
WQR-UD: An online scheduling algorithm for FemtoClouds

Please, cite this paper as:
Cosimo Anglano, Massimo Canonico, Marco Guazzone

“WQR-UD: An online scheduling algorithm for FemtoClouds,”
In Proc. of the 12th EAI International Conference on Performance Evaluation

Methodologies and Tools (VALUETOOLS). ACM, New York, NY, USA, 179-182.
DOI:10.1145/3306309.3306338

Publisher: https://doi.org/10.1145/3306309.3306338

1



WQR-UD: An online scheduling algorithm for FemtoClouds

Cosimo Anglano
University of Piemonte Orientale

Italy
cosimo.anglano@uniupo.it

Massimo Canonico
University of Piemonte Orientale

Italy
massimo.canonico@uniupo.it

Marco Guazzone
University of Piemonte Orientale

Italy
marco.guazzone@uniupo.it

ABSTRACT

FemtoClouds are computing platforms, implementing the
Fog Computing paradigm, consisting in an ensemble of het-
erogeneous mobile devices whose users agree to run the tasks
offloaded by other users. FemtoClouds are well suited for the
execution of Bag-of-Tasks (BoTs) applications, but, being
characterized by high resource heterogeneity and volatility,
require the availability of scheduling techniques able to ef-
fectively deal with ensembles of independently-owned, het-
erogeneous devices that can suddenly leave the system. In
this paper we propose WQR-UD, an online scheduling al-
gorithm that, thanks to the combination of simple task and
device selection policies (that do not require any information
concerning the applications and the devices) with effective
heterogeneity and volatility tolerance mechanisms, is able to
effectively schedule a stream of BoT applications on Femto-
Cloud systems. We assess the ability of WQR-UD to meet
its design goals by running an extensive simulation study
for a large set of realistic operational scenarios. Our results
clearly indicate that WQR-UD is able to effectively schedule
a stream of BoT applications on FemtoCloud systems.

CCS CONCEPTS

• Networks → Cloud computing; • Computer systems
organization → Cloud computing;

KEYWORDS

FemtoCloud, Scheduling policy, Fog computing, Cloud com-
puting.

ACM Reference Format:
Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2019.

WQR-UD: An online scheduling algorithm for FemtoClouds. In

Proceedings of 12th EAI International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS’19). ACM,

New York, NY, USA, 6 pages.

1 INTRODUCTION

Driven by the emerging Internet of Things (IoTs) and by
the proliferation of mobile devices, the number of connected

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

VALUETOOLS’19, March 2019, Palma de Mallorca, Spain

© 2019 Association for Computing Machinery.

devices is predicted to reach 50 billion by 2020 and data
generated by such devices will be 40 trillion gigabytes [29].

The traditional approach to deal with the huge computing
and storage capacity demand, needed to process these data,
is to resort to Cloud Computing. However, these data often
require (near) real-time processing (e.g., for augmented real-
ity services or smart traffic light systems) [4, 7, 11]. There-
fore, the inherent high latency of the core network makes
Cloud Computing unsuitable to meet these stringent require-
ments. Fog Computing [28] has recently emerged as a new
paradigm to mitigate the escalation in resource congestion
and to support low-latency services. With Fog Computing, a
number of computation nodes distributed across the network
“edge” (nearby to the users) can offload the computational
requests from the Cloud Computing infrastructure, and can
significantly reduce the latency with respect to centralized
Clouds.

Recently it has been argued that the processing capability
in Fog Computing can be provided by underutilized mobile
edge devices (e.g., smartphones and tablets), that are aggre-
gated into a so-called FemtoCloud, whose users agree to run
the tasks offloaded by other users (this can be achieved by
resorting to suitable incentive mechanisms) [17]. The Fem-
toCloud approach is considered to be very promising, since
the computational power provided by mobile devices is be-
coming more and more pervasive, making mobile devices the
most used platform in recent years [9, 13].

