
Online user-driven task scheduling for FemtoClouds

Please, cite this paper as:
Cosimo Anglano, Massimo Canonico, Marco Guazzone
“Online user-driven task scheduling for FemtoClouds,”

Proc. of the 4th International Conference on Fog and Mobile Edge Computing
(FMEC), Rome, Italy, Jun 10 - 13, 2019.

DOI:10.1109/FMEC.2019.8795304
Publisher: https://ieeexplore.ieee.org/document/8795304



Online user-driven task scheduling for FemtoClouds
Cosimo Anglano, Massimo Canonico and Marco Guazzone
{cosimo.anglano,massimo.canonico,marco.guazzone}@uniupo.it

Computer Science Institute, DiSIT, University of Piemonte Orientale, Italy

Abstract—In Fog Computing, FemtoClouds are emerging com-
puting systems consisting of a set of heterogeneous mobile devices
whose users allow to run tasks offloaded by other users. Femto-
Clouds are well suited to run Bag-of-Tasks (BoTs) applications,
but they need effective scheduling algorithms that are able
to deal with collections of independently-owned, heterogeneous
devices that can suddenly leave the system. In this paper, we
present UDFS, an online scheduling algorithm that, by combining
knowledge-free task and device selection policies with suitable
heterogeneity and volatility tolerance mechanisms, can effectively
schedule a stream of BoT applications on FemtoClouds. We
evaluate the ability of UDFS to achieve its design goals and to
perform better than existing scheduling alternatives, by carrying
out a thorough simulation study for a large set of realistic
scenarios. Our results indeed show that UDFS can effectively
schedule a stream of BoT applications on FemtoClouds, and it
can do so more effectively than existing scheduling alternatives.

Index Terms—FemtoCloud, Scheduling policy, Fog computing.

I. INTRODUCTION

With the emerging Internet of Things (IoTs) and the prolifer-
ation of mobile devices, the number of connected devices will
soon reach 50 billion [1]. Data generation is rapidly expanding
as well. In 2020, it is expected that such devices will generate
40 trillion gigabytes of data.

The traditional approach to deal with the huge computing
and storage capacity demand, needed to process these data,
is to resort to Cloud Computing. However, these data often
require (near) real-time processing (e.g., for augmented reality
services or smart traffic light systems) [2]–[4]. Therefore,
the inherent high latency of the core network makes Cloud
Computing unsuitable to meet these stringent requirements.
Fog Computing [5] has recently emerged as a new paradigm
to mitigate the escalation in resource congestion and to
support low-latency services. By migrating data computation
or storage to the network “edge” (near the end users), Fog
Computing can offload the computational requests from the
Cloud Computing infrastructure, and can significantly reduce
the latency with respect to centralized Clouds.

Recently, it has been argued that the processing capability in
Fog Computing can be provided by underutilized mobile edge
devices (e.g., smartphones and tablets), that are aggregated
into a so-called FemtoCloud, whose users agree to run tasks
offloaded by other users (this can be achieved by resorting
to suitable incentive mechanisms) [6]. FemtoClouds are con-
sidered to be very promising since the computing capacity
provided by mobile devices is becoming more and more
ubiquitous, making mobile devices the most used platform in
recent years [7], [8].

Fig. 1. FemtoCloud system architecture.

Figure 1 shows the architecture of a typical FemtoCloud
system, consisting of a set of distinct FemtoClouds where
each FemtoCloud is coordinated by a Fog Node, an always-
present/always-on machine which is in charge of receiving
offloaded tasks from a population of users, of dispatching
them on the devices it coordinates, of receiving the results
they generate, and of forwarding these results to the corre-
sponding users. Specifically, the Fog Node runs a Scheduler
component, whose main goal is to schedule offloaded tasks
on available devices so as to minimize their completion time.
In the following, without loss of generality, we use the terms
“scheduler” and “Fog Node” interchangeably.

To successfully carry out scheduling, the Fog Node has to
properly take into account two crucial issues, namely device
heterogeneity (edge devices are very different both in terms
of hardware and software characteristics) and availability (an
edge device could become unreachable at any moment due
either to network connection issues, to device owner mobility,
or to battery depletion).

These problems are not new, and have already been ad-
dressed in the past by resorting to combinations of replication
(i.e., several instances of the same task are created and sched-
uled on different devices) and periodic checkpointing (i.e., the
state of a task is periodically saved, so that its execution can
be restarted from the last saved state), first in the context of
clusters of non-dedicated PCs [9] and, later, of desktop grids
[10]. Hence, a natural question arises about the applicability
of these solutions to FemtoCloud systems.

