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Abstract. Cloud computing is an emerging computing paradigm in which “Ev-

erything is as a Service”, including the provision of virtualized computing infras-

tructures (known as Infrastructure-as-a-Service modality) hosted on the physical

infrastructure, owned by an infrastructure provider. The goal of this infrastruc-

ture provider is to maximize its profit by minimizing the amount of violations of

Quality-of-Service (QoS) levels agreed with its customers and, at the same time,

by lowering infrastructure costs among which energy consumption plays a major

role. In this paper, we propose a framework able to automatically manage re-

sources of cloud infrastructures in order to simultaneously achieve suitable QoS

levels and to reduce as much as possible the amount of energy used for providing

services. We show, through simulation, that our approach is able to dynamically

adapt to time-varying workloads (without any prior knowledge) and to signifi-

cantly reduce QoS violations and energy consumption with respect to traditional

static approaches.
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1 Introduction

The Cloud Computing [1] paradigm has enabled various novel modalities of service

provisioning. Among them, particularly important is the Infrastructure-as-a-Service

(IaaS) modality, whereby an Infrastructure Customer (IC) may provision his/her own

virtual computing infrastructure, on which (s)he can deploy and run arbitrary software,

on top on the physical infrastructure owned by an Infrastructure Provider (IP). Typi-

cally, ICs deploy on their virtual infrastructure multi-tier distributed applications con-

sisting in an ensemble of Virtual Machines (VMs), each one hosting one or more ap-

plication components together with the corresponding operating environment (i.e., OS

and software libraries, just to name a few).

Usually, the IC and the IP agree on Quality-of-Service (QoS) levels that the IP com-

mits to deliver to applications, which are defined in terms of suitable low-level temporal
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and performance metrics commonly referred to as Service Level Objectives (SLO). This

agreement, commonly referred to as Service Level Agreement (SLA), usually states that

the IC accepts to pay a certain amount of money for using the infrastructure, and that

the IP accepts to pay a money penalty for each violation of the SLA.

A critical issue that the IP must solve in order to maximize revenues is the amount

of physical resources that must be allocated to each application. On the one hand, the

allocation of an insufficient amount of resources may indeed yield a large number of

SLA violations, with consequent losses due to corresponding money penalties. On the

other hand, the allocation of an excessive amount of resources typically results in in-

creases of energy costs, caused by a larger number of switched-on resources. These

costs represent, at the moment, a large fraction of the Total Cost of Ownership (TCO)

of the infrastructure [2], and are expected to further grow in the near future. Ideally,

therefore, the IP should be able to allocate to each IC application no more than the min-

imum amount of resources resulting in no SLA violation, in order to keep the energy

consumption to a bare minimum.

The standard approach generally adopted to allocate physical resources to the VMs

of an application consists in statically assigning to each one of them enough capacity to

fulfill the SLAs under the hypothesis that the workload will exhibit a specific intensity.

This approach, however, fails to provide satisfactory results in realistic settings, because

of the following factors:

– The characteristics of the workload are rarely known in advance, so it is very hard

(if not impossible) to estimate its typical intensity. The resulting estimation er-

rors lead to either under-provisioning (with consequent SLA violations) or over-

provisioning of resources (with consequent energy waste).
– The intensity of the workload typically changes over time, so even if (unrealis-

tically) the value of the intensity could be estimated without errors, the capacity

allocated to the VMs should be dynamically adapted to these changes. This adap-

tation, however, may not be possible for a VM if the physical resource on which

it is running has no spare capacity left, an event that is likely to occur in realistic

settings where each physical resource is typically shared among many competing

VMs, that usually exhibit different and conflicting resource utilization profiles.
– The VMs of the same application usually span different physical resources, that

are all involved by the above adaptation, with the consequence that changes in the

allocation of capacity to a given application create a domino effect involving a large

set of other applications.

In order to tackle the problem of allocating the resources of a cloud physical infras-

tructure in face of the above issues, in [3] we proposed a distributed, time-hierarchical

resource management framework that aims at simultaneously minimize SLA violations

and energy consumption for multi-tier applications characterized by time-varying work-

loads whose characteristics are unknown in advance.