The architecture of a typical FemtoCloud system, com-
posed by a set of distinct FemtoClouds, is shown in Fig-
ure 1, where we see that each FemtoCloud is coordinated by
a Fog Node, an always-present/always-on machine which is
in charge of receiving offloaded tasks from a population of
users, of dispatching them on the devices it coordinates, of
receiving the results they generate, and of forwarding these
results to the corresponding users. Specifically, the Fog Node
runs a Scheduler component, whose main goal is to schedule
offloaded tasks on available devices so as to minimize their
completion time. In the following, without loss of generality,
we use the terms “scheduler” and “Fog Node” interchange-
ably.

To successfully carry out scheduling, the Fog Node has
to properly take into account device heterogeneity (edge de-
vices are very different both in terms of hardware and soft-
ware characteristics) and availability (an edge device could
become unreachable at any moment due either to network
connection issues, to device owner mobility, or to battery
depletion).



WQR-UD: An online scheduling algorithm for FemtoClouds VALUETOOLS’19, March 2019, Palma de Mallorca, Spain

Figure 1: FemtoCloud system architecture.

These problems have already been addressed in the past
by resorting to combinations of replication (i.e., several in-
stances of the same task are created and scheduled on dif-
ferent devices) and periodic checkpointing (i.e., the state of
a task is periodically saved, so that its execution can be
restarted from the last saved state), first in the context of
clusters of non-dedicated PCs [2] and, later, of desktop grids
[3]. Hence, a natural question arises about the applicability
of these solutions to FemtoCloud systems.

However, the efficacy of the above solutions is somehow
limited by the lack of reliable information about resource
availability. In fact, while replication does not require any
information concerning the characteristics of tasks and of
devices, checkpointing requires the choice of a suitable fre-
quency with which state is saved. It is known [12] that the
optimal checkpoint frequency can be computed only under
specific assumptions about the behavior of machines and ap-
plications so, in real cases, it can only be approximated, and
this approximation usually results in the creation of many
more checkpoints than strictly needed.

In FemtoCloud systems, an excessive checkpointing activ-
ity would severely hurt the stability of the system, given
that checkpointing is a resource-intensive activity not only
in terms of storage space, but also in terms of computing ca-
pacity. On edge devices the creation of a checkpoint would
indeed not only slow down the device, but also deplete its
battery more quickly, hence either forcing the device owner
to leave the system or causing its switch off. Therefore, exist-
ing scheduling algorithms based on replication and periodic
checkpointing would exhibit potentially unsatisfactory per-
formance also on FemtoCloud systems.

However, we observe that – unlike clusters of PCs and
desktop grids – in FemtoClouds the computational capac-
ity is narrowed in restricted area such as a public transit, a
classroom, a movie theater, a coffee shop and so on, as illus-
trated in Figure 1. Hence, we can exploit this fact to collect
more precise information about when the device will leave
the system, and carry out only one checkpoint about when
the device is going to leave, thus minimizing the number of
checkpoints created.

In this paper we argue that, by exploiting the informa-
tion about device presence gathered as discussed before, it
is possible to build a scheduling algorithm for FemtoCloud

systems that – by combining replication and checkpointing
– can effectively schedule a stream of Bag-of-Tasks applica-
tions (BoTs) [20] (parallel applications whose tasks are com-
pletely independent from one another) have been shown to
be particularly able to exploit the computing power provided
in many distributed platforms [21], and, despite their simplic-
ity, are used in a variety of domains (e.g., [14, 23, 24]). Each
BoT is characterized by two parameters, namely the number
of tasks and the computation requirements of each task.

We prove our claim by presenting a novel online scheduling
algorithm for FemtoCloud systems based on the above prin-
ciple, that we call Work Queue with Replication and User
Driven Checkpoint (WQR-UD), and we experimentally eval-
uate its performance by carrying out an extensive simulation
study for a variety of real-world operational conditions. The
results we obtain clearly show that WQR-UD is able to ef-
fectively schedule a stream of BoT applications in all the
scenarios we considered.

The rest of the paper is organized as follows: Section 2
summarizes related works, while Section 3 presents the de-
tails of our algorithm. In Section 4, we evaluate the per-
formance of WQR-UD and we discuss the results obtained.
Finally, Section 5 presents a summary of our findings and a
discussion of future directions.

