Capitolo IV

Lavoro e energia

§ 4.1 Lavoro

Si consideri una forza F costante che agisce per un tratto s rettilineo e parallelo ad

essa: si definisce lavoro della forza F lungo s il prodotto scalare
L=F-s=Fs
Se la forza & costante ma non parallela allo spostamento, si avra
L=F-s=Fscost

essendo ¥ ’angolo tra la direzione della forza e la direzione dello spostamento. Piu in
generale, se la forza non & costante, oppure se lo spostamento non é rettilineo, si consideri
un tratto infinitesimo ds lungo il quale la forza F si possa considerare costante; si definisce

lavoro elementare il prodotto scalare
dL=F -ds

e lavoro totale I'integrale lungo il cammino del lavoro elementare

L:/F-ds

Si noti che qui dL indica solo un lavoro infinitesimo e non il differenziale di una funzione;
per questo molti preferiscono indicarlo come dL .

In generale il valore di questo integrale, e quindi il lavoro totale, dipende dalla forma
del cammino, cioe dal percorso seguito per spostarsi dal punto di partenza al punto di

arrivo.
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Se l'integrale L e positivo si dice che la forza compie un lavoro motore sul corpo sulla
quale agisce, se ¢ negativo si dice che compie un lavoro resistente o anche che il corpo
compie lavoro contro la forza F.

Nel SI 'unita di misura del lavoro ¢ il joule, che ¢ il lavoro compiuto da una forza di
1 newton che sposta il suo punto di applicazione di 1 metro: 1J = 1N X 1m .

Come esempio si consideri la forza gravitazionale: se un peso di massa m cade sotto

I’azione della forza peso per un tratto h, il lavoro compiuto dalla forza peso € pari a

h h
L:/ F-dh:/ mgdh = mgh
0 0

Se invece la massa m cade lungo un piano inclinato lungo [ e alto h

si ha

l l
L:/F-dl:/Fsinadl
0 0

infatti F'sin « € la proiezione di F su [; quindi
L = Flsina = mglsina = mgh

si € cosl ottenuto lo stesso risultato della caduta verticale.

§ 4,2 Potenza

Se un certo lavoro L viene compiuto in un tempo At si definisce potenza media il

rapporto
L

At

Se poi si considera il lavoro infinitesimo dL compiuto nel tempuscolo infinitesimo dt, si ha

Wp, =

la potenza istantanea come rapporto

dL
dt



Lavoro € energia J9J

Nel SI la potenza si misura in watt: 1 watt € la potenza fornita da una forza in grado di

compiere il lavoro di 1 joule in 1 secondo, 1W = 1J/1s .

§ 4.3 Energia cinetica

Si consideri il lavoro compiuto da una forza F su un corpo di massa costante m

L:/F-ds

ora F =ma = m%—}’; per altro ds = vdt, quindi
L= md—v-vdt:/mdv-v
dt

giacché %—‘t’dt = dv . Ora per0 se si calcola il differenziale di v - v si ha
dv-v)=dv-v+v-dv=2v-dv
essendo il prodotto scalare commutativo; ma si ha pure
d(v-v) =d(v?) = 2vdv

dove v & il modulo di v. Pertanto

L:/mdv-v:/mvdv

Se v ¢ la velocita del corpo nel punto iniziale (dove cioé comincia il cammino di inte-
grazione) e vs € la velocita nel punto finale (dove finisce il cammino di integrazione), allora

2 v2 1 1
L:/ F-ds:/ mudv = —muv3 — —muv?
1 v 2 2

La quantita K = %mv2 prende nome di energia cinetica. 1l calcolo appena svolto mostra
che il lavoro compiuto da una forza su un corpo di massa m € pari alla variazione della
sua energia cinetica: & questo il teorema dell’energia cinetica (o teorema delle forze vive,
giacché la quantitd 1/ mv? era un tempo detta forza viva del corpo, nome oramai caduto

in disuso).
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Questa relazione ¢ molto importatnte in quanto consente di legare il lavoro di una
forza, che puo essere complicato da calcolare, ai soli stati iniziale e finale del sistema:
conoscendo la velocita prima e dopo & possibile determinare il lavoro compiuto dalla forza.

