
EasyCloud: a rule based toolkit for multi-platform
Cloud/Edge service management

Please, cite this paper as:
Cosimo Anglano, Massimo Canonico, Marco Guazzone

“EasyCloud: a rule based toolkit for multi-platform Cloud/Edge service management,”
Proc. of the 2020 Fifth International Conference on Fog and Mobile Edge Computing

(FMEC), Paris, France, April 20-23, 2020, pp. 188-195.
DOI: 10.1109/FMEC49853.2020.9144821
Publisher: https://ieeexplore.ieee.org/document/9144821



EasyCloud: a rule based toolkit for multi-platform
Cloud/Edge service management

Cosimo Anglano, Massimo Canonico and Marco Guazzone
{cosimo.anglano,massimo.canonico,marco.guazzone}@uniupo.it

Computer Science Institute, DiSIT, University of Piemonte Orientale, Italy

Abstract—In order to satisfy the demand for collective and
collaborative use of the various Cloud/Edge computing platforms
available, the Cloud/Edge interoperability is necessary. Unfor-
tunately, due to the specific solutions provided by the major
Cloud/Edge providers, right now it is difficult to fully exploit
different Clouds/Edges concurrently. In this paper, we aim to fill
this gap by proposing EasyCloud, an easy and effective toolkit
and user interface able to not only interact with multiple and
different Cloud/Edge platforms at the same time but also to
provide a rule-based engine where the user can specify what to
do in real-time when the workload of the services running on the
Clouds/Edges becomes underutilized (e.g., switch-off the service
to save money) or overutilized (e.g., switch-on new computational
resources to overcome the increased workload). EasyCloud is
currently used by researchers, educators, and students with
success and its source code is publicly available.

Index Terms—Toolkit, Cloud computing, Edge computing,
Intercloud, Orchestration

I. INTRODUCTION

The NIST defines the Cloud Computing as “a model for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1]. Cloud computing providers
can offer their services in three different models: (i) Soft-
ware as a Service (SaaS) which is focused on end users of
Cloud (i.e., each user just uses the service provided without
considering any hardware/software details), (ii) Platform as
a Service (PaaS), which is focused on application developers
(i.e., they have tools and library ready to use to develop their
application exploiting the computing resources available in the
Cloud platform), and, finally, (iii) Infrastructure as a Service
(IaaS), which provides direct access to computing hardware
resources (i.e., users can access to bare metal resources or
to virtualized hardware). For instance, Google Docs [2] and
Gmail [3] as well as Salesforce.com CRM [4] are example
of SaaS, while Google App Engine [5] and Amazon Elastic
Beanstalk [6] are examples of PaaS, and finally, Amazon EC2
[7] and OpenStack [8] are examples of IaaS.

In the last years, with the increasing interest in Edge
computing [9], [10], many Cloud providers are proposing
services dedicated to this emerging paradigm. For example,
Amazon CloudFront [11] provides a content delivery network
service with low latency as required by edge computing
applications, which seamlessly integrates with Amazon EC2.

Likewise, Google Cloud [12] (with its Cloud IoT service [13])
and OpenStack (with its variant called OpenStack++ [14]) are
proposing solutions targeted to edge applications. This means
that the Cloud Computing providers are ready to satisfy the
requirements of the Edge computing and, in the next future,
probably their distinction will be gradually fuzzy.

In this paper, we focus on the IaaS model that is the
bottom-most layer in a Cloud stack where virtual servers with
given specification of CPUs, memory, and storage are made
available over the network through Virtual Machines (VMs)
or containers. 1 In an ideal world, a user/educator/researcher
should be able to easily interact with the different Cloud
providers, in order to figure out which is the best for his
purposes or to use concurrently different Cloud providers
to get the best from each of them. This feature is called
interoperability, that is a user can decide when and where
to go as needed. This is far from the current reality, since
each Cloud provider uses different set of tools, formats, and
environments, so the users/educators/researchers tend to get
locked-in with a specific Cloud provider [15].

For this reason, we have designed and implemented Easy-
Cloud: a toolkit able to interact with multiple Cloud platforms
concurrently thanks to a modular architecture and an easy user
interface. With our tool, a user can not only exploit the typical
basic IaaS services (such as, start and stop VMs, manage
network and storage), but also setup rules in order to guarantee
the business continuity of its processes running in the Clouds.

In particular, EasyCloud is able to monitor the health of
the VMs and, on the basis of user-defined rules, to prevent
the occurrence of unwanted events. For example, a rule can
decide to clone a VM if its CPU usage level is beyond a
fixed threshold. In this way, the workload can be split to
multiple servers and hopefully prevent server down event or
performance degradation.