2 RELATED WORK

The literature focusing on computation offloading for mo-
bile devices offers several scheduling algorithms that can be
applied also to FemtoCloud systems (e.g., [18, 22, 27]).

However, the above scheduling algorithms require the knowl-
edge of information concerning submitted tasks (i.e., their ar-
rival rate, the amount of work they require, or both) and de-
vice characteristics (i.e., their computation capacity). These
information, however, may be very difficult to collect reli-
ably in a FemtoCloud system, because of the lack of control
on the user population providing devices, and on the possi-
ble difficulty in convincing them to install suitable software
on their devices. Also, in many cases these algorithms work
offline (i.e., they compute a scheduling plan ahead of time
before tasks are actually submitted), which, however, implies
that precise information about tasks and devices are known
in advance.

In contrast, our WQR-UD algorithm works online (i.e.,
tasks are scheduled as soon as they arrive to the system), and
does not require any information about the characteristics
of tasks and devices. The only information that it requires
is, as already mentioned, the presence time of each device in
the system, which in many cases can be easily inferred from
the context or can be requested to the user.

3 SCHEDULING ALGORITHM

In this section, we first describe the system model (Sec-
tion 3.1), and finally describe how WQR-UD works (Sec-
tion 3.2).



VALUETOOLS’19, March 2019, Palma de Mallorca, Spain C. Anglano et al.

3.1 System model

We consider a set of heterogeneous mobile devices connected
to a Fog Node. Each device is characterized by its nominal
computing power , a real number whose value is directly pro-
portional to its speed , and by the communication bandwidth
(in bits/sec.) towards the Fog Node.

Each device may join and leave the FemtoCloud at any
time, but we assume that the corresponding user declares
how long (s)he will stay in that location when (s)he joins.
We think this assumption is realistic because (1) the user
should be able to predict how long (s)he will stay in the lo-
cation, and (2) we postulate that the user receives incentives
if (s)he communicate its presence time (i.e., the time elapsed
between the arrival and the departure of the device from the
system) to the local Fog Node. Finally, we assume that Fem-
toCloud applications run encapsulated in virtual machines
on a mobile virtualization platform [19, 25], so that their ex-
ecution state can be easily saved and restored later on any
device.

3.2 The WQR-UD scheduling policy

WQR-UD combines very simple task and device selection
policies with several mechanisms specifically tailored to cope
with device departures from the FemtoCloud. In particular,
it is derived from the WQR-FT scheduling algorithm [3],
that targets desktop grids, by replacing its checkpointing
mechanism as follows.

WQR-UD selects in an arbitrary order the tasks of the
oldest BoT (i.e., the BoT who arrived first in the system with
respect to the others) and submits them to devices as soon
as they become available. No information concerning task
or device characteristics is taken into consideration for these
selections. In order to tolerate device departures, WQR-UD
exploits the following three mechanisms:

(1) task replication: replication is used to cope with de-
vice heterogeneity and departures. As a matter of fact,
by submitting the same task to different devices, we
increase the chances of task completion, since to com-
plete the task it suffices that at least one of these de-
vices stays in the system. At the same time, we in-
crease the chance of reducing its execution time, since
in general both faster and slower devices will be cho-
sen for its replicas, and the faster device will complete
the tasks (at that point, the slower replicas that are
still running will be aborted, as they become useless).
The maximum number of replicas for each task is a
scheduler parameter called replication threshold ;

(2) task selection: anytime a device becomes available (be-
cause it has completed the task assigned or it has just
joined the FemtoCloud system) WQR-UD selects the
oldest task with the lowest number of replicas and sub-
mits it to the idle device. If all tasks have already
a number of replicas that is equal to the replication
threshold, WQR-UD waits for a task to submit (that

is, a new task from a new BoT just arrived in the sys-
tem or a task died due to a device failure). A task
remains in the system until it has been completed;

(3) checkpointing : before a device leaves the FemtoCloud
system as claimed by its owner, a snapshot of the vir-
tual machine running its task t is saved by the Fog
Node, so that when the task has been selected by the
scheduler, this snapshot will be used to restart task t.

