Capitolo I

Cinematica

§ 2.1 Moto in una dimensione

La cinematica studia i moti indipendentemente dalle loro cause. Il corpo soggetto al
moto e il punto materiale, una astrazione per cui si trascurano le dimensioni del corpo che
per 'appunto viene considerato puntiforme.

Si consideri innanzitutto il moto in una dimensione, cioe solamente lungo 'asse x: la

posizione del punto z = x(t) sara una funzione del tempo ¢

A X

-

o x0 x ) Xt

Se il punto materiale occupa la posizione z1 = z(t1) all’istante ¢; e la posizione zo = z(t2)
all’istante t9, allora nell’intervallo di tempo At = t5—t; lo spostamento del punto materiale

sara pari a Az = x5 — x1. Si definisce velocita media il rapporto

_ Az
Um =AY

La velocita media pero non € molto indicativa dello svolgimento del moto; se tuttavia si
prendono intervalli di tempo At sempre piu piccoli, si ottengono informazioni sempre piu
dettagliate. Si definisce allora wvelocita istantanea il limite per At che tende a zero (cioe

per intervalli di tempo infinitesimi) della velocita media

vi= lim 5% _ 42
CoAats0 At dt

cioe la velocita istantanea e la derivata prima dello spostamento rispetto al tempo.

11



14 Capitoilo 11

Essendo un rapporto fra uno spazio ed un tempo, la velocita ¢ una grandezza derivata,
e nel SI si misura in m/s.

Anche la velocita ¢ in generale una funzione del tempo v = v(t). Se all’istante ¢; la
velocita del punto materiale ¢ v = v(t1) e all'istante t5 & vo = v(t2), il rapporto fra la
variazione della velocita Av = vy — vy e Iintervallo di tempo At si definisce accelerazione

media
_Aav
At

Essa indica la variazione media di velocita nell’intervallo di tempo considerato. Anche

am

questa quantita non e di per se particolarmente significativa, ma di nuovo se si prendono
intervalli di tempo At sempre piul piccoli, si ottengono informazioni sempre piu dettagliate.
Si definisce allora accelerazione istantanea il limite per At che tende a zero (cioé per

intervalli di tempo infinitesimi) dell’accelerazione media

a; = lim & = d_v = d2_a:
Y oats0 At dt dt?
cioe ’accelerazione istantanea e la derivata prima della velocita rispetto al tempo, e quindi
la derivata seconda dello spostamento rispetto al tempo; essa indica la variazione istantanea
della velocita all’istante di tempo considerato.

Essendo un rapporto fra una velocitd ed un tempo, anche 1’accelerazione e una
grandezza derivata, e nel SI si misura in m/s.

Pure I’accelerazione & in generale una funzione del tempo a = a(t). Si potrebbe pensare
allora di proseguire costruendo il rapporto %T? e cosi sia. Si vedra pero trattando della
Dinamica che le cause del moto sono legate alla sola accelerazione, e quindi la conoscenza,
dell’accelerazione in funzione del tempo e sufficiente a ricostruire il moto di un corpo.

Nota Paccelerazione a(t) ad ogni istante, la velocita del punto materiale si ottiene per

integrazione diretta

o(t) = /ta(t’) dt’ + o

to

In questo modo ’andamento della velocita € noto a meno di una costante di integrazione:
quindi per determinare la velocita ad ogni istante ¢ € necessario conoscerne il valore vy ad
un preciso istante ty. Cid in quanto a = dv/dt & un’equazione differenziale del prim’ordine

e quindi richiede la conoscenza di una condizione iniziale.
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Data la velocita v(t) ad ogni istante, la posizione del punto materiale si ottiene con

una nuova integrazione

o(t) = /ttv(t') dt' + o

0

Di nuovo per determinare univocamente la posizione del punto € necessaria la conoscenza
della posizione xy ad un determinato istante o (non necessariamente lo stesso della velocita
vp): infatti anche v = dz/dt & un’equazione differenziale del prim’ordine e quindi richiede
la conoscenza di una condizione iniziale. In definitiva per determinare univocamente il
moto di un punto materiale a partire dall’accelerazione sono necessarie due condizioni

iniziali*.