Currently, EasyCloud supports three of the most popular
Cloud platforms, namely Amazon AWS, Goggle Cloud Plat-
form and OpenStack, and thanks to its modular architecture
it can be easily extended to support other Cloud platforms.
Furthermore, EasyCloud is ready to support emerging Edge
orchestration platforms, including OpenStack++ (where VMs
running in a Cloudlet can be managed through the OpenStack
API) as well as Kubernetes [16] and its variants specifically

1In the rest of this paper, unless otherwise specified, we refer to both
traditional VMs and containers as simply VMs.



targeted to edge applications (e.g., [17]). Finally, to enable
inexperienced and non developer users to easily manage their
VMs with our toolkit, EasyCloud also provides an intuitive
and interactive textual user interface.

EasyCloud is written in the Python programming language,
which ensures maximum portability and fast development. To
foster research and provide reproducibility, its source code is
publicly available on [18].

In the rest of the paper, we will discuss in detail all
the characteristics and features of EasyCloud. In particular,
in Section II, we discuss the related work presented in the
scientific literature, while in Section III and in Section IV, we
illustrate the architecture and design of our toolkit. Section V
shows the way EasyCloud can be used in real testbeds by
users without any experience on Cloud computing platforms.
Finally, Section VI concludes the paper and presents the future
steps of our toolkit.

II. RELATED WORK

As mentioned in Section I, many Cloud providers have
developed their own platforms featuring proprietary interfaces
which is not a problem as long as a single provider can fully
satisfy its customers. However, the lack of standardization for
interconnecting platforms makes it difficult for customers who
need the combined services or resources of multiple providers.
This often results in users being locked into specific providers
and platform [19]. This issue has led to the idea of intercon-
nected clouds, also known as interclouds or Cloud Federation:
a cloud of clouds where the advantages (in terms of service
cost [20]–[22], quality of service [23], [24], performance [25],
and so on) of different cloud providers can be exploit by a
single user.

The work in [26] is a survey concerning the intercloud
projects proposed in the scientific literature. In this survey, the
authors conclude that all the projects studied are not able to
implement the interoperability between different clouds and
only in the future we will be able to have a real federated
cloud environments when more cloud providers will emerge
with a standard interface for their services. We have tried to
download/install/configure and use the 11 intercloud projects
mentioned in the paper, in order to compare our toolkit with
the state of the art. Unfortunately, this has not been possible
due to various reasons, such as software or source code not
available, web site of the project unreachable or software not
working.

Conversely, a very promising project (not mentioned in the
survey) is Cloudmesh [27]: a tool which enables the access to
multi-cloud environments such as Amazon AWS, Microsoft
Azure [28], Google Cloud [12] and OpenStack. In particular,
Cloudmesh provides a command line shell allowing to boot
VMs and to switch between clouds but it does not provide any
feature besides the basic ones offered by the cloud platforms.
It is basically a wrapper on top of the various cloud platforms,
without any monitoring features or scaling mechanisms, so
important in a distributed computing system [29], [30].

EasyCloud is an evolution of our previous toolkits [31],
[32] used by various researchers, students and cloud users
to interact easily with the popular cloud platforms (including,
Amazon AWS, Google Cloud and OpenStack). With respect
to our previous work, EasyCloud presents a more modular
and pluggable architecture to easily integrate the support for
additional cloud platforms, and its software components have
been rewritten from scratch and improved. These features will
be discussed in more detail in Section III.

With respect to the above works, EasyCloud, to the best
of our knowledge, is the only multi-platform toolkit for cloud
and edge systems able to provide both the basic functionality
(such as, running a VM) and the advanced functionality (such
as, preventing failures and automatically scaling in and out the
computational resource provided).

In addition to the above works, different application work-
flow management and orchestration platforms have been pro-
posed (e.g., Nomad [33] and Marathon [34]). For instance,
Nomad is a workload orchestrator that can deploy and manage
containerized, virtualized, and standalone applications in a
multi-cloud environment using a single, unified workflow, and
with the ability to monitor the progress of the submitted jobs
and to automatically recover from machine failures. Unlike
these platforms, EasyCloud works at a lower level of ab-
straction, by focusing on the life-cycle management of VMs
rather than applications. Moreover, while these platforms may
provide features that EasyCloud still does not provide (e.g.,
defining and running application workflows), to the best of
our knowledge, they lack of features that EasyCloud already
provides, like the ability to define custom rules for VM
monitoring and management. Finally, these platforms often
require setting up a suitable cluster of nodes where to run
applications, for instance by installing and running specific
client/server software agents on every node in the managed
cluster. Instead, EasyCloud is very easy to install and manage
as it can run as a standalone program on a single machine
and it does not require the execution of any specific cluster
manager (even if it can interact with some of them to manage
their VMs).