The framework encompasses three distinct levels, that operate on different system

components at different time-scale, namely:

– an Application Manager for each application, that exploits control-theoretic tech-

niques to monitor its SLOs, and dynamically determine the physical resource share

that must be allocated to each of its VMs in order to meet the corresponding SLAs;



– a Physical Machine Manager for each physical resource, that multiplexes the total

amount of physical capacity among all the VMs allocated on that resource;

– a Migration Manager, that monitors the SLOs of all applications and the overall

energy consumption, and decides whether it is appropriate to migrate some VMs

from the physical machines where they are allocated to other ones, in order to meet

their SLAs and save energy.

In [3], we focused on the design and evaluation of the Application Manager and the

Physical Machine Manager, and we showed that, when the workload is such that each

physical machine has enough capacity to accommodate the simultaneous needs of all

the VMs allocated on it, our framework results both in better performance and lower

energy consumption than alternative static approaches.

This paper focuses instead on the Migration Manager. In particular, we present its

architecture, the algorithms it uses, and a performance evaluation study carried out by

means of discrete-event simulation [4], whereby we assess its ability to respect SLAs

and save energy by comparing the performance attained by our framework when migra-

tion is enabled against those attained when migration is disabled, and against various

static resource management approaches.

The rest of this paper is organized as follows. In Sect. 2, after a brief recap of our

framework, we describe the Migration Manager. In Sect. 3, we present an experimental

evaluation of our framework and show its effectiveness on minimizing SLO violations

and energy consumption. In Sect. 4, we compare our approach with some recent related

work. Finally, in Sect. 5, we conclude this paper and present future works.

2 The Resource Management Framework

The architecture of our framework includes a certain number of multi-tier applications

which have to be deployed on a cloud infrastructure. Every application tier is deployed

in a separate VM, which in turn is placed on one of the available Physical Machines

(PMs). The core of our framework is the Resource Manager, which continuously mon-

itors the performance of each deployed application and suitably acts on the system in

order to maintain application performance goals and, at the same time, to minimize the

energy consumption of computing resources.

We assume that the SLOs of each application are known, and are expressed in terms

of a specific PM that we called reference machine. 1 It is responsibility of the Resource

Manager to appropriately scale SLOs according to the capacity of physical resources

belonging to the PMs where each application tier is actually run. To do so, we assume

that the relative computing power (i.e., the measure of how much a physical resource

is more powerful than another one) of two PMs of the same category can be expressed

by a simple proportional relationship between their capacities. This means that if a

resource has capacity of 10, it will be able to serve requests at a service rate double than

a resource with capacity of 5.

1 This choice appears to be natural, as (1) application performance generally vary according

to the capacity of physical resources assigned to that application, and (2) physical resources

inside cloud computing systems are usually heterogeneous.



In order to reduce energy consumption and achieve application performance tar-

gets, the Resource Manager exploits virtualization technologies and control-theoretic

techniques. On the one hand, by deploying each application tier inside a separate VM,

virtualization provides both a runtime isolated environment and a mean for dynami-

cally provisioning physical resources to virtualized applications so that an effective use

of physical resources can be achieved. On the other hand, control theory provides a way

for enabling computing systems to automatically manage performance and power con-

sumption, without human intervention. Thus, the Resource Manager accomplishes its

goal by dynamically adjusting the fraction of the capacity of PMs assigned to each VM,

and, if needed, by migrating one or more VMs into other and more appropriated PMs

(possibly, by turning on or off some of them). Specifically, it acts on the cloud infras-

tructure via a set of independent components, namely Application Manager, Physical

Machine Manager, and Migration Manager.

In the rest of this section we describe the Migration Manager, which is the focus of

this paper. For the other two components, the interested reader may refer to [3] for a

more thorough description. We just want to recall that the Application and the Physical

Machine Managers act on a short-term time scale, and attempt to allocate, to the various

tiers of each application, the share of physical resources they need to meet their SLOs.

It is worth noting that, although our framework is general enough to deal with any

type of physical resource and performance metric, for the sake of simplicity, in this

paper we restrict our focus to the CPU as the type of shared physical resource, and on

the application-level response time, as the SLO performance metric.