The analysis of the above solutions reveals however that
their efficacy was somehow limited by the lack of reliable in-
formation about resource availability. In fact, while replication
does not require any information concerning the characteristics
of tasks and of devices, checkpointing requires the choice of a
suitable frequency with which state is saved. It is known [11]
that the optimal checkpoint frequency can be computed only
under specific assumptions about the behavior of machines
and applications so, in real cases, it can only be approximated,



and this approximation usually results in the creation of many
more checkpoints than strictly needed.

In case of traditional computing systems, an excessive
checkpointing activity would of course results in suboptimal
performance, but would have no other consequences. In Fem-
toCloud systems, however, it would severely hurt the stability
of the system, given that checkpointing is a resource-intensive
activity not only in terms of storage space, but also in terms of
computing capacity. On edge devices the creation of a check-
point would indeed not only slow down the device much more
than a traditional machine, but also deplete its battery more
quickly, hence either forcing the device owner to leave the
system or causing its switch off. Therefore, existing scheduling
algorithms based on replication and periodic checkpointing
would exhibit potentially unsatisfactory performance also on
FemtoCloud systems.

However, we observe that – unlike clusters of PCs and
desktop grids – in FemtoClouds the computational capacity is
narrowed in restricted area such as a public transit, a classroom,
a movie theater, a coffee shop and so on, as illustrated in
Figure 1. Hence, we can exploit this fact to collect more
precise information about when the device will leave the
system, and carry out only one checkpoint about when the
device is going to leave. In this way, the number of checkpoints
is minimized (only 1 checkpoint is created for each device),
and only useful checkpoints are created (i.e., only for those
devices that will leave while the task allocated them is still
running).

This works very well in situations where users have to
stay in the FemtoCloud for an amount of time that can be
determined in advance from the context (e.g., the duration of
a movie or of a lecture). In other scenarios where presence
times cannot be determined by the context (e.g., in a coffee
shop), we can ask the device owners to declare their expected
presence time in advance, as soon as they join the FemtoCloud
(for instance, a reward mechanisms can be easily conceived to
incentivize users to do so in a precise manner), or just before
leaving the system (e.g., by pressing a specific button of the
FemtoCloud client application installed on the user device).

In this paper we argue that, by exploiting the information
about device presence gathered as discussed before, it is
possible to build a scheduling algorithm for FemtoCloud
systems that – by combining replication and checkpointing
– can provide significant performance benefits with respect
to state-of-the-art alternative solutions that do not use such a
combination. We prove our claim by presenting a novel online
scheduling algorithm for FemtoCloud systems based on the
above principle, that we call User-Driven FemtoCloud Sched-
uler (UDFS), and we experimentally compare its performance
against alternative solutions by carrying out an extensive simu-
lation study for a variety of real-world operational conditions.
The results we obtain clearly show that UDFS outperforms
alternative solutions in all the scenarios we considered.

The rest of the paper is organized as follows: Section II
summarizes related works, while Section III presents the
details of our algorithm. Section IV shows the performance

evaluation used in our experiments, and in Section V we
discuss the results obtained. Finally, Section VI presents a
summary of our findings and a discussion of future directions.

II. RELATED WORKS

The literature focusing on computation offloading for mo-
bile devices offers several contributions that can be applied
also to FemtoCloud systems [12]–[16].

In [12], authors present an offloading scheme that is based
on node mobility model in mobile social network and can
support heterogeneous tasks. In [13], by assuming the knowl-
edge of transmission time, processing time and queueing
time of tasks, an integer linear programming problem and
an offline centralized algorithm to solve it are proposed. In
[14], authors present the Optimal Fair Multi-criteria Resource
Allocation (OFMRA) algorithm to select offloading nodes
and to allocate resources so as to minimize task completion
time and, simultaneously, to maximize device lifetime. This
work assumes homogeneous tasks in terms of computational
requirements, which in practice is not always true. In [15],
authors design and implement a context-aware Offloading
Middleware for Mobile Cloud (OMMC), which aims to si-
multaneously minimize the task completion time, minimize
the overall energy consumption of mobile devices, and meet
the task deadlines.