III. ARCHITECTURE

EasyCloud has been specifically conceived with the follow-
ing goals in mind:

• platform-independence, to deal with the heterogeneity of
the cloud/edge computing platforms;

• interoperability, to deal with the multi-provider pecu-
liarity of cloud/edge systems where multiple cloud/edge
providers can serve the same geographic area and when
an edge/cloud interplay is necessary;

• modularity, to easily support and plug-in new cloud and
edge computing platforms;

• ease of use, to allow a quick and intuitive management of
the VM instances running on the underlying cloud/edge
infrastructure.

We achieves the above design goals as follows:



Fig. 1. The architecture of EasyCloud. Dashed boxes denote components
outside the scope of this paper. The connection C1 → C2 means that
component C1 interacts with component C2. Symbols VM i and Volj denote
a particular VM instance and volume, respectively.

• platform-independence: EasyCloud provides a unified in-
terface to interact with different cloud/edge platforms,
thus enabling its clients to write platform-independent
code;

• interoperability: EasyCloud is able to transparently com-
municate with multiple and different cloud/edge platform
during the same running session;

• modularity: EasyCloud consists of one or more pluggable
and extensible software components so that its function-
ality can be easily replaced or extended to cope with
the heterogeneity of the existing and future cloud/edge
platforms;

• ease of use: the ability of EasyCloud to support multiple
platforms enables code reuse and frees the developer to
learn all the API provided by the various cloud/edge
platforms; also, its intuitive and interactive user interface
allows inexperienced users to easily manage their VMs.

The architecture of EasyCloud consists of the following
subsystems, shown in Figure 1 as solid boxes (while dashed
boxes denote components of the cloud/edge infrastructure): the
VM Management subsystem (which provides VM management
services) and the VM Monitoring subsystem (which provides
VM monitoring and metering functionality).

Each subsystem consists of one or more pluggable and
extensible components so that its functionality can be easily
replaced or extended to cope with the heterogeneity of the
existing and future cloud/edge platforms. By providing a
platform-agnostic interface, these subsystems hide the details
about the interactions with the services provided by the
cloud/edge platform. This way, EasyCloud can support mul-
tiple cloud/edge platforms by simply providing the concrete
implementation of its interface for every cloud/edge platforms
that is to be supported.

In the rest of this section, we discuss in detail the two

subsystems mentioned before: the VM Management in Sec-
tion III-A and the VM Monitoring in Section III-B.

A. VM Management

The VM Management subsystem provides a platform-
agnostic interface for the life-cycle management of VM in-
stances and volumes hosted by the cloud/edge infrastructure,
by interacting with the virtualization services provided by
the cloud/edge platform (e.g., with the OpenStack’s Compute
Nova component [35]). Common interactions with this subsys-
tem comprise creating, restarting and destroying VM instances,
attaching and detaching volumes to/from VM instances, and
associating and disassociating network IP addresses to/from
VM instances.

This subsystem comprises two main components: the Man-
ager, which deals with the management of VMs (e.g., starting
and stopping VM instances), and the Conf Manager, which
is used to query and set configuration parameters of the
cloud/edge platforms (e.g., the user credentials to access the
platform).

To support the virtualization services of multiple cloud/edge
infrastructures, EasyCloud relies on the Apache libcloud [36]
library, which provides a unified API for interacting with many
of the popular cloud service providers, including Amazon EC2
[7], Google Compute Engine [37] and OpenStack, just to name
a few.

B. VM Monitoring

The VM Monitoring subsystem provides a platform-
independent interface for gathering metric data from the
monitored VM instances and triggering actions according
to user-defined policies defined against those collected data,
by interacting with the telemetry services provided by the
cloud/edge platform (e.g., with the Amazon CloudWatch [38],
for the Amazon AWS platform). Typical interactions with this
subsystem include the gathering of usage data for a given
running VM instance (e.g., its CPU and memory utilization).

To do so, this subsystem periodically (1) gathers metric
data from the monitored VM instances, (2) checks whether
the collected data activate one or more user-defined rules
(see below), and then (3) triggers the actions associated with
the activated rules by interacting with the VM Management
subsystem.

This subsystem consists of three main components, namely
the Monitor, the Rule Engine, and the Agent, which run as
threads and communicate with each other by sending messages
stored in synchronized queues.

The Monitor component periodically queries the telemetry
services of the cloud/edge platform to gather metric data
of the monitored VM instances (e.g., the CPU load), and
sends collected data to the Rule Engine component for further
processing. Specifically, as shown in Algorithm 1, for each
VM instance v to be monitored (line 2) and for each metric
m to be collected (line 3), the Monitor gathers a maximum of
n data of metric m (with a granularity of g seconds) related
to VM instance v collected by the cloud/edge platform in the



Algorithm 1 The data collection algorithm used by the
Monitor component.