As shown in Section 4, the combination of these three mech-
anisms with the task and machine selection policies results
into an effective scheduling algorithm.

4 PERFORMANCE EVALUATION

In order to assess the ability of WQR-UD to successfully
schedule BoT applications on FemtoClouds, we perform an
exhaustive simulation study.

To carry out our study, we developed a discrete-event sim-
ulator, written in Python and C++, and based on the Sal-
abim library [26].

Our study has been carried out by using as metric the
Average BoT Completion Time (ABCT ), that is the time
elapsed between the submission of a BoT and the termina-
tion of all its tasks. This average value has been computed by
using the independent replication method [10], where each in-
dependent replica corresponds to the time to complete 2000
BoTs and where the whole simulation stops when the rela-
tive precision of the 95% confidence interval is ≤ 4%.

In order to obtain realistic results, in our simulations we
considered a set of realistic scenarios and workloads, ob-
tained from the experimental setup used in [18]. For the
device arrival rate, we consider 3 different scenarios, called
FewDev, MedDev and ManyDev, corresponding to Femto-
Clouds with a small, moderate and large number of mobile
devices, respectively, and we characterize them according to
3 different Exponential probability distributions whose rate
parameters are set to 7.5, 15 and 22.5, respectively. Finally,
for the device presence time, we also consider 3 different
scenarios, namely LowAvail, MedAvail and HighAvail, cor-
responding to the case of low, medium and high presence
time, respectively, and we characterize them according to 3
different Normal probability distributions whose mean pa-
rameters are set to 10.38, 13.84, 17.30 and whose standard
deviation parameters are set to 2.08, 2.77, 3.46, respectively.

By combining the 3 presence time scenarios with the 3 de-
vice arrival scenarios, we consider 9 different scenarios, that
we denote as “X-Y ”, whereX ∈ {LowAvail,MedAvail,HighAvail}
and Y ∈ {FewDev,MedDev,ManyDev}.

In all the scenarios, the communication bandwidth be-
tween each device and the Fog Node is drawn from a Normal
probability distribution with mean set to 30 Mbps and stan-
dard deviation set to 6 Mbps.

In Figure 2, we present the results obtained in our study
as a bar chart with error bars, where each bar denotes the av-
erage BoT completion time (ABCT ) achieved by WQR-UD
in a specific scenario and the associated error bar represents
its 95% confidence interval.



WQR-UD: An online scheduling algorithm for FemtoClouds VALUETOOLS’19, March 2019, Palma de Mallorca, Spain

Scenario

A
ve

ra
g

e
 B

o
T

 C
o

m
p

le
ti
o

n
 T

im
e

 (
A

B
C

T
) 

[s
e

c
]

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0 LowAvail−FewDev

MedAvail−FewDev

HighAvail−FewDev

LowAvail−MedDev

MedAvail−MedDev

HighAvail−MedDev

LowAvail−ManyDev

MedAvail−ManyDev

HighAvail−ManyDev

Figure 2: Results for the considered scenarios.