2.1 The Migration Manager

The purpose of the Migration Manager is to find the placement of the currently running

VMs on the PMs that results in the minimization of both SLO violations and energy

consumption. This objective is achieved by monitoring application performance and

by recomputing, if needed, a new VM placement that simultaneously results in the

fulfillment of SLOs and in the lowest energy consumption among all the candidate

ones. The new placement is computed at the end of regularly-spaced time intervals

henceforth referred to as control intervals.

Once the optimal allocation is computed, the following (non-mutually exclusive)

actions can be triggered: (1) one or more PMs are powered on in order to fulfill current

CPU demand, (2) one or more VMs are migrated to more suitable PMs, and (3) one

or more PMs are powered off due to an excess of available CPU capacity with respect

to current demand. The optimal allocation is computed by solving, at each control in-

terval k, an optimization problem, whose mathematical formulation (the mathematical

program) is shown in Fig. 1, where M and V denote the set of all PMs of the cloud

infrastructure (included the ones currently powered off), and the set of all virtual ma-

chines that are currently powered on, respectively, and xi(·), yi j(·), and si j(·) are the

decision variables. More details about the mathematical program are provided in [5].

Solution Algorithm The above mathematical program is a Mixed-Integer Nonlinear

Program (MINLP) [6] which is known to be NP-hard [7]. Thus, we resorted to an ap-

proximate solution computed by means of a Best-Fit Decreasing (BFD) strategy, which
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Fig. 1. Resource management framework – Optimization problem for the Migration Manager.

attempts to place the largest number of VMs on the fewest number of PMs, while still

preserving SLO constraints. More details can be found in [5].

3 Experimental Evaluation

In order to assess the capability of our framework, we performed an extensive exper-

imental evaluation using discrete-event simulation. To this end, we developed a C++

ad-hoc discrete-event system simulator, that is used to run our experiments.

We assess the performance of our framework by measuring, for each application,

its response time and the number of SLO violations, as well as the amount of electrical

energy (in Joule) consumed by the physical infrastructure. For each of these quantities,

we compute the 95% confidence level by using the independent replications output

analysis, where the length of each replication is fixed to 210,000 ticks of simulated

time, and the number of total replicas is fixed to 5. We use these fixed settings since the

simulated system never reaches the steady-state due to the presence of applications that

can start and stop in the middle of the simulation.



In our experiments, we use the 0.99th quantile of application response time as SLO

specification. This means that the infrastructure provider will pay penalties only when

the percentage of SLO violations (i.e., the percentage of the number of times the ob-

served response time is larger than the SLO value) is greater than 1% during a pre-

scribed time interval.

To compute the SLO value for each application, we use a benchmark-like approach

similar to the one described in [8,9] for application profiling: for each type of applica-

tion and arrival process, we run a series of simulations (assigning to each tier exactly

the amount of CPU capacity as defined by the reference machine specifications) and

measure the 0.99th quantile of the response time empirical distribution.

In the rest of this section, we first present the settings used to define the various

simulation scenarios used for our study, and then we report and discuss the results

obtained from the experiments.

3.1 Experimental Settings

The experimental scenarios are defined in terms of the configurations of the physical

infrastructure and of the various applications, and of the specific settings for the param-

eters used by the various components of the framework.

Table 1. Experimental settings – Characteristics of the PMs and applications.

(a) Characteristcs of the PMs.

Group No. of PMs CPU Power Model

Capacity ω0 ω1 ω2 ρ

M1 3 1,000 86.7 119.1 69.06 0.400

M2 2 2,000 143.0 258.2 117.2 0.355

M3 2 3,000 178.0 310.6 160.4 0.311

M4 2 4,000 284.0 490.1 343.7 0.462

(b) Characteristics of the appli-

cations.

Group 1st Tier 2nd Tier 3rd Tier

A1 0.060 0.06 0.06

A2 0.030 0.06 0.03

A3 0.015 0.03 0.06

Physical Infrastructure Configuration We consider a cloud infrastructure consisting

of a set of 9 heterogeneous PMs, that, in turn, are divided into 4 groups, namelyM1,M2,

M3, and M4, in such a way that the PMs in the same group Mi have an identical CPU

capacity that is i times larger than the one of the reference machine (that is assumed to

be equal to 1,000).