1: procedure MONITORVMS(V,M, n, g)
2: for all monitored VM instance v in V do
3: for all metric m to gather in M do
4: t← GETCURRENTTIME()
5: ⟨ts, te⟩ ← COMPUTESTARTSTOPTIME(t, n, g)
6: D ← COLLECTDATA(v,m, ⟨ts, te⟩, n, g)
7: if not EMPTY(D) then
8: SENDTORULEENGINE(v,m,D)
9: end if

10: end for
11: end for
12: end procedure

{
"name": "cpu_load_gt_60%",
"target": "cpu_load",
"operator": ">",
"threshold": 60.0,
"action": "clone"

},
{

"name": "free_mem_lt_500MB",
"target": "memory_free",
"operator": "<",
"threshold": 500000000.0,
"action": "clone"

}

Fig. 2. A sample rule base (with two rules) used by the Rule Engine
component.

time window [ts, te] (lines 4–6), and sends them (if any) to
the Rule Engine for applying user-defined policies (lines 7–9).
The set V of the VM instances to be monitored and the metrics
M to be collected can be changed at runtime. Some functions
of the Monitor component, like gathering metric data related
to a specific VM instance, require the interaction with the
telemetry services provided by the cloud/edge platform where
that instance is running. EasyCloud provides several built-in
Monitor components to support the most popular cloud/edge
platforms including Amazon AWS, Google Compute Platform
and OpenStack.

The Rule Engine component receives data from one or
more Monitors and fed them to its rule engine to decide
which actions should be triggered against a given rule base.
EasyCloud supports threshold-based rules as follows: “⟨name⟩:
if ⟨metric-data⟩ ⟨operator⟩ ⟨threshold⟩ then ⟨action⟩.” Each of
these rules is specified as a JSON object [39] where the name
field specifies a symbolic name of the rule, the target field
specifies the metric to consider, the threshold field specifies
the threshold value for the target metric, the operator field
specifies the operator used for comparing the metric value with
the given threshold, and the action field specifies which action
to trigger if the condition is satisfied.

For instance, the rule base of Figure 2 contains two rules: the
first one, called “cpu load gt 60%”, triggers the cloning of a

certain VM instance when its CPU utilization is greater than
60%, while the second one, named “free mem lt 500MB”,
triggers a cloning of a given VM instance when its available
memory is less than 500 MB. As shown in Figure 2, the
Rule Engine, upon receiving new metric data D for metric
m, checks if some rule r in the rule base R (and related to
metric m) is satisfied by at least p samples in D (lines 5–9)
and, if so, it sends a message to the Agent component (see
below) to execute the action associated with that rule against
a given VM v (line 12).

Algorithm 2 The rule matching algorithm used by the Rule
Engine component.

1: procedure MATCHRULES(R, v,m,D, p)
2: for all rule r in R for metric m do
3: c← 0
4: for all data d in D do
5: o← OPERATOR(r)
6: τ ← THRESHOLD(r)
7: if ISSATISFIED(o, τ, d) then
8: c← c+ 1
9: end if

10: end for
11: if c ≥ p then
12: SENDTOAGENT(v, ACTION(r))
13: end if
14: end for
15: end procedure

Finally, the Agent component is in charge of executing the
actions as requested by the Rule Engine component. First, the
Agent component examines the received actions to filter out
possible duplicates (e.g., resulting from different rules satisfied
at the same time) so as to avoid executing the same action
on a given VM instance multiple times. Then, it iterates the
filtered set of actions and executes each one of them through
the Manager component. For example, even if, for a given
VM instance, both rules of the rule base of Figure 2 are
satisfied at the same time (i.e., if both “cpu load gt 60%” and
“free mem lt 500MB” are satisfied by at least p data samples
in D), the VM instance will be cloned only once.

IV. DESIGN

In this section, we provide details about the internal design
of the subsystems of EasyCloud described in Section III.
Specifically, in Section IV-A, we describe the core classes of
EasyCloud, while in Section IV-B we describe how to extend
those core classes to support a given cloud/edge platform.

We graphically present these classes and their relationships
through Unified Modeling Language (UML) class diagrams
[40], where a class is denoted by a box whose label is the
class name, and a static relationship among two classes is
represented with a line whose style changes with the type of
the UML relation. In those class diagrams, we also distinguish
between concrete classes, which are represented as classes
with the name in regular font, and abstract base classes, which



Fig. 3. The UML class diagram of the core classes of EasyCloud.

are represented as classes with the name in italic font. In the
rest of this section, unless otherwise stated, we use the terms
“concrete class” and “class” interchangeably. Furthermore, in
the class diagrams, we show which subsystems the various
classes of EasyCloud belong to through frames (whose head-
ings denote subsystems’ names), and how those subsystems
are related to each other through classes’ static relationships.