Se la forza compie un lavoro motore, L € positivo e quindi il corpo aumenta la propria
velocita; viceversa se il lavoro e resistente, L € negativo e il corpo rallenta. Questa osser-
vazione fornisce una interpretazione molto importante del concetto di energia: essa puo
essere vista come la capacita di compiere un lavoro. Se una forza agisce su un corpo di
massa m portandolo da fermo ad una velocita v, sul corpo € stato compiuto un lavoro L da
parte della forza, e il corpo risulta possedere una energia cinetica K = 1/, mv2. Il corpo ha
cosi immagazzinato la capacita di compiere un lavoro: infatti se successivamente il corpo
compie un lavoro contro un’altra forza fino a fermarsi, ha speso questa energia compiendo
un lavoro L pari alla sua energia cinetica. Se invece di fermarsi, passa da una velocita v
ad una v’ < v, ha speso solo parte della sua energia, e la restante parte resta accumulata
e pronta a compiere nuovo lavoro. Allo stesso modo se una forza compie un lavoro su un
corpo aumentandone la velocita, aumenta anche ’energia accumulata nel corpo, che quindi
puo compiere un lavoro maggiore.

Come esempio, si consideri un grave che cade in caduta libera verticale di un tratto h

partendo da fermo: allora il lavoro compiuto dalla forza peso e
h h
L:/ mg-ds:/ mgds = mgh
0 0
la velocita iniziale e v; = 0, e la velocita finale & vy = v/2gh, quindi
1
= Em(Qgh) = mgh

cioe la variazione di energia cinetica e pari al lavoro della forza peso.

§ 4.4 Potenziale

Come si & detto, in generale il lavoro compiuto da una forza dipende dal cammino
lungo cui ci si muove dal punto iniziale al punto finale. Ci sono pero dei casi in cui il lavoro

in realta dipende solo dalla posizione iniziale e dalla posizione finale e non dal modo in cui
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ci si sposta da una all’altra posizione. Una forza il cui lavoro non dipende mai dal percorso
ma solo dai punti iniziale e finale si dice conservativa. Matematicamente questo implica
Iesistenza di una funzione U tale che

B
L:/A F.ds = U(B) — U(A)

ovvero il lavoro & pari alla variazione di questa funzione fra i punti iniziale e finale. Si dice

anche che il lavoro (infinitesimo) & un differenziale esatto

B
b= "
A

Spesso pero si preferisce avere il lavoro espresso come differenza fra il valore di una
data funzione nel punto iniziale e il valore di tale funzione nel punto finale

B
L:/A F.ds = V(4) - V(B)

Evidentemente basta porre V = —U : tale funzione prende il nome di energia potenziale

della forza conservativa F. L’energia potenziale in un punto A é data quindi da
A
V(A) = V(0) —/ F - ds
o
Si noti come l’energia potenziale (come per altro anche la funzione U) dipende sempre
da una costante arbitraria: infatti attraverso l’integrale L si possono conoscere solo le
variazioni dell’energia potenziale, non il suo valore assoluto. D’altra parte poiché I’'integrale
non dipende dal percorso la costante V(0O) & sempre la stessa, e quindi puo essere fissata

una volta per tutte, e di solito si sceglie per comodita un valore nullo, V/(O) = 0 : con tale

scelta allora
A
V(A) = - / F -ds
0

Ora il lavoro di una forza tra i punti A e B vale

o L o 1,
L:/ F-ds=-mvy — -mv; = Ky — K;
A 2 2

ma se la forza ¢ conservativa si ha anche

L:/BF-ds:V(A)—V(B):Vi—Vf
A
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quindi
KK, =V, -V,

e pertanto

K,+Vi=K;+V;
ovvero la somma delle energie cinetica e potenziale si mantiene costante. La quantita
EFE=K+V

prende nome di energia meccanica : pertanto se la forza € conservativa I’energia mecca-
nica si conserva. Se la forza compie lavoro, ’energia cinetica aumenta a spese dell’energia
potenziale, e viceversa se il corpo compie lavoro contro la forza. Questa legge di conser-
vazione e di somma importanza, sia teorica che pratica, e consente la risoluzione di molti
problemi.