The energy consumption of these machines is modeled as discussed in [10,11,12],

whereby the power P absorbed by each machine is related to its CPU utilization u by

means of the formula:

P = ω0 +ω1u+ω2u
ρ (2)



where ω0, ω1 and ω2 are model parameters. For each one of the machine classes, we

use a different setting of the parameters in Equation (2) (that is used for all the machines

in the same class), as reported in Table 1a (where we also report the capacity values and

the number of PMs for each of the four machine groups). These values are estimated

through a statistical regression analysis over data collected by the SPECpower_ssj2008

benchmark [13].

Application Configuration We consider 6 three-tier applications divided into 3 groups,

namely A1, A2, and A3, such that applications in the same group have an identical be-

havior. For every application, each incoming service request arrives at the first tier that,

after processing it, forwards it to the second tier where this process is repeated. Finally,

after the processing in the third tier has taken place, the result of the service request is

sent back to the respective client. These application classes differ from each other in the

amount of processing time requested by each tier (expressed in terms of the computing

power of the reference machine), as reported in Table 1b.

Each application is characterized by its workload, that consists in a stream of service

requests, continuously generated by a population of users of unknown size, arriving ac-

cording to a specific arrival process. In order to reproduce various operating conditions

that may occur for real-world applications, we consider three different request arrival

processes, namely:

– Deterministic Modulated Poisson Process (DMPP), to generate workloads exhibit-

ing user behavioral patterns like daily-cycles of activity. In particular, we con-

sider a three-state DMPP, henceforth denoted as DMPP(λ1,λ2,λ3,τ), where λi,

for i = 1, . . . ,3, is the arrival rate of the Poisson process in state i, and τ is the

deterministic state-residence time;

– Pareto Modulated Poisson Process (PMPP) [14] to generate self-similar work-

loads. In particular, we consider a two-states PMPP, from this time forth denoted as

PMPP(λ1,λ2,xm,α), where λi , for i= 1,2, is the arrival rate of the Poisson process

in state i, and xm and α are the minimum value and shape parameters of the Pareto

distribution, respectively;

– Markov Modulated Poisson Process (MMPP) [15] to generate arrival processes

exhibiting temporal burstiness [16]. In particular, we consider a two-states MMPP,

henceforth denoted as MMPP(λ1,λ2,µ1,µ2), where λi, for i = 1,2, is the arrival

rate of the Poisson process in state i, and µi, for i = 1,2, is the state-transition rate

when the process is in state i.

Starting from these arrival processes, we create four distinct application scenarios,

each one including six instances of applications: three persistent instances (henceforth

denoted as Per1, Per2, and Per3) whose lifetime spans the entire simulation, and three

ephemeral instances (henceforth denoted as Eph1, Eph2, and Eph3) that arrive in the

system at different instants (i.e., time 10,000, 70,000, and 130,000, respectively), and

leave 70,000 time units after their arrival. The details of the four scenarios considered

in our experiments, together with the SLOs of each application in each scenario, are

reported in Table 2.



Table 2. Experimental settings – Arrival process parameters and SLO values of the applications.

For each scenario, but the S-MIX one, the arrival process is the same as the one implied by the

scenario name. In S-MIX, the arrival process is DMPP for A1, MMPP for A2 and PMPP for A3.

Scenario

Application

A1 A2 A3

Arrival SLO Arrival SLO Arrival SLO

S-DMPP (1,5,10,3600) 1.176 (10,5,1,3600) 0.612 (5,10,1,3600) 0.608

S-PMPP (5,10,1,1.5) 1.245 (5,10,1,1.5) 0.655 (5,10,1,1.5) 0.624

S-MMPP (5,15,0.0002,0.002) 4.001 (5,15,0.0002,0.002) 1.962 (5,15,0.0002,0.002) 1.935
S-MIX (5,10,1,3600) 0.608 (5,15,0.0002,0.002) 1.935 (5,10,1,1.5) 0.624

Resource Manager Configuration The parameters characterizing the Resource Man-

ager (see Sect. 2) include the ones associated to each Application Manager, Physical

Machine Manager, and to the Migration Manager. Due to lack of space, we omit them

from this paper. For more details, the interested reader can refer to [5].