A. Core Classes

The main core classes of EasyCloud are shown in the class
diagram of Figure 3. As shown in the figure, the VM Manage-
ment consists of three core classes, namely the Meta Manager,
the Meta Conf Manager and the Module, which provide the
functionality described in Section III-A. Specifically, the Meta
Manager abstract base class models the Manager component
of the VM Management subsystem and provides an interface
for managing and querying VM instances and volumes like,
for example, starting and stopping VM instances, attaching and
detaching volumes, and listing security groups and availability
zones. The Meta Conf Manager abstract base class models the
Conf Manager component of the VM Management subsystem
and is responsible of querying and changing configuration
parameters, including those used internally by EasyCloud
(e.g., the sampling window size n and granularity g used by
Algorithm 1) and those specific to a particular cloud/edge
platform (e.g., the user credentials to access the compute
services of a given cloud/edge platform). Finally, the Module
class is responsible of dynamically loading and unloading
in EasyCloud the support for a given cloud/edge platform,
thus providing users of EasyCloud the flexibility to plug-in a
specific cloud/edge platform at runtime, only when necessary.

The remaining classes of Figure 3 provide the functionality
offered by the VM Monitoring subsystem (as described in
Section III-B). Specifically, the Meta Monitor abstract base
class models the Monitor component and it is responsible of
gathering metric data of VM instances by running Algorithm 1
and communicating with the telemetry services provided by
the involved cloud/edge platforms. The Rule Engine class
implements the Rule Engine component by providing a rule-
based engine to trigger actions according to user-defined poli-

Fig. 4. The UML class diagram of the classes added to EasyCloud to support
Amazon AWS.

cies. The Meta Agent class models the Agent component and
provides basic functionality for triggering actions requested by
the Rule Engine component, like filtering out duplicate actions
and performing the remaining actions through the Manager
component. Finally, as described in Section III-B, most of the
VM Monitoring components run as separate threads. These
threads communicate with each other by sending messages to
an instance of the Queue class, which models a multi-producer,
multi-consumer queue and implements suitable locking seman-
tics to enable a group of threads to safely exchange messages.

B. Supporting a Cloud/Edge Platform

EasyCloud already supports three of the most popular
cloud platforms, namely Amazon AWS [41], Google Cloud
[12], and OpenStack [8], as well as its deployment for the
Chameleon testbed [42] (including the management of bare-
bone instances).

In this section, we show how to extend EasyCloud to
support a new cloud/edge platform, by using as a case study
the Amazon AWS platform.

In EasyCloud, to integrate a new cloud/edge platform, it is
necessary to implement the interfaces of the abstract base core
classes described in Section IV-A, by developing subclasses
that extend those core classes. In particular, for the Amazon
AWS case study, this integration requires interacting with Ama-
zon EC2 compute services [7] and with Amazon CloudWatch
telemetry services [38] to provide the functionality of the VM
Management and VM Monitoring subsystems, respectively.

In Figure 4, we show the subclasses that have been added
to EasyCloud to support Amazon AWS (see classes inside
the frame AWS) as well their static associations with the
relevant core classes of EasyCloud. Furthermore, in Figure 5,
we show an outline of the more relevant methods of the
interface provided by the core classes of EasyCloud that
those subclasses implement, by using a simplified Python-like
pseudo-code where we omit implementation details like class
constructors.

As shown in Figure 4, the AWS Conf Manager class
is a concrete subclass of the Meta Conf Manager ab-
stract base class that implements its interface to query and
change platform-specific configuration parameters, like the



1 class AWSConfManager(MetaConfManager):
2 def read_login_data(self):
3 ...
4 def read_platform_options(self):
5 ...
6 ...
7

8 class AWSManager(MetaManager):
9 def connect(self):

10 ...
11 def _platform_list_all_images(self):
12 ...
13 def _platform_create_new_instance(self,

instance_name, image, instance_type,
commands_queue):

14 ...
15 def _platform_create_volume(self, volume_name,

volume_size):
16 ...
17 def _platform_attach_volume(self, volume,

instance):
18 ...
19 def _platform_associate_floating_ip(self,

floating_ip, instance):
20 ...
21 def _platform_get_monitor(self,

commands_queue, measurements_queue):
22 ...
23 ...
24

25 class AWSMonitor(MetaMonitor):
26 def connect(self):
27 ...
28 def _get_metric_values(self, instance, metric,

granularity, limit):
29 ...
30 ...