Se la forza in questione € conservativa, si ha un’altra importante conseguenza: dati
due cammini che hanno i punti di inizio e fine in comune, il lavoro lungo il cammino 1 &

uguale al lavoro lungo il cammino 2

B B
B / F-ds:/ F-ds
A () A (2)

e quindi

B B
F-ds—/ F-ds=0
A /,4(1) A (2)

Ma lintegrale da A a B lungo il cammino 2 e uguale

all’integrale cambiato di segno da B ad A sempre lungo il cammino 2

B A
/ F-ds:—/ F-ds
A (2) B (2)

B A
/ F-ds+/ F-ds=0
A (1) B (2)

ma questo non € nient’altro che I'integrale calcolato lungo il cammino chiuso identificato

Pertanto rimane

dai due percorsi 1 e 2: se ne deduce pertanto che se la forza € conservativa, il lavoro lungo

%F-ds:o

un qualsiasi cammino chiuso € nullo
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4.4.1 Lavoro della forza peso

Come esempio si consideri il lavoro di una forza costante quale la forza peso. Si fissi
un sistema di riferimento avente ’asse Y verticale e diretto verso 'alto. Si lasci cadere
verticalmente una massa da una altezza y;; quando arriva ad un’altezza y» < y; il lavoro

della forza peso sara

Y2 Y2 Y2 Y2
L:/ F-ds:/ Fds:/ mgds:—/ mgdy = mg(y1 — y2) = mgh

Y1 Y1 Y1 Y1

con h = y; — y2 , e considerando che F e ds sono paralleli e ds = —dy per come é stato
orientato 1’asse Y.

L’energia potenziale & data da

V() = Vi) = [ F-ds = Vi) - myuo - )

Yo

Per fissare la costante si suole porre a 0 ’energia potenziale alla quota y = 0 : allora deve

essere
V(0) =0=V(yo) — mgyo
da cui V(yo) = mgyo , e quindi
V(y) = mgy
Il moto e rettilineo uniformemente accelerato, e la velocita che la massa assume dopo

un tratto h € v = /2gh : pertanto la sua energia cinetica ¢
L
K, =0 , K,, = g = mgh
e quindi AK = AV, e anche
K;+V; =0+ mgy1 = mgh +mgy, = K¢y + V¢

mentre la massa cade parte della sua energia potenziale si converte in energia cinetica.

Invece che in verticale, si lasci cadere la massa lungo un piano inclinato formante un

ds FD\
Fyo o

angolo « con l'orizzontale
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In questo caso il lavoro compiuto dalla forza peso lungo tutto il piano inclinato vale
! ! !
L= / F-ds= / Fds cos(90 — o) = / Fds sina = mglsina = mgh
0 0 0

essendo F'sin ¢ la proiezione della forza lungo lo spostamento, come & immediato verificare

da semplici considerazioni trigonometriche. Si noti che il lavoro lungo il piano inclinato

D’

uguale al lavoro lungo la verticale: infatti la forza peso, come tutte le forze costanti,

D’

conservativa e quindi il lavoro non dipende dal percorso ma solo dalle quote iniziale e
finale. L’accelerazione in questo caso e g sin «, e quindi la velocita finale € v = \/2¢gsina [ ,
da cui

2

1
K; = Emv = mglsina = mgh

In maniera analoga al caso precedente si ricava la conservazione dell’energia.
Se poi il grave viene lanciato verticalmente verso I’alto dalla quota y; = 0 con velocita
v;, ad ogni istante della sua salita si ha

1 1
imvz + mgy = §mvz~2 +0

e poiché y > 0 deve essere v < v; : il corpo rallenta mentre sale verso I'alto. Ad un certo

punto dovra allora fermarsi: cio avviene quando

[\3|@
Q [co

1
mgymaz = §m'Uz2 - Ymaz =

Il corpo non puo salire pil in alto: infatti se ¥y > ¥,,42 Si avrebbe %m’u2 + mgy > %mvf e

quindi %mv2 < 0 il che e ovviamente assurdo. Quindi mentre il corpo sale aumenta la sua
energia potenziale a spese della sua energia cinetica, finché questa si esaurisce. A questo
punto il corpo inizia a scendere ritrasformando ’energia potenziale in energia cinetica.

Quando ripassa per il punto y = 0 la sua velocita e tale che

1 1
imv2 +0= Emvf

il che implica v = v; . Si osservi come siano state dedotte da sole considerazioni energetiche
tutte le proprieta del moto gia a suo tempo determinate da considerazioni cinematiche:

queste ultime sono in genere piu complesse (ad esempio, avevano richiesto la conoscenza
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dell’istante in cui il corpo si arresta o ripassa per 'origine), mentre le considerazioni ener-

getiche sono spesso pill semplici e immediate.

