interested reader is referred to (9) for a more detailed analysis of the effectiveness of these resource management strategies.

6 RELATED WORKS

Although in the last years many papers discussing resource management algorithms – and evaluating their performance using physical testbeds
– have been published in the literature (see (4) for a thorough survey), the problem of devising suitable toolkits simplifying the deployment,
configuration, and use of these testbeds has not been directly addressed.

Most of the above works (e.g., (35, 36, 37) base their experimental evaluation on a purposely-built testbed, that is usually assembled ad-hoc
for the specific case, but it cannot be easily customized, or extended for algorithms and systems different from those considered for that case.
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In contrast, Prometheus is a generic, extensible toolkit that allows to easily configure, deploy, and use a physical testbed for any combination of
virtualization platforms, applications, workloads, and resource management algorithms.

Other efforts have been devoted to the development of individual components needed to deploy and use a physical testbed, such as workload
generation (e.g., C-Meter (38) and RAIN (15)), or VM management (e.g., Amazon Web Services (39), Google Cloud Platform (40), and Open-
Stack (41)). However, none of these systems integrates into a single toolkit all the components needed to configure, deploy, and use a physical
testbed for the experimental evaluation of resource management algorithms, as instead done by Prometheus.

7 CONCLUSION

Physical testbeds are usually considered the most accurate option for experimentally assessing the effectiveness of a resource management
algorithm for virtualized infrastructure, as well as to compare it against state-of-the-art alternatives. However, using a physical testbed is a com-
plex and time-consuming task, because of the difficulty in implementing, configuring, and deploying the various software components needed by
the testbed, and of the complexity in running the various experiments in a controlled way.

To address the above issues, in this paper we have proposed Prometheus, a highly modular and extensible toolkit specifically devised to support
the configuration, deployment, and use of physical testbeds for the experimental evaluation of resource management algorithms, which provides
low implementation costs and high controllability. To show the potential and the features of Prometheus, we have presented various practical
examples where it has been used to carry out experimental activities on a physical testbed.

As future works, we plan to extend Prometheus to support other virtualization and cloud platforms (like OpenStack (41), Google Cloud Platform
(40), and AmazonWeb Services (39)), by interacting with them either directly through their native APIs or by means of intermediate software layers
like (42). Furthermore, we intend to add new functionalities to Prometheus as those for the monitoring and the management of physical servers,
thus enabling it to also support the experimental assessment of server-level resource management policies, like those designed to reduce energy
consumption in a physical infrastructure (43, 44).
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