2.1.1 Un esempio: la caduta dei gravi
Come primo semplice esempio si consideri la caduta libera di un grave sulla superficie
terrestre: il grave si muove con accelerazione costante pari all’accelerazione di gravita

g = 9.8 m/s?. Allora, supponendo che il corpo parta da fermo all’istante ty = 0 si ha
a(t)=g cost
t
v(t) :/ gdt' =gt
0

t t
1
0= [[awyae= [ o= Ly
0 0 2

L’andamento della velocita e lineare nel tempo, I’andamento dello spostamento € parabolico

t t t

Questo esempio sara ripreso con maggior rigore alla fine del capitolo.

* Dlaltra parte a = d? z/ de? & un’equazione differenziale del second’ordine, che per essere risolta richiede

la conoscenza di due condizioni iniziali.
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§ 2.2 Moto in una e in tre dimensioni con 1 vettori

In generale il moto di un corpo avviene nello spazio tridimensionale. Si consideri allora
una terna di assi cartesiani ortogonali: in questo sistema di riferimento la posizione istante
per istante del corpo puo essere indicata da un vettore r = r(¢), detto per 'appunto vettore

posizione, funzione del tempo

2.2.1 Moto lungo un asse

Si consideri prima un caso semplice, in cui il moto avviene lungo ’asse X: in questo
caso il vettore posizione giace sempre sull’asse delle ascisse. Se all’istante ¢; la posizione del
punto materiale & identificata dal vettore ry = r(t;1) e all’istante ¢o dal vettore ro = r(t2),
si puo definire il vettore spostamento Ar = ro — r1 che indica di quanto e in che direzione
si & spostato il punto in esame nell’intervallo di tempo At =ty — t;

P
; r
0 X
Ar
(per chiarezza i tre vettori sono disegnati separati, ma ovviamente devono essere pensati

tutti sullo stesso asse X ). In maniera analoga al caso unidimensionale, si definisce velocita

media il rapporto
_Ar
At

esso € ovviamente un vettore, essendo dato da un vettore (Ar) moltiplicato per uno scalare

Vm

(1/At), ed ha la stessa direzione e lo stesso verso di Ar cioé lungo ’asse X. Se poi si fa

tendere At a zero, da questo rapporto si ottiene la velocita istantanea

L Ar _ dr
ViT aiSo At dt
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la quale & anch’essa un vettore avente stessa direzione e stesso verso di r, ovvero lungo
I’asse delle ascisse.
All’istante t; la velocita del punto materiale sia v; e all’istante t5 sia vo. Sempre in

analogia al caso unidimensionale, il rapporto

_Av

am = At

viene detto accelerazione media, ed & un vettore avente la stessa direzione di v (e quindi
di r), e lo stesso verso di v se la velocitda mediamente aumenta nell’intervallo At, verso
opposto se la velocita mediamente diminuisce. Il limite per At che tende a zero e la
accelerazione istantanea

Av dv  d’r

a;= lim — = —=—
Y At>0 At dt de?
che ha anch’essa stessa direzione di v e r, e verso concorde oppure opposto al verso di v a

seconda che la velocitd aumenti o diminuisca all’istante ¢.

2.2.2  Caso generale
In generale il moto avviene lungo una curva generica (detta traiettoria del moto). E’
perd ancora possibile definire il vettore spostamento Ar = ro—ry,sery = r(t1) ers = r(t2)

sono le posizioni del punto materiale a due istanti ¢; e to

A

Il rapporto v,,, = %—It' esprime ancora la velocita media del punto materiale, ed & ancora

un vettore, anche se ora ha direzione indipendente da quella di r. Il limite per At che
tende a zero e ancora il vettore velocita istantanea v;; esso ha una direzione particolare:
si nota infatti che al tendere di At a zero, e quindi al tendere di ry verso ry, il vettore Ar

tende ad essere tangente alla traiettoria
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e in effetti & possibile dimostrare matematicamente che il vettore velocita istantanea e
sempre tangente alla traiettoria nel punto considerato

Per determinare 1’espressione esplicita del vettore velocita istantanea, si consideri che

Ar Ar As
A'2 = — = — —
™At As At
dove As e l'arco di traiettoria percorso dal punto materiale nell’intervallo di tempo At.