4.4.2 Potenziale elastico

Come secondo esempio si consideri la forza elastica F' = —kx : e possibile dimostrare
matematicamente che anche una forza di questo tipo e conservativa e quindi ammette
potenziale. Si fissi un sistema di riferimento avente 1’asse X nella direzione del sistema

massa-molla e con l'origine nella posizione di riposo della massa

k m

|

O X

Quando la massa si sposta dalla posizione z; alla posizione x4 il lavoro della forza elastica

) T2 T2 1
L:/ F-ds:/ Fds:/ (—kx)dxzik(aﬁ—x%)
x

1 T 1

¢ dato da

considerando che F e ds sono paralleli. Questo lavoro € positivo se x1 > z3, cioe se la
molla si porta verso la posizione di equilibrio, ed € negativo se x; < x3: nel primo caso
e infatti la molla che compie lavoro, mentre nel secondo si compie lavoro contro la forza
elastica per allungare ulteriormente la molla.

La forza elastica ammette potenziale perché il lavoro dipende solo dalle posizioni
iniziale e finale della massa, ovvero dall’allungamento della molla, e non da come avviene
lo spostamento. L’energia potenziale ¢ data da

T

V(z) = V(o) — / F.ds = V(x) + %k(ﬁ _a2)

Zo

Per fissare la costante si suole porre a 0 I’energia potenziale nella posizione z = 0 : allora

deve essere

1
V(0)=0=V(xg) — ikxg

da cui V(zg) = lkm% , e quindi

1
V(z)= 5]6:132
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Il moto e oscillatorio armonico; se la massa viene spostata nella posizione x,,,, € poi

lasciata libera, ad ogni istante 1’energia meccanica varra
Lo o, 1. o
E=K+V= g +§k$

in particolare ogni volta che la massa arriva nella posizione di massimo allungamento essa
vale

max

1

mentre nella posizione intermedia x = 0, dove la velocita € massima,

si puo cosi determinare il modulo della velocita massima
k
"Umaa:‘ = _‘-'Emaa:‘
m

4.4.3 Conservazione dell’energia totale

Si & dimostrato che ’energia meccanica si conserva: questa € infatti una legge. Tut-
tavia oltre all’energia meccanica ci sono altre forme di energia, termica, elettrica, nucleare,
eccetera, come si vedra meglio in seguito. Ci sono situazioni in cui l’energia meccanica
non si conserva; ma se ad essa si sommano gli altri tipi di energia si osserva come questa
quantita, che prende nome di energia totale rimane conservata. Si puo allora enunciare
il principio di conservazione dell’energia totale, secondo cui la somma di tutti i tipi di
energia si conserva in qualsiasi caso. Esso € un principio, in quanto non & sempre possibile
tener conto di tutti i possibili contributi; né si puo escludere che esista una qualche forma
di energia non ancora nota che non rispetta questa conservazione. Cionondimeno finora
in tutti gli esperimenti effettuati si ¢ sempre verificata tale conservazione: essa quindi
viene assunta come principio, valido finché non si sia dimostrata, direttamente o indiretta-
mente, la sua non validita. Quale esempio si consideri che I'esistenza del neutrino & stata
supposta dai fisici sulla sola base della conservazione dell’energia in reazioni nucleari che

apparentemente sembravano violarla.
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Le leggi di conservazione, come quelle dell’energia meccanica e della quantita di
moto, sono dette anche integrali primi del moto: esse infatti aiutano nella risoluzione
delle equazioni del moto. Per esempio, ’energia cinetica contiene la velocita, e quindi
sotto certe condizioni puo essere possibile ricavarne un’espressione dalla conservazione
dell’energia senza risolvere esplicitamente le equazioni del moto: quindi in un certo senso

si “salta” una integrazione.

