Capitolo VI

Interazione gravitazionale

§ 6.1 Leggi di Keplero

L’idea che la Terra non fosse al centro dell’Universo era gia affiorata presso alcuni
astronomi dell’antica Grecia. Ma I’affermarsi delle concezioni aristotelica e tolemaica porto
a ritenere che la Terra fosse indubitabilmente al centro dell’Universo, nonostante questa
teoria avesse delle difficolta a dare spiegazione di alcuni importanti fenomeni celesti (come
il moto retrogrado dei pianeti in alcuni periodi dell’anno).

La concezione eliocentrica non fu perdo del tutto abbandonata, venendo ripresa tra
l'altro da Copernico che ne ipotizzo la validita (ancorché come puro modello descrittivo)
nella sua maggiore opera (pubblicata postuma per prudenza).

L’osservazione del Cielo e la determinazione della posizione delle stelle fu portata
avanti per molti secoli. Uno dei piu grandi osservatori e misuratori fu senza dubbio Ty-
cho Brahe, che ad occhio nudo (il telescopio sarebbe stato inventato piu di un secolo
dopo) misuro con estrema precisione la posizione e lo spostamento dei cinque pianeti al-
lora conosciuti, Mercurio, Venere, Marte, Giove e Saturno.

Questa enorme e preziosissima mole di dati passo al suo allievo, Keplero, che la analizzo
a fondo. Egli si accorse che questi dati trovavano una semplice ed efficace spiegazione se si
ipotizzava che fosse la Terra a ruotare intorno al Sole e non viceversa. Il risultato di questo
lungo lavoro di analisi fu la formulazione di tre leggi (dette appunto leggi di Keplero) di
natura sperimentale. Esse affermano che

1) ogni pianeta compie un’orbita ellittica nella quale il Sole occupa uno dei due fuochi

(in realta le orbite sono molto poco ellittiche, e per molti scopi pratici possono essere
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considerate circolari)

2) il raggio vettore che congiunge il pianeta al Sole spazza aree uguali in tempi uguali

(come conseguenza il pianeta si muove piu velocemente quando € piu vicino al Sole e
piu lentamente quando & piu lontano)
3) il rapporto fra il quadrato del periodo di rivoluzione T e il cubo del semiasse maggiore

dell’orbita a € lo stesso per tutti i pianeti

2

— = cost
a3

§ 6.2 Legge di Newton

Keplero non fu in grado di spiegare perché i pianeti del Sistema solare seguissero le
leggi da lui formulate. Il problema fu ripreso da Newton, il quale pervenne alla legge che
porta il suo nome. Egli perdo ando oltre, giacché ritenne che la forza che attrae fra loro
due corpi celesti e la stessa che attira la Terra e la Luna, che trattiene i corpi sulla Terra,
e che si esercita in generale fra due corpi materiali.

Date due masse puntiformi (ovvero le cui dimensioni sono trascurabili rispetto alla
loro distanza), la legge di Newton, o legge di gravitazione universale, afferma che essi si
attraggono con una forza che ha per direzione la congiungente i due corpi e verso attrattivo;
il modulo di tale forza e proporzionale alle due masse e inversamente proporzionale al

quadrato della loro distanza

Caratteristica di questa forza & di essere solo attrattiva. Essa dipende da una proprieta di
ciascun corpo che e detta massa gravitazionale. In linea di principio essa potrebbe essere

diversa dalla massa inerziale, che si rivela quando una forza applicata ad un corpo ne
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provoca una accelerazione. Gia Newton si pose il problema, e condusse degli esperimenti
per cercare di rivelare una differenza fra le due, senza riuscirvi. Esperimenti di questo
genere sono stati ripetuti piu volte nella storia, dando sempre come risultato che il rapporto
massa inerziale-massa gravitazionale ¢ lo stesso per tutti i corpi, il che € come dire che
sono la stessa cosa, giacché la costante di proporzionalita puo essere riassorbita nelle unita
di misura. Pertanto si puo parlare di massa di un corpo senza ambiguita.