Ora al tendere di At a zero anche As tende a zero; ma

5 As
im — =
At—0 At ’

infatti questo limite e la velocita istantanea lineare, misurata cioe lungo la traiettoria.

Invece si puo dimostrare che

Iim — =7
As—0 As

dove T € un versore, ovvero un vettore di modulo unitario, tangente alla traiettoria nel
punto considerato (che |7| = 1 si pud anche intuire dal fatto che al tendere di As a zero,
Ar e As tendono ad avere la stessa lunghezza).

All’istante ¢; la velocita del punto materiale & rappresentata dal vettore vi = v(t1),
mentre all’istante to essa ¢ data dal vettore vo = v(t3). Si puo allora definire il vettore

variazione di velocitd Av = vy — vy

\Y
V1 1/

\ Av
V2
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e quindi il vettore accelerazione media a,, = %T‘tr: esso € un vettore avente la stessa

direzione e lo stesso verso di Av. Il suo limite per At che tende a zero e il vettore
accelerazione istantanea. Esso non ha una direzione particolare (a differenza del vettore
velocita istantanea che & sempre tangente alla traiettoria), ma & comunque sempre diretto
verso la concavita interna della curva.

Il vettore accelerazione istantanea si pud scomporre in due componenti: infatti si ha

dv d dv . dr

= —pi=—7

AT T a Tl

Ora ¢ possibile dimostrare matematicamente che la derivata del vettore 7 € pari a %fa, dove
4 € un versore diretto verso il centro di curvatura della traiettoria nel punto considerato e

R & il raggio di curvatura sempre nel punto in esame. Pertanto

il primo termine e I'accelerazione tangenziale ed esprime la variazione del modulo del vet-
tore velocita, il secondo e I’ accelerazione centripeta ed esprime la variazione della direzione

del vettore velocita

Infatti essendo la velocita un vettore, puo cambiare sia in modulo sia in direzione: le due

componenti dell’accelerazione rappresentano questi due contributi.

§ 2.3 Composizione dei moti

Finora si e considerato il caso di un punto materiale sottoposto ad un solo moto.
Tuttavia e possibile che uno stesso punto sia soggetto a pili moti contemporaneamente: in

questo caso il moto complessivo sara uguale alla somma dei moti componenti, ovvero la
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posizione ad un certo istante dovuta al moto complessivo € la stessa che il corpo avrebbe
se fosse sottoposto a tutti i moti componenti uno alla volta.

Un caso particolarmente importante & quello in cui il punto materiale ¢ soggetto a due
moti su uno stesso asse. In questo caso istante per istante si ha x(t) = z1(t) + z2(t); per

semplice derivazione si ottiene allora
v(t) = v1(t) + va2(t) e a(t) = ay(t) + as(t)

cioé cosi come i moti anche le velocita e le accelerazioni si sommano*.

§ 2.4 Moti particolari

2.4.1 Moto rettilineo uniforme
I1 moto rettilineo uniforme & caratterizzato dall’avere velocita costante come vettore,
v = cost: quindi integrando

t
r:/ vdt' = vt +rg

to

Il moto avviene quindi lungo una retta, data dalla direzione di v. Si tratta di un moto uni-
dimensionale, quindi per semplicita si puo scegliere uno degli assi del sistema di riferimento

lungo la direzione del moto: in tal modo le equazioni si semplificano in
v = cost

t
z(t) :/ vdt' = vt + xg

to

dove z( € la posizione del punto materiale all’istante .

2.4.2  Moto uniformemente accelerato
Nel moto uniformemente accelerato € invece il vettore accelerazione a mantenersi
costante, a = cost: quindi integrando

t
v:/ adt' = at + vy

to

* Cid non & pitt vero nella meccanica relativistica, cioé quando le velocitd in gioco sono comparabili

con la velocita della luce.
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t
1
r= / vdt' = Zat? + vot + 1o
to 2

Se vo ha la stessa direzione di a o se ¢ nullo, allora anche in questo caso il moto avviene
lungo una retta, data dalla direzione di a: infatti v pur mutando di modulo mantiene
la stessa direzione. Quando cio avviene, si puo scegliere uno degli assi del sistema di

riferimento lungo la direzione del moto: in tal modo le equazioni si semplificano in

a = cost

t
v(t) :/ adt’ = at + vy

to

t
1
z(t) = / vdt! = §at2 + vot + T

to

dove vy e zo sono rispettivamente la velocita lineare e la posizione del punto materiale
all’istante 2.