4.4.4 Studio dei grafici del potenziale
Dalla forma dei grafici del potenziale € possibile ricavare utili informazioni sul tipo
di moto, anche senza risolverne le equazioni. Si consideri come esempio il potenziale della

forza elastica, che € rappresentato dalla parabola

V
Vi(z) = %ka \

Se Fi, e l'energia meccanica totale della massa EtOt

in oscillazione, dalla sola osservazione del grafico

si evince che il moto e limitato tra le posizioni

x = —a ez = +a: infatti al di fuori di esse ’energia

potenziale € maggiore dell’energia totale, il che im-

plicherebbe una energia cinetica negativa. Il valore di a ¢ dato da

2F 0t
k

1
Eiot = 5ka2 = =+

Quando il corpo si trova alla sua massima distanza dalla posizione centrale, ¢ fermo e
possiede solo energia potenziale; quindi comincia a muoversi verso il centro guadagnando
energia cinetica a spese della sua energia potenziale. Giunto nella posizione di mezzo z = 0

raggiunge la sua massima velocita, in modulo pari a

2E ot
m

1
— 2 —
Eior = imvmaz = Umaz =

Da qui prosegue il moto rallentando, perdendo cioe energia cinetica per guadagnare energia
potenziale, fino a fermarsi nella posizione di massimo allontanamento. Dopodiché il moto
riprende in senso inverso. Si tratta quindi di un moto oscillatorio intorno alla posizione di

equilibrio.
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Si noti quante informazioni, qualitative e quantitative, siano state estratte dalla sola
osservazione della forma del potenziale e dalla conoscenza dell’energia totale senza risolvere

le equazioni del moto. In casi pit complessi questo tipo di analisi € molto utile.

§ 4.5 Attrito

Finora sono stati visti esempi di forze conservative. Un esempio molto importante
di forze non conservative e rappresentato dalle forze di attrito. Si tratta di forze che si
oppongono al moto e sono causate dallo sfregamento di due superfici (in senso lato) che
scorrono una sull’altra.

Una forma di attrito € quella che si presenta quando le superfici di due solidi sono poste
a contatto. Per quanto sia liscia infatti la superficie di un solido presenta microscopiche as-
perita; queste asperita si incuneano le une nelle altre impedendo uno scivolamento agevole
tra le due superfici.

Nel moto fra due solidi a contatto si distingue un attrito statico ed un attrito dinamico.
Il primo si manifesta quando un corpo appoggiato su una superficie inizia a muoversi: esso si
oppone infatti all’iniziare del moto. Teoricamente dovrebbe bastare una piccolissima forza
per mettere in moto un corpo; ma € esperienza comune che per muovere un corpo fermo
occorre applicargli una certa forza e che forze di minore intensita non sono sufficienti. La

forza di attrito statico € proporzionale al peso del corpo ma non alla superficie di contatto

F; = ksmgn

dove n & un versore parallelo alla superficie e kg € il cosiddetto coefficiente di attrito statico.
Per misurarlo si puo utilizzare un piano inclinato il cui angolo di inclinazione puo essere
variato a piacere: si parte dal piano in posizione orizzontale e se ne aumenta ’inclinazione;
nell’istante in cui il corpo inizia a muoversi, la componente della forza peso F'sina e
pari alla forza di attrito statico. Noto il peso del corpo si ricava il coefficiente di attrito
statico. In alternativa puo essere usato un dinamometro, misurando direttamente la forza
necessaria per compensare 1’attrito statico. Il coefficiente kg dipende dai corpi in contatto

e dalla condizione delle superfici.
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Una volta che il corpo ¢ in moto, su di esso agisce una forza di attrito dinamico.

Anch’essa € proporzionale al peso del corpo ma non alla superficie di contatto
Fd = kdmgn

dove n & un versore parallelo alla superficie e kg € il cosiddetto coefficiente di attrito
dinamico. E’ sempre kg > kg : € facile verificare infatti che una volta messo in moto un
corpo, per mantenerlo in movimento occorre applicargli una forza minore di quella che era
stata necessaria per iniziare il moto. Per misurare kg si puo usare lo stesso piano inclinato
oppure lo stesso dinamometro, misurando la forza necessaria a mantenere il corpo in moto
rettilineo uniforme.