Fig. 5. Implementation outline for the integration of the Amazon AWS
platform.

user credentials to access Amazon EC2 resources (see method
read_login_data() in Figure 5).

The AWS Manager class is a concrete subclass of
the Meta Manager abstract base class that communi-
cates with Amazon EC2 to provide VM management
services, like creating a new VM instance or volume
(see methods _platform_create_new_instance()
and _platform_create_volume() in Figure 5). To
do so, this classes relies on the various functions pro-
vided by the Apache libcloud API. For instance, the
_platform_create_new_instance() method uses
the create_node() function of libcloud to create a new
VM instance.

Finally, the AWS Monitor class is a subclass of the Meta
Monitor abstract base class that interacts with Amazon Cloud-
Watch to gather metric data related to VM instances (e.g., see
method _get_metric_values() in Figure 5). To do so,
this class relies on the various functions provided by the Ama-
zon AWS SDK for Python [43] (formerly known as Boto3). For
instance, the implementation of the _get_metric_values
method uses Amazon Boto3’s get_metric_*() functions
(e.g., get_metric_statistics()) to collect at most
limit data related to a given metric and VM instance,

Fig. 6. If EasyCloud detects missing libraries, it proposes to install them
automatically.

Fig. 7. EasyCloud notifies the user that all libraries required by Google Cloud
Platform has been successfully installed.

and according to a given time granularity (in seconds).

V. INTERACTIVE USER INTERFACE

To enable inexperienced and non developer users to easily
manage their VMs with our toolkit, EasyCloud also provides
an intuitive and interactive Textual User Interface (TUI).

With this TUI, when a user launches our toolkit for the
first time, it checks if every software requirements are satis-
fied. If there are missing libraries, EasyCloud asks to install
them as illustrated in Figure 6. The missing libraries will
be installed automatically if the user wants to and then,
eventually, EasyCloud notifies the users of the outcome of
the installation procedure (see Figure 7). Once all software
requirements are satisfied, the user is ready to choose which
cloud/edge platforms use first as we can see in the main menu
illustrated in Figure 8. In Figure 9, we can see the list of
all features provided by EasyCloud that has been discussed
in the previous sections. The interested reader who wants
to try our tool, he/she has just to obtain credentials from a
cloud/edge platform (they can be obtained for free from the
main platforms such as AWS, Google Cloud Platform and
OpenStack), downloads the source code available from the
EasyCloud website [18] and follows the detailed instructions

Fig. 8. The user can choose between three different Cloud computing
platforms.



Fig. 9. List of features provided by EasyCloud for each Cloud platform.

written in the README file. As mentioned before, it is not
necessary any cloud skill or experience to use EasyCloud.

VI. CONCLUSIONS

In this paper, we present EasyCloud, a toolkit able to
interact with different and multiple Cloud platforms at the
same time in an easy and effective manner. Thanks to its
modularity, our toolkit is able to easily integrate different
platforms as long as they expose their API. Furthermore,
thanks to its intuitive user interface, EasyCloud is suited also
to students, educators and researchers who want to approach
to Cloud computing without considering the details of each
implementations.

Concerning the future work, we plan to integrate in Easy-
Cloud other Cloud platforms such as Microsoft Azure [28]
and IBM Cloud [44]. Moreover, we want to add new features
like resource reservation as proposed by some Cloud provider.
Also, we plan to extend our Rule Engine component by inte-
grating in EasyCloud the Intellect package [45] to support a
richer set of rule types. Thanks to the modularity of our toolkit,
we also plan to extend the providers to be fully complaint with
native Edge computing platforms such as MicroK8s [46] and
EdgeX [47], just to name a few. Furthermore, we plan to inte-
grate EasyCloud in our previous work dealing with cloud/edge
infrastructure management [48]–[50] and experimentation [51].
In order to involve new users, we plan to propose EasyCloud to
the most popular cloud communities such as Chameleon users
group [52] and Google Cloud Faculty Community group [53],
just to name a few. Last but not least, we are planning to design
and implement a web interface able to make the usage of
EasyCloud even more easy without any software installation.

ACKNOWLEDGMENT

This research has a financial support of the Università del
Piemonte Orientale and of the INdAM – GNCS Project 2020.

REFERENCES

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” Gaithersburg, MD, USA, Tech. Rep., 2011.

[2] Google, “Docs,” available: https://www.google.com/docs. Accessed: Jan
25, 2020.

[3] ——, “Gmail,” available: https://www.google.com/gmail. Accessed: Jan
25, 2020.

[4] Salesforce.com, “CRM,” available: https://www.salesforce.com/crm/.
Accessed: Jan 25, 2020.