3.2 Results and Discussion

In order to assess the effectiveness of the Migration Manager, we compare it with the

following resource management static policies:

– STATIC-SLO: each VM (running a specific application tier) is assigned the amount

of CPU capacity Cap(SLO) needed to meet application SLOs, so that SLOs satis-

faction is favoured over energy consumption reduction;

– STATIC-ENERGY: each VM is statically assigned a fixed amount of capacity that

is 25% lower than Cap(SLO). This is an energy-conserving approach since, by as-

signing less capacity than required, energy consumption reduction is given priority

over SLOs satisfaction;

– STATIC-TRADEOFF: each VM is assigned a fixed amount of capacity that is 10%

lower than Cap(SLO), in order to seek a reasonable trade-off between energy con-

sumption reduction and SLOs preservation.

It should be noted that all these policies are based on the rather unrealistic assumption

that Cap(SLO) is exactly known, whose knowledge requires the ability to perform mea-

surement experiments during which each application is exposed to its workload for a

suitable amount of time.

Moreover, in order to assess the benefits of VM migration with respect to situations

where only the Application Manager and the Physical Machine Manager are present (as

in our previous work [3]), we consider two different variants of our approach, denoted

respectively as OUR-APPROACH-NM and OUR-APPROACH-M, which differ in that

the former does not use the Migration Manager component (and hence does not employ

VM migration).

Our comparison is performed by considering the following performance indices (for

each one of them, we compute the 95% confidence intervals):



– SLO violations: the mean percentage of SLO violations for each application in-

stance;

– Total Energy (TotEn): total amount of electrical energy (measured in kilowatt-

hours, kWh) spent to serve all the requests received by applications.

– Wasted Energy (WastEn): total amount of electrical energy (measured in kilowatt-

hours, kWh) spent to serve out-of-SLO requests (this amount of energy can be,

therefore, considered as wasted to serve requests that will imply a money penalty

for the provider).

Due to lack of space, we only report part of performed experiments. The interested

reader can refer to [5] for a complete discussion of experimental evaluation. The re-

sults of the various scenarios are presented in two separate tables, namely Table 3 (for

S-PMPP) and Table 4 (for S-MIX). In each table, every column reports the results ob-

tained, by the various applications, under a specific resource management approach (an

“n/a” value means that the use of the corresponding resource management approach

made the simulation unable to converge).

Table 3. Experimental results – S-PMPP scenario. Energy consumption refers to a period of

210,000 simulated seconds (i.e., approximately 2.5 simulated days).

Approach

STATIC-∗ OUR-APPROACH-∗
SLO ENERGY TRADEOFF NM M

(%)

Per1 0.58 19.60 2.57 0.58 0.59

Eph1 0.89 33.89 4.17 0.90 0.90

SLO Per2 0.68 16.04 2.68 0.68 0.68

Violations Eph2 0.82 9.33 3.24 0.83 0.82

Per3 0.53 15.62 2.37 0.53 0.53

Eph3 0.47 11.57 1.84 0.47 0.47

Energy
(kWh)

TotEn 109.28 116.46 118.72 107.31 98.27

Consumption WastEn 0.70 20.65 3.23 0.69 0.63

By looking at the results reported in these tables, we can first observe that while both

OUR-APPROACH-M and OUR-APPROACH-NM practically result in identical values of

SLO violations for all the scenarios, the former always results in a more efficient usage

of physical resources. As a matter of fact, OUR-APPROACH-M always results in lower

values of TotEn metric: this means that the exploitation of VMmigration allows to both

save energy (lower TotEn values) and to better use the energy that is consumed (lower

WastEn values).

Let us now compare the performance of OUR-APPROACH-M against those attained

by the static policies.

As indicated by our results, STATIC-ENERGY and STATIC-TRADEOFF always re-

sult in higher values of SLO violations and energy consumption than OUR-APPROACH-

M. Furthermore, STATIC-ENERGY can be considered worse than STATIC-TRADEOFF



Table 4. Experimental results – S-MIX scenario. Energy consumption refers to a period of

210,000 simulated seconds (i.e., approximately 2.5 simulated days).