Finally, in [16], authors propose a scheduling algorithm for
FemtoClouds, which is able to estimate the availability and the
computing capacity of devices, and to exploit this information
to prioritize the tasks with higher computational requirements,
as well as to maximize the useful computation and increase
processor utilization by selecting mobile devices able to com-
pute tasks earlier. A static checkpointing mechanism, which
runs periodically every 15 seconds regardless the device failure
rate, is also used.

The above scheduling algorithms need the knowledge of
information about submitted tasks (i.e., their arrival rate, the
amount of work they require, or both) and device characteris-
tics (i.e., their computation capacity). These information, how-
ever, may be very difficult to collect reliably in a FemtoCloud
system, because of the lack of control on the user population
providing devices, and on the possible difficulty in convincing
them to install suitable software on their devices. Also, in
many cases these algorithms work offline (i.e., they compute
a scheduling plan ahead of time before tasks are actually
submitted), which, however, implies that precise information
about tasks and devices are known in advance.

In contrast, our UDFS algorithm works online (i.e., tasks are
scheduled as soon as they arrive to the system), and does not
require any information about the characteristics of tasks and
devices. The only information that it requires is, as already
mentioned, the presence time of each device in the system,
which in many cases can be easily inferred from the context
or can be requested to the user.

III. SCHEDULING ALGORITHM

A scheduling algorithm has to select a task and submit it to a
selected device where will be executed. This decision has to be



made repeatedly until all tasks have been assigned to devices
or there is no idle device. The way this double selection is
made characterizes the scheduling algorithm. In this section,
we first describe the workload model (Section III-A) and the
system model (Section III-B), and finally we present the UDFS
algorithm (Section III-C).

A. Workload model

The inherent wide distribution, heterogeneity, and dy-
namism of FemtoCloud systems makes them better suited to
the execution of loosely-coupled parallel applications rather
than tightly-coupled ones. Bag-of-Tasks applications (BoTs)
[17] (parallel applications whose tasks are completely inde-
pendent from one another) can be used in a variety of IoT
data analytics domains, including smart video surveillance in
transportation systems [18] (to process videos in real-time
coming from many different cameras so as to automatically
identify potential security threats), and city-wide traffic fore-
casting [19] (to train learning models from data collected by
smart traffic IoT devices so as to learn traffic patterns). Each
BoT is characterized by two parameters, namely the number
of tasks and the computation requirements of each task.

B. System model

We consider a set of heterogeneous mobile devices con-
nected to a Fog Node. Each device d is characterized by its
nominal computing power P(d), a real number whose value
is directly proportional to its speed (i.e., a device d1 with
P(d1) = 2 is twice faster than a device d2 with P(d2) = 1), and
by the communication bandwidth B(d) (in bits/sec.) towards
the Fog Node.

Each device may join and leave the FemtoCloud at any time,
but we assume that the corresponding user declares how long
(s)he will stay in that location when (s)he joins. We believe this
assumption is realistic for the following two reasons: (1) the
user should be able to predict how long (s)he will stay in the
location (i.e., in a movie theater, until the end of the movie; in
a school, the duration of the lessons; in a theater, the duration
of the show; in a bus, the duration of the journey; and so
on), and (2) we postulate the user receives incentives if (s)he
communicate its presence time (i.e., the time elapsed between
the arrival and the departure of the device from the system)
to the local Fog Node. Finally, we assume that FemtoCloud
applications run encapsulated in virtual machines on a mobile
virtualization platform [20], [21], so that their execution state
can be easily saved and restored later on any device.

C. The UDFS scheduling policy

UDFS combines very simple task and device selection
policies with several mechanisms specifically tailored to cope
with device departures from the FemtoCloud. In particular,
it is derived from the WQR-FT scheduling algorithm [10],
that targets desktop grids, by replacing its checkpointing
mechanism (based on the Young’s formula [22]) as follows.