La costante G esprime la proporzionalita fra la forza, le masse e la distanza, ed & detta
costante di gravitazione universale. Essa vale G = 6.67-10~11 Nm?2/kg?, un valore molto
piccolo: infatti la forza di gravita e la piu debole delle forze conosciute. Per misurare forze

cosi piccole occorre uno strumento molto sensibile, la bilancia di Cavendish

Si tratta di due piccole sfere di piombo fissate ad un manubrio in grado di oscillare, che
sono attratte da due sfere di piombo piu grandi. Misurando il periodo di oscillazione si
puo risalire alla forza di attrazione e da questa, essendo note le masse, alla costante G.
Se invece di due masse se ne hanno n, la forza di attrazione gravitazionale puo essere
calcolata mediante il principio di sovrapposizione: la forza risultante su una massa e la
somma (vettoriale ovviamente) delle forze generate da ciascuna massa presa separatamente.
La legge di Newton come espressa vale in realta per masse puntiformi. Se le masse
non sono puntiformi, e sufficiente scomporle in porzioni infinitesime, che possono pertanto
essere considerate puntiformi. Si calcola quindi la forza di attrazione infinitesima fra ogni
coppia di porzioni e si integra su entrambe le masse: in questo modo € possibile ricavare
(almeno in linea di principio, dato che il calcolo esplicito potrebbe essere assai complesso)

la forza di attrazione fra due corpi di forma ed estensione qualsiasi.
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6.2.1 Deduzione della legge di Newton

L’assunto fondamentale di Newton & che la forza di attrazione gravitazionale sia una
forza centrale, cioé una forza diretta sempre verso un punto determinato, il Sole nel caso
del Sistema solare o in generale il corpo che esercita la forza. E’ possibile dimostrare che
il moto generato da una forza centrale giace su un piano: infatti si consideri un corpo in
moto sotto I’azione di una forza centrale, che quindi ha direzione sempre rivolta verso un

punto fisso

m

I vettori posizione r e velocita v identificano un piano ad un certo istante. In questo istante
il momento della quantita di moto e dato da 7 = p A r, e la sua derivata, come si e visto
nel Capitolo precedente, vale

dr

T _M=FA
dt g

ovvero ¢ pari al momento della forza. Ma questo momento & nullo, giacché F e r sono
paralleli. Quindi il momento della quantita di moto & costante nel tempo. Ora ad ogni
istante questo momento e perpendicolare al piano identificato da v e r: se il punto uscisse da
tale piano, il momento della quantita di moto sarebbe ortogonale al nuovo piano identificato
da v e r e non piu al precedente, ma cio € impossibile, perché 7 & costante. Quindi il moto
deve svolgersi sempre nello stesso piano.

Mediante calcoli piu complicati si pu¢ dimostrare che il moto di un punto materiale
sottoposto ad una forza centrale & sempre rappresentato da una conica; per valori partico-
lari dell’energia il moto & una ellisse (o come caso particolare una circonferenza) con uno
dei fuochi coincidente con la sorgente della forza. Quindi I’aver supposto la forza di tipo
centrale spiega la prima legge di Keplero (e con opportuni calcoli anche la seconda).

Newton poi utilizzo la terza legge di Keplero per determinare il modulo della forza.
Per semplicita si supponga che il moto sia circolare; allora la forza centripeta € pari a

2
2
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dove T ¢ il periodo di rivoluzione del corpo. Ora la terza legge di Keplero puo essere

riscritta come T2 = Kr? (il semiasse diventa il raggio della circonferenza), e sostituendo

472\ m m
F=("2)Z k=
(K)r2 72

quindi si trova una dipendenza dall’inverso del quadrato della distanza. Si puo poi mostrare

si ottiene

che la costante k (ovvero K) dipende dalla massa del Sole, ottenendo cosi la forma esplicita

della legge di Newton.

6.2.2 Gravita terrestre
La forza con cui la Terra attira un corpo di massa m € data da

mMT

Fr=G
T R%

giacché la distanza fra i due corpi € praticamente sempre uguale al raggio terrestre Rr.