Results reported in this figure show that WQR-UD is able
to scale with the number of devices available in the sys-
tem where to run tasks. Specifically, in scenario “LowAvail-
FewDev” (i.e., where, on average, the number of tasks to
execute is much larger than the number of available devices
where to run them), the ABCT achieved byWQR-UD is very
high, that is 1656.70 seconds. However, as soon as each de-
vice stays in the system longer (e.g., see scenarios “MedAvail-
FewDev” and “HighAvail-FewDev”) or the number of de-
vices in the systems increases (e.g., see scenarios “LowAvail-
MedDev” and “LowAvail-ManyDev”), the ABCT achieved
by WQR-UD decreases dramatically. For instance, in the
scenario “MedAvail-FewDev”, ABCT is equal to 582.40 sec-
onds, while in the scenario “LowAvail-MedDev”, ABCT is
equal to 40.58 seconds, and in the scenario “HighAvail-ManyDev”,
ABCT is equal to 20.80 seconds. These results also show
that the impact of the presence time on the performance
of WQR-UD decreases as the number of devices in the sys-
tem increases. Specifically, when the number of devices is
very limited (i.e., scenarios “∗-FewDev”), the presence time
greatly affects the performance of WQR-UD (e.g., in scenar-
ios “LowAvail-FewDev” and “HighAvail-FewDev”, ABCT
drops from 1656.70 to 44.40 seconds); instead, when the
number of devices is high (i.e., scenarios “∗-ManyDev”), the
impact of the presence time is very low (e.g., in scenarios
“LowAvail-ManyDev” and “HighAvail-ManyDev”,ABCT drops
from 26.34 to 20.80 seconds). This is a consequence of the use
of task replication and checkpointing as well as of the avail-
ability of a large number of devices where to run tasks. In
fact, in this case, when a device leaves the system, it is likely

that WQR-UD finds another free device where to restore the
execution of the task that was running on the device that
has just left the system.

5 CONCLUSIONS

In this paper, we have considered the problem of schedul-
ing a stream of BoT applications on a FemtoCloud system,
composed of an ensemble of heterogeneous mobile devices
that join and leave the system anytime without notice. We
addressed this problem by proposing an online scheduling
algorithm, named WQR-UD, able to effectively schedule a
stream of BoT applications on a FemtoCloud system, thanks
to the combination of simple task and machine selection poli-
cies (that do not require any information concerning the
applications and the devices) with mechanisms specifically
conceived to tolerate device heterogeneity and volatility.

We assessed the ability of WQR-UD to meet its design
goals by performing an extensive simulation study for a large
set of realistic operational scenarios. Our results clearly indi-
cate that WQR-UD is able to effectively schedule a stream
of BoT applications on FemtoCloud systems.

As future work, we want to compare WQR-UD with exist-
ing scheduling alternatives. Furthermore, we plan to study
the effects of other scheduling mechanisms, such as the use of
a dynamic replication threshold and of task-dependent repli-
cation thresholds, on the performance of WQR-UD. We are
also interested in implementing a fuzzy controller inside the
Fog Node as proposed in [1, 5, 6]. Furthermore, we plan to
implement a prototype of WQR-UD using Fog Computing
platforms like OpenStack++ [16], Edgent [15], CirrusCloud
[18], or the Prometheus toolkit [8].

ACKNOWLEDGMENTS

This research is original and has a partial financial support
of the Università del Piemonte Orientale.

REFERENCES
[1] Luca Albano, Cosimo Anglano, Massimo Canonico, and Marco

Guazzone. 2013. Fuzzy-Q&E: Achieving QoS Guarantees and
Energy Savings for Cloud Applications with Fuzzy Control. In
2013 International Conference on Cloud and Green Computing
(CGC’13). 159–166.

[2] C. Anglano and M. Botta. 2002. NOW G-Net: learning classifica-
tion programs on networks of workstations. IEEE Transactions
on Evolutionary Computation 6, 5 (Oct 2002), 463–480.

[3] Cosimo Anglano and Massimo Canonico. 2005. Fault-tolerant
scheduling for bag-of-tasks grid applications. In European Grid
Conference. Springer, 630–639.

[4] Cosimo Anglano, Massimo Canonico, Paolo Castagno, Marco
Guazzone, and Matteo Sereno. 2018. A game-theoretic approach
to coalition formation in fog provider federations. In 2018 Third
International Conference on Fog and Mobile Edge Computing
(FMEC’18). 123–130.

[5] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2015.
FC2Q: exploiting fuzzy control in server consolidation for cloud
applications with SLA constraints. Concurrency and Computa-
tion: Practice and Experience 27, 17 (2015), 4491–4514.

[6] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2017.
FCMS: A fuzzy controller for CPU and memory consolidation un-
der SLA constraints. Concurrency and Computation: Practice
and Experience 29, 5 (2017).

[7] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2018.
Profit-aware Resource Management for Edge Computing Systems.