UDFS selects in an arbitrary order the tasks of the oldest
BoT (i.e., the BoT who arrived first in the system with respect

to the others) and submits them to devices as soon as they
become available. No information concerning task or device
characteristics is taken into consideration for these selections.
In order to tolerate device departures, UDFS exploits the
following three mechanisms:

1) task replication: replication is used to cope with device
heterogeneity and departures. As a matter of fact, by sub-
mitting the same task to different devices, we increase
the chances of task completion, since to complete the
task it suffices that at least one of these devices stays in
the system. At the same time, we increase the chance
of reducing its execution time, since in general both
faster and slower devices will be chosen for its replicas,
and the faster device will complete the tasks (at that
point, the slower replicas that are still running will be
aborted, as they become useless). The maximum number
of replicas for each task is a scheduler parameter called
replication threshold and denoted by τr ;

2) task selection: anytime a device becomes available (be-
cause it has completed the task assigned or it has just
joined the FemtoCloud system) UDFS selects the oldest
task with the lowest number of replicas and submits it
to the idle device. If all tasks have already a number of
replicas that is equal to the replication threshold, UDFS
waits for a task to submit (that is, a new task from a
new BoT just arrived in the system or a task died due
to a device failure). A task remains in the system until
it has been completed;

3) checkpointing: before a device leaves the FemtoCloud
system as claimed by its owner, a snapshot of the virtual
machine running its task t is saved by the Fog Node, so
that when the task has been selected by the scheduler,
this snapshot will be used to restart task t.

The UDFS algorithm (shown in Algorithm 1) maintains a
task set T (which stores the tasks to complete) and a device set
D (which stores the devices currently in the Femtocloud), and
is invoked upon five possible events, namely NewTask (fired
when a new task is to be executed), TaskDone (fired when the
execution of a task is done), DeviceIdle (fired when a device
becomes idle or when a new device joins the FemtoCloud),
DeviceGone (fired when a device leaves the FemtoCloud), and
NewCheckpoint (fired when a device is going to leave the
FemtoCloud so as to create a new checkpoint for the task
running on it).

As shown in Algorithm 1, whatever event is fired, UDFS
first performs event-specific actions (lines 15–34) and then
invokes the procedure Schedule (line 35), which performs the
following actions. Firstly, it selects a task t from T according
to the above task selection policy and with a number of
running replicas below the threshold τr (line 2). Then, it
picks an idle device d from D (line 3). Next, it runs a
new t’s replica on d, either restoring its execution from an
existing checkpoint (line 6) or, if not available, starting it
from scratch (line 8). Finally, it increments the number of
t’s running replicas (line 10) and schedules the creation of a



new checkpoint for t from the replica on d before d’s presence
time elapses (line 11).

For the event-specific actions, when a NewTask is fired,
UDFS adds the new task to T , so that it can be scheduled
for execution later by the Schedule procedure (line 16). 1

Conversely, when a TaskDone event is fired, UDFS aborts
all running replicas of the just terminated task (so that de-
vices where these replicas were run become idle), deletes
its checkpoint, cancels any pending NewCheckpoint event (if
any), and removes it from T (lines 18–21). Instead, when a
DeviceIdle event is fired, UDFS adds the idle device to D, so
that it can be chosen by the Schedule procedure for executing
a task (line 23). When a DeviceGone event is fired, UDFS
removes the departed devices from D, cancels the pending
NewCheckpoint event related to the replica running on it (if
any) and decrements the number of running replicas of the
task running on it, if any (lines 25–31). Finally, when a
NewCheckpoint event is fired, UDFS creates a new checkpoint
for a task running on a device that is leaving the FemtoCloud
system (line 33).

Algorithm 1: The UDFS scheduling algorithm.

1 procedure Schedule(T ,D,τr)
Input: task set T , device set D, replication threshold τr .

2 t ← GetOldestTaskWithLowestNumReplicas(T ,τr)
3 d ← GetIdleDevice(D)
4 if t , nil and d , nil then
5 if CheckpointExist(t) then
6 RunTaskReplicaFromCheckpoint(t , d)
7 else
8 RunTaskReplica(t , d)
9 end

10 IncrNumTaskReplicas(t)
11 ScheduleNewCheckpointEvent(t, d)
12 end
13 end
14 procedure Main(T ,D,e,τr)

Input: task set T , device set D, event e, replication threshold τr .
15 if EventType(e) = NewTask then
16 InsertTask(T , GetTask(e))
17 else if EventType(e) = TaskDone then
18 t ← GetTask(e)
19 RemoveCheckpoint(t)
20 CancelNewCheckpointEvents(t,

GetDevicesForTask(t))
21 RemoveTaskReplicas(t, T)
22 else if EventType(e) = DeviceIdle then
23 InsertDevice(D, GetDevice(e))
24 else if EventType(e) = DeviceGone then
25 d ← GetDevice(e)
26 RemoveDevice(D, d)
27 t ← GetTask(e)
28 if t , nil then
29 CancelNewCheckpointEvent(t, d)
30 DecrNumTaskReplicas(t)
31 end
32 else if EventType(e) = NewCheckpoint then
33 CreateCheckpoint(GetTask(e), GetDevice(e))
34 end
35 Schedule(T ,D,τr)
36 end

1In T there can be other tasks older than the new one that are waiting for
an idle device where to be executed.