Nel caso particolare in cui vy = 0, cioe se il corpo parte da fermo, si hanno alcune
relazioni notevoli (si scelga opportunamente il sistema di riferimento in modo tale che sia

2o = 0): il tempo necessario a percorrere un tratto s & dato dalla soluzione dell’equazione

s = —at?
2
oVVero
28
t=1/—
a

mentre la velocita acquisita dal punto materiale dopo un tratto s &

/2
v=a —s:\/2as
a

Formule analoghe, ovviamente pit complesse, valgono nel caso in cui la velocita iniziale

non sia nulla.

2.4.3 Moto di un grave verso l'alto
Si e gia studiata ’equazione del moto di un grave in caduta libera verso il basso. Si
supponga ora di lanciare un grave verso 1’alto con una velocita iniziale vg: se si sceglie come

riferimento un asse verticale diretto verso ’alto e con 'origine nel punto in cui, all’istante
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Yy to = 0, viene lasciato il grave, ad ogni istante la velocita

del punto materiale sara data da

v =1vg — gt
Vo
e la posizione da
1
y = vot — 5gt’

Il grave inizialmente sale, con velocita sempre decrescente,
fino a fermarsi. E’ possibile determinare 1’altezza massima a cui sale: infatti a tale altezza

il grave si ferma, quindi v = 0; cio avviene all’istante ¢; = %0, il che corrisponde a

2
1vg

h=y(t) = 29

Quindi il grave comincia a cadere di moto accelerato. L’istante in cui ripassa per ’origine,
cioe per il punto dal quale era stato lanciato, si puo ricavare dall’equazione

1 2
y(tg) =0 — voly — 59?52 =0

.. . N . . c .. 2v Ca e
che ha due soluzioni, t5 = 0, che in realta corrisponde all’istante iniziale, e t5 = 70, cioe il

doppio di £1: pertanto il tempo t5 — t1 che il grave impiega a cadere dal punto di massima
altezza h al punto da cui era stato lanciato ¢ pari al tempo impiegato dal grave a salire
dal punto di lancio al punto di massima altezza. Inoltre la velocita che il grave possiede

quando ripassa dall’origine vale
v = v(l2) = vo — gla = —o

essa € pari in valore assoluto alla velocita con cui era stato lanciato, ed ha ovviamente
verso opposto.

Queste considerazioni verranno riprese discutendo dell’energia di un grave in caduta.
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2.4.4 Moto parabolico
Invece che verso ’alto, si supponga di lanciare un grave orizzontalmente con velocita
vg: esso sara sottoposto allora a due moti, uno rettilineo uniforme lungo ’asse X ed uno

rettilineo uniformemente accelerato lungo ’asse Y

y

Vo

gi "

Infatti 'accelerazione di gravita g agisce solo lungo la direzione delle ordinate e non ha
alcun effetto lungo le ascisse: quindi la componente X della velocita rimane costante.

Allora i due moti cui e sottoposto il punto materiale sono dati da

Vy = Vg ; T = vt
e
L
vy = —gt ; y=-—39

Per ottenere I’equazione della traiettoria e sufficiente eliminare la variabile ¢ dalle due
equazioni del moto: dalla prima si ottiene ¢ = /vy, che sostiuita nella seconda fornisce

lg , 2

=——=5z° =axr a<0
Y 2 02 )

si tratta quindi di una parabola passante per l'origine e avente la concavita rivolta verso
il basso.
Come caso pill generale, si supponga di lanciare il grave con una certa velocita vg

formante un angolo 9 con l'orizzontale
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in questo caso si ha la composizione di due moti rettilinei, uno uniforme lungo I'asse X
con velocita costante v, = vgcos?, ed uno uniformemente accelerato lungo ’asse Y con
velocita iniziale v, = vg sin ¥ diretta verso I'alto. Infatti anche in questo caso ’accelerazione
di gravita g agisce solo lungo la direzione delle ordinate e non ha alcun effetto lungo le
ascisse: quindi la componente X della velocita rimane costante. Allora i due moti cui e

sottoposto il punto materiale sono dati da

Vg = Vg cos Y : T =1vgcosy t

1
vy =vosind —gt ; y=wosindt— 59t2

Di nuovo per ottenere I'equazione della traiettoria e sufficiente eliminare la variabile ¢ dalle
due equazioni del moto: dalla prima si ottiene ¢ = x/vg cos ¥, che sostituita nella seconda
fornisce