L’attrito € un esempio di forza dissipativa: essa si oppone sempre al moto tendendo a
diminuire ’energia cinetica. Questo tipo di forze non ammette potenziale. Per verificarlo
si calcoli il lavoro della forza di attrito (dinamico) lungo due cammini diversi, una retta

ed una semicirconferenza, da uno stesso punto A ad uno stesso punto B distanti [

ds

M

ds

A F, B

Il lavoro della forza di attrito lungo il cammino rettilineo & dato da

B B
L, = / F;-ds= / —kgmgdl = —kgmg 1
A A

tenendo presente che F; e ds sono sempre paralleli e diretti in verso opposto, quindi 9 = 180
e cosY = —1 ; inoltre ff dl =1 . Il lavoro della forza di attrito lungo la semicirconferenza

¢ invece dato da

B B -
Ly = / F,-ds= / —kgmgdl = —kgmg =l
A A 2

tenendo presente che Fy e ds sono sempre paralleli e diretti in verso opposto, quindi
¥ = 180 e cos®¥ = —1 ; inoltre ff dl = 7l/2 , cioé la lunghezza della semicirconferenza.
E’ evidente che L, # Ly : pertanto il lavoro della forza di attrito dipende dal cammino

di integrazione, e quindi la forza di attrito non puo essere una forza conservativa. Una
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dimostrazione alternativa, ma del tutto equivalente, consiste nel dimostrare che il lavoro

della forza di attrito lungo un cammino chiuso non & nullo.

§ 4.6 Urti elastici

Si consideri nuovamente I'’esempio, esaminato alla fine del precedente Capitolo, dei
due carrellini tenuti insieme da una molla. Si & visto come la conservazione della quantita

di moto imponga che le due velocita siano opposte e inversamente proporzionali alle masse
mM1V1 = —MaV9

Questa relazione da sola non & pero sufficiente a determinare i valori delle velocita. Occorre
aggiungere la conservazione dell’energia: inzialmente le due masse sono ferme e la molla
e contratta di un tratto x; successivamente le masse hanno velocita v; e vy e la molla e

libera. La conservazione dell’energia meccanica impone quindi che si abbia

1 1 1
5]4:372 = imlvf + §m2v§

Queste due equazioni devono essere soddisfatte contemporaneamente: quindi la soluzione

del sistema di due equazioni in due incognite

mi1v1 —+ MoV = 0

1 2,1 2 _ 11,2 _
5M1v7 + 3mavy — sk =0

permette di determinare i valori delle velocita.
Si abbia un corpo puntiforme di massa mi e velocita vy che va ad urtare una seconda

massa puntiforme mso inizialmente ferma

m, m,
o— [ ] o— o—
Vo Vi Vo

Siano vy e vs le velocita finali delle due masse. Dovendosi conservare la quantita di moto

e l’energia totale (che in questo caso & solamente energia cinetica, giacché il moto avviene
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su un piano orizzontale), si hanno le due equazioni
M1Vg = M1V1 + M2V2

1 2 _ 1 2 .1 2
5M1Vy = 3M1V7 + 5M2v;

E’ sufficiente esplicitare vy dalla prima equazione e sostituirla nella seconda per ottenere

mi + mo
v = ——1
mi1 + mo

La soluzione col segno + non & fisicamente accettabile, perché vorrebbe dire v; = vg e di

conseguenza vy = 0 , cioe¢ come se I'urto non fosse avvenuto. Si ha quindi

nmy1 — Mo
V= ———70¢
mi + Mo
e quindi
2m1
Vo = —— ¢
mi + Mo

In particolare se m; = ms9 la prima massa si arresta e la seconda riparte con la stessa
velocita. Se invece my — oo, allora € v1 = —vg e v9 = 0 : la seconda massa rimane ferma
mentre la prima rimbalza sulla seconda e torna indietro con la stessa velocita (in modulo).

Queste equazioni si possono generalizzare al caso in cui anche mg sia inizialmente in

moto con velocita v : in questo caso si ha
mivg + mw() = M1v1 + M2av2

1 2 1 12 __ 1 2 1 2
5M1V; + 5M2Vy" = 53M1V] -+ 5MaV3

Se le masse non sono puntiformi, occorre considerare anche le loro dimensioni. Se le
velocita iniziali delle due masse giacciono sulla congiungente dei loro baricentri, si parla
di urto centrale: in questo caso si possono applicare le stesse considerazioni delle masse
puntiformi. Altrimenti si parla di urto periferico: si deve allora tener presente il carattere
vettoriale della quantita di moto, ed eguagliare sia le componenti longitudinali che le

componenti trasverse
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