IV. PERFORMANCE EVALUATION

In order to assess the ability of UDFS to successfully
schedule BoT applications on FemtoClouds, we perform an
exhaustive simulation study in which we compare the perfor-
mance it attains against those attained by the WQR-FT [10],
the Habak’s [16], and the First Come, First Served (FCFS)
scheduling algorithms.

Habak’s algorithm has been included in the comparison
since, at the best of our knowledge, it is the only existing
scheduling algorithm for FemtoClouds. WQR-FT has been
instead included since it is the progenitor of UDFS, so
its inclusion allows us to assess the efficacy of user-driven
checkpointing with respect to periodic checkpointing. Finally,
FCFS is a scheduling algorithm that uses no information and
no device departure tolerance mechanisms, so its inclusion
allows us to assess the impact of the mechanisms used by
UDFS.

To carry out our study, we developed a discrete-event
simulator, written in Python and C++, and based on the
Salabim library [23].

In order to obtain realistic results, in our simulations we
considered a set of realistic scenarios and workloads, obtained
from the experimental setup used in [16]. Also, in order to
assess the sensitivity of UDFS to errors in the presence times
communicated by device owners, we consider scenarios in
which the presence times are affected by errors of different
magnitudes and sign.

Our study has been carried out by using as metric the
Average BoT Completion Time (ABCT), that is the time elapsed
between the submission of a BoT and the termination of all
its tasks. This average value has been computed by using the
independent replication method [24], where each independent
replica corresponds to the time to complete 2000 BoTs and
where the whole simulation stops when the relative precision
of the 95% confidence interval is ≤ 4%. 2

A. Simulated scenarios

For our study, we consider 9 distinct configurations of
FemtoCloud systems (described in Section IV-A1), that have to
process a workload consisting in a stream of BoTs (described
in Section IV-A2) (the rationale behind the choice of the
parameters characterizing the FemtoCloud system and the
workload is discussed in Section IV-A3). Each experiment is
repeated for each one of the scheduling algorithms included
in our comparison (whose parameters are discussed in Sec-
tion IV-A4).

1) FemtoCloud configurations: The FemtoCloud system
considered in our study is composed by a cluster of heteroge-
neous mobile devices whose types are “Galaxy S5”, “Nexus
7 (2012)”, “Nexus 7 (2013)” and “Nexus 10 (2013)”, and
whose associated nominal computing powers are 3.3, 7.1,
8.5, 10.7, respectively. The nominal computing powers have

2The choice of 95% confidence level is most common because it provides
a good balance between precision (as reflected in the width of the confidence
interval) and reliability (as expressed by the confidence level) [25].



TABLE I
EXPERIMENTAL TASK CHARACTERISTICS.

Task type Capacity (MFLOPS) Output (MBytes)

Lightweight tasks 10 0.2
Medium tasks 30 2.0
Compute intensive tasks 100 0.5
Data generating tasks 20 20.0

been obtained by a measurement study with real devices. We
consider that the types of devices are uniformly distributed
between the resources in our FemtoCloud system.

For the device arrival rate, we consider 3 different scenarios,
called FewDev, MedDev and ManyDev, corresponding to Fem-
toClouds with a small, moderate and large number of mobile
devices, respectively, and we characterize them according to
3 different Exponential probability distributions whose rate
parameters are set to 7.5, 15 and 22.5, respectively. Finally,
for the device presence time, we also consider 3 different
scenarios, namely LowAvail, MedAvail and HighAvail, corre-
sponding to the case of low, medium and high presence time,
respectively, and we characterize them according to 3 different
Normal probability distributions whose mean parameters are
set to 10.38, 13.84, 17.30 and whose standard deviation
parameters are set to 2.08, 2.77, 3.46, respectively.

In all the scenarios, the communication bandwidth between
each device and the Fog Node is drawn from a Normal
probability distribution with mean set to 30 Mbps and standard
deviation set to 6 Mbps.