VALUETOOLS’19, March 2019, Palma de Mallorca, Spain C. Anglano et al.

In Proc. of the 1st International Workshop on Edge Systems,
Analytics and Networking (EdgeSys’18). 25–30.

[8] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2018.
Prometheus: A flexible toolkit for the experimentation with virtu-
alized infrastructures. Concurrency and Computation: Practice
and Experience 30, 11 (2018).

[9] Cosimo Anglano, Marco Guazzone, and Matteo Sereno. 2014.
Maximizing profit in green cellular networks through collabora-
tive games. Computer Networks 75, Part A (2014), 260–275.
https://doi.org/10.1016/j.comnet.2014.10.003

[10] J. Banks et al. 2010. Discrete-Event System Simulation (5th
ed.). Prentice Hall.

[11] F. Bonomi et al. 2012. Fog computing and its role in the internet
of things. In Proc. of the MCC’12. 13–16.

[12] M. Bougeret et al. 2011. Checkpointing strategies for parallel
jobs. In Proc. of SC’11. 33:1–33:11.

[13] D. Chaffey. 2018. Mobile marketing statistics compilation. Re-
trieved Oct. 5, 2018 from https://bit.ly/1wXFQtJ

[14] W. Cirne et al. 2003. Grid computing for bag of tasks appli-

cations. In Proc. of the 3rd IFIP Conference on E-Commerce,
E-Business and EGovernment.

[15] The Apache foundation. [n. d.]. Edgent: a community for ac-
celerating analytics at the edge. Retrieved Oct. 5, 2018 from
https://edgent.apache.org/

[16] K. Ha et al. 2015. Openstack++ for cloudlet deployment. Tech-
nical Report CMU-CS-15-123. Carnegie Mellon University. Re-
trieved Oct. 5, 2018 from https://bit.ly/2NFEZr2

[17] K. Habak et al. 2015. FemtoClouds: Leveraging Mobile Devices
to Provide Cloud Service at the Edge. In Proc. of the CLOUD’15.
9–16.

[18] K. Habak et al. 2017. Workload management for dynamic mobile
device clusters in edge femtoclouds. In Proc. of the SEC’17. 6.

[19] D. Jaramillo et al. (Ed.). 2014. Virtualization Techniques for
Mobile Systems. Springer.

[20] K. H. Kim et al. 2007. Power Aware Scheduling of Bag-of-Tasks
Applications with Deadline Constraints on DVS-enabled Clus-
ters.. In Proc. of the CCGrid’07, Vol. 7. 541–548.

[21] D. Kondo et al. 2009. Cost-benefit analysis of cloud computing
versus desktop grids.. In Proc. of the IPDPS’09, Vol. 9. 1–12.

[22] Z. Lu et al. 2015. Task allocation for mobile cloud computing
in heterogeneous wireless networks. In Proc. of the ICCCN’15.
1–9.

[23] A. J. V. Neto et al. 2018. Fog-Based Crime-Assistance in Smart
IoT Transportation System. IEEE Access 6 (2018), 11101–
11111.

[24] J. L. Pérez et al. 2018. A resilient and distributed near real-time
traffic forecasting application for Fog computing environments.
Future Generat. Comput. Syst. 87 (2018), 198–212.

[25] J. Shuja et al. 2016. A Survey of Mobile Device Virtualization:
Taxonomy and State of the Art. ACM Comput. Surv. 49, 1 (April
2016), 1:1–1:36.

[26] R. Van der Ham. 2018. Salabim: discrete event simulation and
animation in Python. J. Open Source Softw. 3, 27 (2018), 2.

[27] M. Xiao et al. 2015. Multi-task assignment for crowdsensing
in mobile social networks. In Proc. of the INFOCOM’15. 2227–
2235.

[28] W. Yu et al. 2017. A survey on the edge computing for the
Internet of Things. IEEE Access 6 (2017), 6900–6919.

[29] N. Zhang et al. 2018. Synergy of big data and 5g wireless net-
works: opportunities, approaches, and challenges. IEEE Wireless
Commun. 25, 1 (2018), 12–18.