Pero la forza peso cui la massa € sottoposta vale
Fp =mg

Essendo ovviamente uguali le due forze, si ricava

Mr

9=G—5
RY

espressione che lega 1’accelerazione di gravita alla massa e al raggio della Terra. Essa

permette di ricavare la massa della Terra una volta che ne sia noto il raggio

9
MT == ER’%

§ 6.3 Campo e potenziale gravitazionale

La forza che si esercita fra due masse puntiformi dipende dalla loro distanza e
dall’entita delle masse. E’ conveniente isolare il contributo della sorgente del campo dalla
massa che ne sente 'influenza. Si definisce cosi il campo gravitazionale, che ¢ dato dalla

forza per unita di massa
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anch’esso € un vettore sempre diretto verso la sorgente, il cui modulo vale

Gy =GL
r

Pertanto in ogni punto dello spazio risulta definito un vettore che esprime ’'intensita del
campo prodotto dalla massa m; (anche se fisicamente tale intensitd pud essere misurata
solo ponendo nel campo una seconda massa, detta per questo massa sonda, e osservando
la forza esercitata su di essa).

E’ possibile dimostrare che una forza centrale e conservativa: quindi pure la forza
gravitazionale ¢ conservativa e ammette potenziale. Per ricavarne un’espressione ¢ suffi-

ciente calcolare il lavoro della forza gravitazionale per spostare una massa mg nel campo

generato da una massa m da un punto A a distanza ro ad un punto B a distanza r

si ha allora
B

V(B) = V(A) -/A F-ds

ma il prodotto scalare F - ds € dato dalla proiezione di ds su F, e tale proiezione e diretta
quindi lungo r ed & pari a —dr (per come & orientato r): allora

B
mmyg

V(B)=V(A)—/BF-ds:V(A)+/ Fdr:V(A)—i-/TG dr

2
A To r

pertanto ’energia potenziale dipende solo dalla distanza dalla sorgente

V(r) = V(A) + Gmmo (i - 1)
ro T
Come gia visto, il potenziale dipende da una costante arbitraria, che puo essere fissata in
modo da semplificare i problemi. Nel caso del campo gravitazionale si suole porre uguale
a 0 l'energia potenziale all’infinito

1
V(i) =0=V(A) + Gmmor—
0
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da cui V(A) = —Gmmy /o, € quindi

Anche in questo caso si puo definire una energia potenziale per unita di massa, in modo da
separare il contributo della sorgente del campo dalla sonda che ne sente 'effetto; questa

funziona viene talvolta indicata come potenziale del campo gravitazionale

- g
"

Tutto questo vale nel caso in cui si abbiano una sola sorgente e una sola sonda ed
entrambe puntiformi. Nel caso se ne abbiano piu di una occorre sommare su tutte, e se
non sono puntiformi vanno scomposte in elementi infinitesimi per poi integrare sulle due
masse. Tuttavia questo compito e assai pill agevole che non nel caso delle forze: infatti i
potenziali e le energie potenziali sono tutti degli scalari, e sommare degli scalari, ovvero dei
numeri, ¢ molto piu semplice che non sommare dei vettori, dei quali occorre tener conto

delle componenti.

6.3.1 Orbite chiuse e orbite aperte
Una massa m che si muove nel campo gravitazionale generato da una massa M

possiede un’energia meccanica totale pari a

mM
T

1
E:K+V:§mv2—G

Come gia detto, & possibile dimostrare che la traiettoria seguita dalla massa m e una
conica; il tipo di conica e determinato dal valore dell’energia totale.