By combining the 3 presence time scenarios
with the 3 device arrival scenarios, we consider
9 different scenarios, that we denote as “X-Y”,
where X ∈ {LowAvail,MedAvail,HighAvail} and
Y ∈ {FewDev,MedDev,ManyDev}.

2) BoT workloads: For our study, we consider a BoT
workload where each BoT has 30 tasks, and they arrive at
the system with a rate that is exponentially distributed with
rate 0.5 (these parameters have been taken from [16]). We
consider four task types, that differ among them in both
the amount of computing capacity they require (expressed
in MFLOPS) and the amount of data that they generate
(expressed in MBytes), as reported in Table I. These types
cover different resource usage scenarios, spanning from tasks
with a very low resource demand (i.e., “Lightweight tasks”) to
tasks with a high computation or network bandwidth demand
(i.e., “Compute intensive tasks” and “Data generating tasks”,
respectively). Each BoT may be composed by tasks of different
types, and the composition of each BoT is determined by
randomly sampling from these types according to the uniform
distribution.

The completion time of a task is computed as the sum of
its execution time (given by the ratio between its computing
requirement and the nominal computing power of the device
where it has been executed) and its stage-out time (given by
the ratio between the task output size and the communication
bandwidth between the device where the task has run and the

Fog Node).
3) Rationale of the FemtoCloud parameters settings: While,

as already mentioned, most of the values of the simulation
parameters are taken from [16], the device presence time
and the device arrival rate have been suitably set in order to
study the performance of the scheduling policies in different
scenarios, as follows.

For the device presence time, we consider 3 different
scenarios, namely LowAvail, MedAvail, and HighAvail, where
the device presence time is on average lower than, very
close to, or higher than the task completion time. Thus, we
consider the Average Task Completion Time (ATCT) (i.e., the
mean time needed to complete a task), which depends on the
Average Task Execution Time (ATET) and the Average Stage
Out Time (ASOT) as follows: ATCT = ATET + ASOT . The
ATET value is computed as the ratio between the Average
Nominal Task Execution Time (ANTET) (i.e., the average of
the computing capacity values of Table I) and the Average
Nominal Computing Power (ANCP) (i.e., the average of the
device nominal computing power values of Section IV-A1)
as follows: ATET = ANTET/ANCP. The ASOT value is
computed as the ratio between the Average Nominal Task
Output Size (ANTOS) (i.e., the average of the task output size
values of Table I) and the Average Network Bandwidth (ANB)
value (which is equal to 30 Mbps, see Section IV-A1), as
follows: ASOT = ANTOS/ANB.

By substituting the equations above with the actual values
provided in Sections IV-A1 and IV-A2, we obtain that ATCT
is equal to 6.92 sec. However, this value does not consider the
time spent to create and store the checkpoints during the task
execution. For this reason we decide to consider 3 different
scenarios where the average device presence time is set to a
multiple of ATCT . In particular, for the LowAvail scenario we
set it to 1.5 ·ATCT = 10.38 sec., for the MedAvail scenario we
set it to 2 · ATCT = 13.84 sec. and, finally, for the HighAvail
scenario we set it to 2.5 · ATCT = 17.30 sec.

For the device arrival rate, we consider 3 different scenarios,
namely FewDev, MedDev, and ManyDev, where the number
of devices is on average lower than, very close to, and higher
than the average number of tasks in the system, and, for each
one of them, we set the device arrival rate DAR as follows:
DAR = BAR·BNT ·β, where BAR is the BoT arrival rate (which
is equal to 0.5, see Section IV-A2), BNT is the number of tasks
for each BoT (which is equal to 30, see Section IV-A2), and
β is the percentage of the number of devices in the system
with respect to the number of tasks, that we set to 50%, 100%
and 150% for the FewDev, MedDev and ManyDev scenarios,
respectively.

4) Scheduler parameters: For FCFS, no parameters are
needed to be set, as this scheduling algorithm does not use
any of the mechanisms employed by the other scheduling
algorithms we consider.

For the other 3 algorithms (Habak, WQR-FT, UDFS), in-
stead, it is needed to specify the checkpoint frequency and the
checkpoint time (i.e., the time required to create a checkpoint).



TABLE II
PRESENCE TIME MODEL ERROR.

Error Model Distribution

No No error
Neutral (Neu) Normal(0, 0.1)
LowNegative (LNeg) Normal(-0.05, 0.1)
Negative (Neg) Normal(-0.025, 0.1)
LowPositive (LPos) Normal(0.025, 0.1)
Positive (Pos) Normal(0.05, 0.1)

For WQR-FT and UDFS, it is also needed to specify the
replication threshold.