[5] Google, “App Engine,” available: https://cloud.google.com/appengine.
Accessed: Jan 25, 2020.

[6] Amazon AWS, “Amazon Elastic Beanstalk,” available: https://aws.
amazon.com/elasticbeanstalk/. Accessed: Jan 25, 2020.

[7] ——, “Amazon EC2,” available: https://aws.amazon.com/ec2/. Accessed:
Jan 25, 2020.

[8] OpenStack Foundation, “OpenStack,” available: https://www.openstack.
org/. Accessed: Jan 25, 2020.

[9] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 37–42, 2015.

[10] C. Anglano, M. Canonico, and M. Guazzone, “Profit-aware resource
management for edge computing systems,” in Proc. of the 1st Interna-
tional Workshop on Edge Systems, Analytics and Networking (EdgeSys).
Munich, Germany: ACM, 2018, pp. 25–30.

[11] Amazon AWS, “Amazon CloudFront,” available: https://aws.amazon.
com/cloudfront/. Accessed: Jan 25, 2020.

[12] Google, “Cloud,” available: https://cloud.google.com/. Accessed: Jan 25,
2020.

[13] ——, “Cloud IoT,” available: https://cloud.google.com/solutions/iot. Ac-
cessed: Jan 25, 2020.

[14] K. Ha and M. Satyanarayanan, “Openstack++ for cloudlet deployment,”
Carnegie Mellon University, Tech. Rep. CMU-CS-15-123, Aug. 2015.

[15] N. K. Sehgal, P. C. P. Bhatt, and J. M. Acken, Cloud Computing with
Security: Concepts and Practices. Springer, 2020.

[16] Kubernetes, “Kubernetes: A production-grade container orchestration,”
available: https://kubernetes.io/. Accessed: Jan 25, 2020.

[17] KubeEdge, “KubeEdge: An open platform to enable Edge computing,”
available: https://kubeedge.io/. Accessed: Jan 25, 2020.

[18] C. Anglano, M. Canonico, and M. Guazzone, “EasyCloud repository,”
https://gitlab.di.unipmn.it/DCS/easycloud/, 2020, [Online; accessed 25-
Jan-2020].

[19] D. G. Kogias, M. G. Xevgenis, and C. Z. Patrikakis, “Cloud federation
and the evolution of cloud computing,” Computer, vol. 49, no. 11, pp.
96–99, nov 2016.

[20] M. Guazzone, C. Anglano, and M. Canonico, “Energy-efficient resource
management for cloud computing infrastructures,” in Proc. of the 3rd

IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). Athens, Greece: IEEE Computer Society, Nov
2011, pp. 424–431.

[21] M. Guazzone, C. Anglano, and M. Sereno, “A game-theoretic approach
to coalition formation in green cloud federations,” in Proc. of the
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). Chicago, IL, USA: IEEE Computer Society, May
2014, pp. 618–625.

[22] C. Anglano, M. Guazzone, and M. Sereno, “Maximizing profit in green
cellular networks through collaborative games,” Computer Networks, vol.
75, Part A, pp. 260–275, 2014.

[23] C. Anglano, M. Canonico, P. Castagno, M. Guazzone, and M. Sereno,
“A game-theoretic approach to coalition formation in fog provider
federations,” in Proc. of the 3rd International Conference on Fog and
Mobile Edge Computing (FMEC). Barcelona, Spain: IEEE, April 2018,
pp. 123–130.

[24] ——, “Profit-aware coalition formation in fog computing providers: A
game-theoretic approach,” Concurrency and Computation: Practice and
Experience, 2019, in press.

[25] M. Guazzone, C. Anglano, and M. Canonico, “Exploiting VM migration
for the automated power and performance management of green cloud
computing systems,” in Proc. of the 1st International Workshop on
Energy-Efficient Data Centres (E2DC), ser. Lecture Notes in Computer
Science, vol. 7396. Madrid, Spain: Springer Berlin Heidelberg, May
2012, pp. 81–92.

[26] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud
computing environments: Challenges, taxonomy, and survey,” ACM
Comput. Surv., vol. 47, no. 1, May 2014. [Online]. Available:
https://doi.org/10.1145/2593512

[27] G. von Laszewski, B. Abdul-Wahid, F. Wang, H. Lee, G. C. Fox, and
W. Chang, “Cloudmesh in support of the nist big data architecture
framework,” Technical report, Indiana University, Bloomingtion IN
47408, USA, Tech. Rep., 2017.



[28] Microsoft, “Azure,” available: https://azure.microsoft.com/. Accessed:
Jan 25, 2020.