Se l’energia totale e negativa, £ < 0, ’orbita ¢ una ellisse o una circonferenza, giacché
in questo caso il moto della massa sonda e limitato: infatti se non fosse cosi, la massa
potrebbe allontanarsi all’infinito; ma per » — oc si ha V' — 0, e quindi resterebbe

1
E:§m112<0

dato che l'energia totale si conserva (la forza gravitazionale & conservativa); ma cio &

evidentemente assurdo. Quindi la massa sonda non puo allontanarsi all’infinito e il suo
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moto ¢ limitato. Ma le uniche coniche limitate sono appunto 'ellisse e la circonferenza, che
quindi costituiscono 'orbita del corpo. Si noti inoltre che quando la sonda m si avvicina
alla sorgente M, r diminuisce e quindi V' in valore assoluto aumenta; affinché I’energia
totale rimanga costante anche K deve aumentare; viceversa quando il corpo si allontana
dalla sorgente, » aumenta, V in valore assoluto diminuisce e quindi anche K deve diminuire.
Ne segue che quando il corpo si avvicina la sua velocita aumenta, e quando si allontana
diminuisce, il che riporta alla seconda legge di Keplero.

Se invece l'energia totale € positiva o nulla, £ > 0, allora il moto della sonda puo
essere illimitato, per il ragionamento opposto al caso precedente. Se F = 0 il corpo arriva
all’infinito con velocita nulla, e la sua orbita € una parabola; se invece E > 0 il corpo
arriva all’infinito possedendo ancora dell’energia cinetica, e ’orbita € un ramo di iperbole.
Dato che parabola e iperbole sono le uniche due coniche aperte, queste sono le sole orbite

possibili.

6.3.2 Velocita di fuga

Se si lancia un corpo di massa m verso ’alto, esso giunge ad una certa altezza e poi
ricade verso il basso; se si aumenta progressivamente la velocita di lancio esso sale sempre di
pit. Ci si puo chiedere se esista una velocita tale per cui il corpo non ricada piu sulla Terra,
cioe per la quale il corpo riesca a liberarsi dalla gravita terrestre; essa viene detta wvelocita
di fuga. Poiché il corpo allontanandosi rallenta, la richiesta minima e che la sua energia
sia tale da farlo arrivare all’infinito con velocita nulla: infatti con meno energia il corpo
arriverebbe solo ad una distanza finita e poi tornerebbe indietro, cioé non si libererebbe
dal campo terrestre, mentre una energia maggiore sarebbe sprecata. All’infinito V = 0,
e velocita nulla v = 0 implica £ = 0; ma ’energia si conserva, per cui nulla deve essere

anche ’energia totale del corpo sulla superficie terrestre quando se ne distacca, cioe

| S
- -G
5™Vs

mMT

=0
R

il che permette di determinare la velocita di fuga della Terra

2G My
Uf = R%
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In maniera analoga si puo calcolare la velocita di fuga di un qualsiasi corpo celeste.

§ 6.4 Esempi

6.4.1 Campo di un anello sull’asse
Si abbia un anello di raggio a, spessore infinitesimo e densita lineare uniforme A; si
vuole calcolare il campo gravitazionale e il suo potenziale in un punto P posto sull’asse

dell’anello ad una distanza x dal centro

di

edGP

X dG cos 6

Per simmetria il campo gravitazionale deve essere diretto lungo l’asse: infatti ad ogni
elemento infinitesimo d/ sull’anello ne corrisponde uno posto simmetricamente e tale per cui
le componenti ortogonali all’asse di elidono; viceversa le componenti parallele si sommano.
Ogni elemento d/ di massa dm = Adl contribuisce al campo totale con un dG, pari
in modulo a
a6, = ¢ = g 24

2 a2 42?2
la componente di dGy4 lungo I'asse vale dG cos ¥ con

T

Va2 + z2

cost =

da cui

Adl T Az
Gg:/ngCOSﬁ:/G(a2+x2)\/m :Gm/dl

ma [dl = 2ma e A 2mra = m, la massa totale dell’anello, per cui

mx

Gy = G(a2 + 22)3/2

Si noti che per =0 ¢ G4(0) = 0, mentre per z >> a &
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cio¢ a grandi distanze 1’anello si comporta come una massa puntiforme (si perde la sua
struttura).

Per quanto riguarda il potenziale si ha in maniera analoga che il contributo
dell’elemento dl e pari a

aU = —qdm _ _ g Adl

r va? + z?

e integrando su tutto ’anello

A
G—2 /dl -G _opg=-Gg—"
va? + z2 va? + x2 va? + x2

Si noti come sia molto piu semplice calcolare il potenziale invece del campo. Per x = 0 &

U=

U= —G% costante, mentre per z >>a e U ~ —G% come per una massa puntiforme.