Approach

STATIC-∗ OUR-APPROACH-∗
SLO ENERGY TRADEOFF NM M

(%)

Per1 0.81 n/a 3.23 0.81 0.81

Eph1 0.79 n/a 3.14 0.79 0.79

SLO Per2 0.87 n/a 20.86 0.84 0.82

Violations Eph2 0.44 n/a 15.09 0.51 0.52

Per3 0.55 n/a 2.36 0.55 0.56

Eph3 0.65 n/a 2.75 0.65 0.66

Energy
(kWh)

TotEn 87.99 n/a 91.41 87.58 82.65

Consumption WastEn 0.63 n/a 7.12 0.65 0.58

since it results in a moderate improvement of (unit) energy consumption at the price of

much higher values of SLO violations. Therefore, we can conclude that our approach is

able to satisfy SLOs for a greater number of requests with a lower energy consumption

and, more importantly, without resulting in any penalty to be paid by the provider, than

these two static approaches.

The comparison with the STATIC-SLO policy needs more attention. First of all, we

can observe that OUR-APPROACH-M practically exhibits the same values of SLO viola-

tions than STATIC-SLO for all the scenarios. For this latter scenario, OUR-APPROACH-

M results in a higher number of SLO violations only for the Per1 application, while, for

the remaining applications, this metric practically exhibits the same values.

If, however, we look at the efficiency-related metrics, we can observe that OUR-

APPROACH-M always results in lower values of TotEn and WastEn than STATIC-SLO,

indicating that the former is able to consume less energy and to use physical resources

more effectively. Moreover, it is important to observe that STATIC-SLO, in addition to

be unrealistic, requires an overcommitment of resources, whereby a larger fraction of

CPU capacity is assigned to each VM regardless of the fact that this fraction will be

actually used by the VM. As a result, this implies that the number of VMs that can be

consolidated on the same PM is lower than those attained by our approach (that, instead,

allocates to each VM just the fraction of CPU capacity it needs). Therefore, STATIC-

SLO potentially requires, for a given number of VMs, a larger number of physical

resources than the our approach one, thus yielding a larger energy consumption.

4 Related Works

The problem of dynamically managing physical resources of a cloud infrastructure in

such a way to take into consideration both performance targets of hosted applications

and power consumption of the infrastructure has been studied in the literature only

recently.

In [17], a series of adaptive algorithms for dynamic VM consolidation are pro-

posed and evaluated. Unlike this work, our solution, has a decentralized architecture



and, through the combination of online system identification and VM migration, is able

to work with any type of workload.

In [18], a combined predictive and reactive provisioning technique is proposed,

where the predictive component estimates the needed fraction of capacity according to

historical workload trace analysis, while the reactive component is used to handle work-

load excess with respect to the analyzed one. Unlike this work, our solution, by means

of online system identification, is potentially able to work with any type of workload

without any prior knowledge.

In [19], an online resource provisioning framework is proposed for combined power

and performance management as a sequential multi-objective optimization problem un-

der uncertainty and is solved using limited lookahead control, which is a form of model

predictive control [20]. The key difference between this work and our approach is in the

type of the architectural design adopted: centralized for the former, and decentralized

for the latter. It is important to note that authors also show, via trace-driven simulation,

that the use of a feed-forward neural network can make their work potentially able to

scale to large systems. Unfortunately, the lack of details makes us unable to perform

any sort of comparison.

In [21], a two-layers hierarchical control approach is proposed. Even though this

work shares some architectural similarity with our framework, there are two important

differences; the first difference is in the way parameters of the black-box application

model (i.e., ARX) are computed (i.e., through offline identification), while the second

one is in the way CPU shares are assigned to application tiers (which is not well suited

for situations where tiers of different applications are hosted on the same PM).

Finally, in [22], a two-levels control architecture is proposed, where, unlike our ap-

proach, the achievement of performance targets is always subjected to the reduction of

power consumption; conversely, in our approach, the reduction of power consumption

is constrained to the achievement of performance targets.

5 Conclusions

In this paper, we presented a framework for automatically managing computing re-

sources of cloud computing infrastructures, in order to simultaneously satisfy SLO

constraints and reduce system-level energy consumption, that exploits VM migration

to obtain its goals. By means of simulation, we showed that, compared to traditional

static approaches, our framework is able to dynamically adapt to time-varying work-

loads (with no prior knowledge) and, at the same time, to significantly reduce both

SLO violations and energy consumption. Furthermore, we showed that VM migration

actually results in significant performance and energy consumption improvements over

situations where the same framework does not use VM migration.