The checkpoint time is set to 1 sec. for each algorithm.
Instead, for the checkpoint frequency, we make the following
choices:

• Habak: as in [16], a checkpoint is created periodically
every 15 sec.;

• WQR-FT: checkpoints are created periodically every
ChkInt seconds, computed by means of the Young’s
formula [22] as: ChkInt =

√
2 · C · EPT , where the EPT

is the estimated presence time of the device, and C is
the checkpoint time. In our simulator, EPT is computed
on-line by the Fog Node by means of an exponential
moving average [26] any time a device leaves the system
as follows: EPT = α · PT + (1 − α) · EPT , where PT is
the presence time of the device, and α is the smoothing
parameter that we set to 0.5 so that the contribution of
the last observed presence time on the estimated presence
time is 50%.

• UDFS: since the device presence time is stated by the
device owner when it joins the FemtoCloud, only one
single checkpoint is created when the device is about
to leave the system. However, this information may not
be always accurate as the device owner may decide to
leave the system earlier or later than what claimed. To
study the sensitivity of UDFS to the occurrence of these
errors, we run experiments for different error models,
each of which is characterized by a Normal probability
distribution whose parameters are reported in Table II.
Specifically, in our experiments, UDFS performs a check-
point according to the presence time stated by the users
(SPT), but we simulate the real presence time (RPT)
of devices by considering the error model as follows:
RPT = SPT · (1+error), where error is a random number
drawn from the Normal distribution depending on one of
the error models of Table II. The considered error models
include the cases where the device owner decide to leave
the system both before and after the claimed time. For
instance, the Pos error model represents the scenarios
where, on average, the device owner leaves the system
later than what (s)he claimed (i.e., on average the device
presence time is 5% greater than what claimed by the
device owner); instead, the LNeg error model represents
the cases where, on average, the device owner leaves the
system earlier than what claimed (i.e., on average the

device presence time is 5% smaller that what claimed by
the device owner).

Finally, for WQR-FT and UDFS, we performed experiments
for various values of the replication threshold, but we observed
that using more than 2 replicas does not result in significant
performance improvements. Therefore, we set the replication
threshold to 2 for all the experimental scenarios we consider.

V. RESULTS

In this section, we present the results obtained in our study
as bar charts with error bars, where each bar denotes the
Average BoT Completion Time (ABCT) achieved by a specific
scheduling policy and the associated error bar represents its
95% confidence interval. For the sake of readability, we do
not report the graphs of all 9 scenarios but only the most
significant ones.

Figure 2 reports the results for the LowAvail-FewDev sce-
nario. As can be seen by these results, only WQR-FT and
UDFS are able to complete all the submitted BoTs, while
the ABCT for FCFS and Habak grows beyond any reasonable
limit (in the figure, we denote this with a bar approaching
to infinity), meaning that, under these policies, the system is
operating under extremely high resource saturation levels. This
is due to the fact that when the device presence time is low, it
is necessary to consider dynamic fault tolerant mechanisms
in order to overcome the failures. In fact, FCFS does not
implement any fault tolerant mechanisms and Habak uses a
static checkpoint mechanisms (a checkpoint is saved every 15
sec.).

By comparing the performance of WQR-FT with respect to
UDFS, we note that UDFS outperforms WQR-FT for all error
models considered except for the LNeg and Neg cases. For the
LNeg case, since UDFS cannot save a checkpoint for a task
running on a device that leaves the system sooner than claimed,
a premature device departure will result in restarting the task
from scratch if no other checkpoint was saved before for it. For
the Neg case, we note that the performance of WQR-FT and
UDFS are comparable. As expected, the best performance of
UDFS is when there is no error which means that our approach
is able to save the checkpoint of the state of the execution just
before the device leaves the system (this is the optimal scenario
for UDFS). For all the other error models, UDFS is always
able to achieve better performance with respect to WQR-FT
even if a positive error in our approach could result in a too
early checkpoint creation.