6.4.2 Campo di un guscio sferico
Si abbia un guscio sferico di raggio R, spessore infinitesimo e densita superficiale
uniforme o; si vuole calcolare il campo gravitazionale e il suo potenziale in un punto P

posto ad una distanza r > R dal centro

Per ragioni di simmetria il campo & diretto lungo la congiungente OP. Si consideri un

anello infinitesimo ortogonale ad OP: il modulo del campo che esso genera ¢ dato da

x

condm =0 dS =0 2ma R dv¥ e a = Rsind; percio

o2rwax

22+a?2=22=r2+ R?-2rRcos?
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e pertanto il campo totale, ottenuto integrando su 9, &€ dato da

Rsind(r — Rcos )

G, = G 2 R d9
g /0 ma (r2 + R2 — 2rR cos 9)3/2

Posto —Rcosd = y, da cuidy = Rsind dd, con 9 =0 >y=—-Red =7 —y =R,

rimane
R

Gg:G27TO'R/ Tty

dy = 27GoR(rZ; + T
_gr (12 + R2 + 27y)3/2 y=2rGoR(rTi + 1)

dove
R

Il _ /R dy — __2(7‘2 +R2 +2,’,y)—1/2 —
r (12 4+ R2 + 2ry)3/2 2r R

RV 1\ 2R 1
~r\r—R r+R/) r r2—R?

(perché r > R) e

I_/R ydy _i/R 7'2+R2+2Ty_T2_R2d B
> R+ R2+2ry)3/2  2r | (r2+ R2 + 2ry)3/2 v=
:i/R dy —T2+R2I:
2r J_p (r2 + R2 + 2ry)1/2 2r !
R 2 2 3
1|2 Rr*+ R 2R 1
- - |2 /2L R219 _ —
2r [27'\/T + + ry]_R r2 r2 — R2 r2 r2 — R2
Quindi
2R 2R3 1 R? m
Gg :27TGJR(T2—R2 — 7'2 7‘2 —RQ) :47TGUT—2 :GT'_2

come se si trattasse di una massa puntiforme concentrata al centro del guscio, giacché per
definizione di densitd 47 R2%0 = So = m.
Per quanto riguarda il potenziale si ha in maniera analoga che il contributo dell’anello

infinitesimo ortogonale ad OP ¢é pari a

dm o 2ma R dd

dU = -G =
1/012_’_:1:2 ‘/(12—{-372

dove nuovamente a = Rsind e 22 + a? = r? + R? — 2r R cos ¥, pertanto

AU = -G 2ro Fsind RdY
Vr2 + R2 + 2rRcos ¢
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Con la solita posizione —R cosv = y rimane

R 2
U= —27TGJR/ dy = —271'G0'R— = —GT
_R \/r2—|—R2+2ry r r

come per una massa puntiforme.

6.4.3 Massa sferica
Si abbia una sfera piena di raggio R e densita volumica uniforme p; si vuole calcolare
il campo gravitazionale e il suo potenziale in un punto P posto ad una distanza r > R dal
centro.
Preso un guscio sferico di raggio a e spessore da, il suo contributo al campo totale e
dato da
dm p 4ma’da

ng:GT—ZZG 7‘2

Integrando fra 0 e R si ottiene immediatamente

R 2 3
p 4ra“da p AR m
G, = G =G =G—
g /0 r2 372 r2

come se si trattasse di una massa puntiforme concentrata al centro della sfera, giacché per

definizione di densita %WR?’p =Vp=m.

Per quanto riguarda il potenziale si ha in maniera analoga che il contributo del guscio
infinitesimo & pari a
4ma’da
_ P AmaPda

aU = —gdm _
T T

e integrando fra 0 e R si ottiene immediatamente

U:/R_Gp47ra2da:_Gp47rR3 _ o™
0 T 3r T

come per una massa puntiforme.