[29] C. Anglano, M. Canonico, and M. Guazzone, “FC2Q: Exploiting
fuzzy control in server consolidation for cloud applications with SLA
constraints,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 17, pp. 4491–4514, 2015.

[30] ——, “FCMS: A fuzzy controller for CPU and memory consolidation
under SLA constraints,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 5, p. e3968, 2017.

[31] M. Canonico, A. Lombardo, and I. Lovotti, “Cloudtui: A multi cloud
platform text user interface,” in Proceedings of the 7th International
Conference on Performance Evaluation Methodologies and Tools,
ser. ValueTools ’13. Brussels, BEL: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
2013, p. 294–297. [Online]. Available: https://doi.org/10.4108/icst.
valuetools.2013.254413

[32] M. Canonico and D. Monfrecola, “Cloudtui-fts: A user-friendly
and powerful tool to manage cloud computing platforms,” in
Proceedings of the 9th EAI International Conference on Performance
Evaluation Methodologies and Tools, ser. VALUETOOLS’15. Brussels,
BEL: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2016, p. 220–223. [Online].
Available: https://doi.org/10.4108/eai.14-12-2015.2262718

[33] HashiCorp, “Nomad,” available: https://nomadproject.io/. Accessed: Jan
25, 2020.

[34] D2iQ, Inc., “Marthon,” available: https://mesosphere.github.io/
marathon/. Accessed: Jan 25, 2020.

[35] OpenStack, “OpenStack Compute (nova),” available: https://docs.
openstack.org/nova/latest/. Accessed: Jan 25, 2020.

[36] Apache Software Foundation, “Apache Libcloud,” available: https://
libcloud.apache.org. Accessed: Jan 25, 2020.

[37] Google, “Google Compute Engine,” available: https://cloud.google.com/
compute/. Accessed: Jan 25, 2020.

[38] Amazon AWS, “Amazon CloudWatch,” available: https://aws.amazon.
com/cloudwatch/. Accessed: Jan 25, 2020.

[39] JSON, “Introducing JSON,” available: https://www.json.org. Accessed:
Jan 25, 2020.

[40] OMG et al., “OMG Unified Modeling Language (OMG UML), version
2.5,” Object Management Group, Inc., Specification formal/2015-03-01,
Jun 2015, available from: http://www.omg.org/spec/UML/2.5. Accessed:
Jan 25, 2020.

[41] Amazon, “Amazon Web Services,” available: https://aws.amazon.com.
Accessed: Jan 25, 2020.

[42] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad,
and P. Ruth, Chameleon: A Scalable Production Testbed for Computer
Science Research. CRC Press, 2019, ch. 5.

[43] Amazon AWS, “AWS SDK for Python (Boto3),” available: https://aws.
amazon.com/sdk-for-python/. Accessed: Jan 25, 2020.

[44] IBM, “Cloud,” available: https://cloud.ibm.com/. Accessed: Jan 25,
2020.

[45] M. J. Walsh, “Intellect: A Domain-specific language and Rules Engine
for Python,” available: https://github.com/nemonik/Intellect. Accessed:
Jan 25, 2020.

[46] Canonical, “MicroK8s,” available: https://microk8s.io/. Accessed: Jan
25, 2020.

[47] EdgeX Foundry, “EdgeX,” available: https://www.edgexfoundry.org/.
Accessed: Jan 25, 2020.

[48] L. Albano, C. Anglano, M. Canonico, and M. Guazzone, “Fuzzy-Q&E:
Achieving QoS guarantees and energy savings for cloud applications
with fuzzy control,” in Proc. of the 3rd International Cloud and Green
Computing Conference (CGC). Karlsruhe, Germany: IEEE Computer
Society, Sept 2013, pp. 159–166.

[49] C. Anglano, M. Canonico, and M. Guazzone, “Online user-driven
task scheduling for FemtoClouds,” in Proc. of the 4th International
Conference on Fog and Mobile Edge Computing (FMEC). Rome, Italy:
IEEE, June 2019, pp. 5–12.

[50] ——, “WQR-UD: An online scheduling algorithm for FemtoClouds,”
in Proc. of the 12th EAI International Conference on Performance
Evaluation Methodologies and Tools, ser. VALUETOOLS 2019, 2019,
pp. 179–182.

[51] ——, “Prometheus: A flexible toolkit for the experimentation with
virtualized infrastructures,” Concurrency and Computation: Practice and
Experience, vol. 30, no. 11, p. e4400, 2018.

[52] Chameleon, “Users,” available: https://lists.chameleoncloud.org/
mailman/listinfo/users. Accessed: Jan 25, 2020.

[53] Google, “Cloud Faculty Community,” available: https://groups.google.
com/forum/\#\!forum/googlecloudfaculty. Accessed: Jan 25, 2020.