1 g 2

_ 2
y_tanﬁx_ﬁ(vocosﬁﬁx =azr"+bxr , a<0

quindi nuovamente una parabola passante per l'origine e avente la concavita rivolta verso il
basso, ma con un tratto verso ’alto. In maniera analoga a quanto fatto nel caso del lancio
di un grave verso l'alto, € possibile determinare l’altezza massima raggiunta dal punto
materiale; inoltre & semplice ricavare I'ascissa del punto in cui il grave tocca nuovamente

terra (la cosiddetta gittata).

2.4.5 Moto circolare uniforme
Il moto circolare € quello seguito da un punto materiale che si muove su una circon-

ferenza di raggio R
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L’angolo ¥ = ¥(t) che il raggio vettore forma con la direzione positiva dell’asse delle X ¢
in generale una funzione del tempo. La sua derivata allora esprime la velocita angolare,
cioe il tasso di variazione dell’angolo ¥ (in perfetta analogia con la velocita lineare)

dd

w:E

Anche w = w(t) € in generale una funzione del tempo: si pud allora definire una accelera-
zione angolare come derivata nel tempo della velocita angolare (in analogia all’accelerazione
lineare)

dw d2¥

o= — =

dt — de?
Se pero il punto materiale descrive archi uguali in tempi uguali, ovvero se la velocita
angolare w € costante, allora il moto circolare e detto uniforme.
La velocita lineare del punto materiale sulla circonferenza & un vettore v sempre

tangente alla circonferenza e di modulo

ds d

quindi € un vettore di modulo costante. L’accelerazione poi ¢ un vettore diretto verso il
centro del cerchio: infatti la componente tangenziale dell’accelerazione € nulla, essendo
pari a a; = dv/dt 7, e dv/dt = 0 poiche il modulo della velocita & costante. Rimane quindi

la sola componente centrifuga, di modulo

Si noti che pur essendo un moto uniforme, la velocita non e costante e 1’accelerazione
non e nulla: infatti cio che e costante e solo il modulo della velocita, ma si tratta di un
vettore la cui direzione nello spazio varia da punto a punto, e quindi non € un vettore
costante; 'accelerazione poi ha solo componente centrifuga, il cui effetto ¢ appunto quello
di modificare la direzione del vettore velocita senza mutarne il modulo.

Se il moto circolare & uniforme, la velocita angolare w e costante, e pari a
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dove T ¢ il periodo, cioe il tempo necessario a compiere un giro completo; la velocita
angolare si misura in rad/s. Si definisce frequenza del moto circolare uniforme 'inverso del

periodo, ovvero il numero di giri completi nell’'unita di tempo

1 w

T o

2.4.6 Moto armonico
Il moto armonico ¢ il moto seguito da un punto materiale che ¢ proiezione di un punto

che si muove di moto circolare uniforme

y

Ad ogni istante quindi la posizione del punto e data da
z(t) = Rcos?¥ = R cos(wt)

Il massimo spostamento dall’origine e in valore assoluto pari a R, e prende nome di

elongazione del moto armonico. La velocita di questo moto si ricava da

dx

e quindi e sfasata con la posizione: dove la posizione e massima la velocita e nulla e

= — Rw sin(wt)

viceversa. Infine accelerazione &

dv

Si noti che ad ogni istante I’accelerazione ¢ proporzionale allo spostamento a meno di una

= —Rw? cos(wt) = —w?z(t)

costante negativa: si puo anzi dimostrare (per integrazione diretta) che ogni volta che un
moto e caratterizzato dall’avere un’accelerazione sempre proporzionale al suo spostamento
secondo una costante negativa, il moto € armonico.

Anche il moto armonico & caratterizzato da un periodo T, da una frequenza v = 1/T

e da una pulsazione w = 2mv.