There are several avenues of research that we plan to explore in the near future.

First of all, we would like to extend the framework to also take into consideration other

resource types (e.g., memory and disks) and system components (e.g. network routers

and switches). Furthermore, we would like to extend the framework in such a way to

enable it to manage federations of cloud infrastructures. Finally, we plan to integrate it

into a cloud management middleware in order to test it under real operating conditions.



References

1. Weiss, A.: Computing in the clouds. netWorker 11(4) (2007) 16–25

2. ENERGY STAR Program: Report to congress on server and data center energy efficiency.

Technical report, U.S. EPA (Aug 2007)

3. Guazzone et al., M.: Energy-efficient resource management for cloud computing infrastruc-

tures. In: Proc. of the 3rd IEEE Int. Conf. on Cloud Computing Technology and Science

(CloudCom’11). (2011)

4. Banks et al., J.: Discrete-Event System Simulation. 5th edn. Prentice Hall (2010)

5. Guazzone et al., M.: Exploiting VM migration for the automated power and performance

management of green cloud computing systems. Technical Report TR-INF-2012-04-02-

UNIPMN, University of Piemonte Orientale (April 2012)

6. Lee et al., J., ed.: Mixed Integer Nonlinear Programming. Volume 154 of The IMA Volumes

in Mathematics and its Applications. Springer Science+Business Media, LLC (2012)

7. Jeroslow, R.: There cannot be any algorithm for integer programming with quadratic con-

straints. Oper. Res. 21(1) (1973) 221–224

8. Yang et al., L.T.: Cross-platform performance prediction of parallel applications using partial

execution. In: Proc. of the 2005 ACM/IEEE Conference on Supercomputing (SC’05). (2005)

9. Wood et al., T.: Profiling and modeling resource usage of virtualized applications. In: Proc.

of the 9th ACM/IFIP/USENIX Int. Conf. on Middleware (Middleware’08). (2008) 366–387

10. Beloglazov et al., A.: A taxonomy and survey of energy-efficient data centers and cloud

computing systems. In Zelkowitz, M.V., ed.: Advances in Computers. Volume 82. Elsevier

(2011) 47–111

11. Fan et al., X.: Power provisioning for a warehouse-sized computer. In: Proc. of the 34th Int.

Symp. on Computer Architecture (ISCA’07). (2007) 13–23

12. Rivoire et al., S.: A comparison of high-level full-system power models. In: Proc. of the

2008 USENIX Conf. on Power Aware Computing and Systems (HotPower’08). (2008) 1–5

13. Standard Performance Evaluation Corporation: SPECpower_ssj2008 benchmark. Available:

http://www.spec.org/power_ssj2008

14. Le-Ngoc et al., T.: A Pareto-modulated Poisson process (PMPP) model for long-range de-

pendent traffic. Comput. Comm. 23(2) (2000) 123–132

15. Fischer et al., W.: The Markov-modulated Poisson Process (MMPP) cookbook. Perform.

Eval. 18(2) (1993) 149–171

16. Mi et al., N.: Injecting realistic burstiness to a traditional client-server benchmark. In: Proc.

of the 6th IEEE Int. Conf. on Autonomic Computing (ICAC’09). (2009) 149–158

17. Beloglazov et al., A.: Optimal online deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation of virtual machines in Cloud data

centers. Concurrency Comput. Pract. Ex. Accepted for publication.

18. Gandhi et al., A.: Minimizing data center SLA violations and power consumption via hybrid

resource provisioning. In: Proc. of the 2nd Int. Green Computing Conf. (IGCC’10). (2011)

19. Kusic et al., D.: Combined power and performance management of virtualized computing

environments serving session-based workloads. IEEE Trans. on Netw. and Serv. Manag. 8(3)

(2011) 245–258

20. Camacho et al., E.F.: Model Predictive Control. 2nd edn. Springer (2004)

21. Xiong et al., P.: Economical and robust provisioning of n-tier cloud workloads: A multi-

level control approach. In: Proc. of the 31st Int. Conf. on Distributed Computing Systems

(ICDCS’11). (2011) 571–580

22. Wang et al., X.: Coordinating power control and performance management for virtualized

server clusters. IEEE Trans. Parallel Distrib. Syst. 22(2) (2011) 245–259