Figure 3 reports the results for the LowAvail-ManyDev
scenario. Firstly, we note that all scheduling policies are able
to complete all the submitted BoTs thanks to the high number
of devices in the system that compensate poor scheduling
decisions. In particular, we note the significant performance
difference between FCFS and Habak scheduling policies with
respect to WQR-FT and UDFS policies; for example, in the
scenario without error, the ABCT for FCFS and Habak is
around 1700 sec., while the one for WQR-FT and UDFS
policies is less than 30 sec.
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Fig. 2. Results for LowAvail-FewDev scenario.
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Fig. 3. Results for LowAvail-ManyDev scenario.

As expected, in most of the error models considered the
worst scheduling policy is FCFS while the difference between
WQR-FT and UDFS is negligible. The latter is due to the
fact that with plenty of available devices, the replication
mechanisms can be exploited to overcome the failure and
this make the checkpoint mechanism less useful. As a matter
of fact, the higher the number of idle resources, the higher
the probability to submit a task to a fast device able to
complete the task before it leaves the system. In general, the
scheduling policies are able to achieve their best performance
when the error model is positive. This can be explained by
considering that a positive error means that the device will
stay in the system longer than claimed so they could be able
to complete the task or checkpointing-based policies can save
more checkpoints.

Figure 4 reports the results for the MedAvail-FewDev
scenario. If we compare these results with those obtained for
the LowAvail-FewDev scenario (see Figure 2) we note that
having a higher device presence time makes FCFS and Habak
able to complete all the submitted BoTs and, in general, all
scheduling policies achieve better performance with respect
to the LowAvail-FewDev scenario. For example, UDFS in
LowAvail-FewDev scenario was able to complete the BoTs
in between 1500 and 3000 sec., while in MedAvail-FewDev
scenario it is able to complete the BoT between 500 and 1250
sec. In general, FCFS is again the worst scheduling policy and
WQR-FT and UDFS are the best ones, where WQR-FT is the
best policy when the error model is negative, while UDFS
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Fig. 4. Results for MedAvail-FewDev scenario.
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Fig. 5. Results for MedAvail-ManyDev scenario.

outperforms WQR-FT when the error model is positive for
the same reasons mentioned before.

By increasing the number of devices in the system, the
performance gap between the various scheduling policies
decreases, as can be observed in Figure 5, where results for the
MedAvail- ManyDev scenario are reported. In particular, we
note that WQR-FT and UDFS have comparable performances
and this confirms that when there are many devices the
replication mechanism is more important than the checkpoint
mechanism.

Finally, Figure 6 shows the results for the HighAvail-
ManyDev scenario, which represents the best possible working
condition for a scheduling policy because there are many
devices with a high presence time. From the figure, we note
that the performance of FCFS is still the worst but, conversely
to the previous scenarios, we note that Habak is able to achieve
performance close to WQR-FT and UDFS policies. This is due
to the fact that in a scenario with plenty of devices with high
availability, the chance that submitted tasks get completed in
the first replica is much more higher than the other scenarios,
thus making the use of dynamic fault-tolerant mechanisms less
effective.

VI. CONCLUSIONS

In this paper, we have considered the problem of schedul-
ing a stream of BoT applications on a FemtoCloud system,
composed of an ensemble of heterogeneous mobile devices
that join and leave the system anytime without notice. We
addressed this problem by proposing an online scheduling
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Fig. 6. Results for HighAvail-ManyDev scenario.

algorithm, named UDFS, able to effectively schedule a stream
of BoT applications on a FemtoCloud system, thanks to the
combination of simple task and machine selection policies
(that do not require any information concerning the applica-
tions and the devices) with mechanisms specifically conceived
to tolerate device heterogeneity and volatility.

We assessed the ability of UDFS to meet its design goals,
and to perform better than existing alternatives, by performing
an extensive simulation study for a large set of realistic
operational scenarios. Our results clearly indicate that UDFS
is able to effectively schedule a stream of BoT applications
on FemtoCloud systems, and to do so more effectively than
existing scheduling alternatives.

As future work, we plan to study the effects of different error
models as well as of other scheduling mechanisms, such as the
use of a dynamic replication threshold and of task-dependent
replication thresholds, on the performance of UDFS. We are
also interested in implementing a fuzzy controller inside the
Fog Node as proposed in [27]–[29]. Furthermore, we consider
to integrate in UDFS a prediction algorithm (e.g., [30]) to
estimate device presence time. Finally, we plan to implement a
prototype of UDFS using existing platforms like OpenStack++
[31], Edgent [32], CirrusCloud [16], Cloud-TUI [33], or the
Prometheus toolkit [34].
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