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Summary

Objective: In this paper, we define a principled approach to represent temporal
constraints in clinical guidelines and to reason (i.e., perform inferences in the form of
constraint propagation) on them.We consider different types of constraints, including
composite and repeated actions, and propose different types of temporal function-
alities (e.g., temporal consistency checking).
Background: Constraints about actions, durations, delays and periodic repetitions of
actions are an intrinsic part of most clinical guidelines. Although several approaches
provide expressive temporal formalisms, only few of them deal with the related
temporal reasoning issues.
Methodology: We first propose a temporal representation formalism and two tem-
poral reasoning algorithms. Then, we consider the trade-off between the expres-
siveness of the formalism and the computational complexity of the algorithms, in
order to devise a correct, complete and tractable approach. Finally, we show how the
algorithms can be exploited to provide clinical guideline systems with different types
of temporal facilities.
Results: Our approach offers several advantages. During the guideline acquisition
phase, it enables to represent temporal constraints, and to check their consistency. In
the execution phase, it checks the consistency between the execution times of the
actions and the constraints in the guidelines, and provides query answering and
simulation facilities.
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1. Introduction

Clinical guidelines are a means for specifying the
‘‘best’’ clinical procedures and for standardizing
them. Over the last few years, the medical com-
munity has started to recognize that computer-
based systems dealing with clinical guidelines
provide relevant advantages, since, e.g., they
can be used to support physicians in the diagnosis
and treatment of diseases, or for education, critical
review and evaluation aims [1]. Thus, many
different approaches and projects have been devel-
oped in recent years to create domain-independent
computer-assisted tools for managing clinical
guidelines (see e.g., Asbru [2], DILEMMA and
PRESTIGE [3], EON [4], GEM [5], GLIF [6,7], GUIDE
[8,9], ONCOCIN [10], PROforma [11], T-HELPER
[12], and also [1,13—15]). Most of these approaches
distinguish between an acquisition phase, in
which expert-physicians (usually in cooperation
with knowledge engineers) introduce clinical
guidelines into the computer-based system, and
an execution phase, when user-physicians execute
a given guideline on a specific patient (i.e., on the
basis of the patient’s data). Moreover, recently,
several approaches have started to focus also on
the treatment of temporal aspects [16—19]. As a
matter of fact, in most therapies, actions have to
be performed according to a set of temporal
constraints concerning their relative order, their
duration, and the delays between them. Addition-
ally, in many cases, actions must be repeated at
regular (i.e., periodic) times. Furthermore, it is
also necessary to carefully take into account the
(implicit) temporal constraints derived from the
hierarchical decomposition of actions into their
components and from the control-flow of actions
in the guideline.

Within the Artificial Intelligence (AI) commu-
nity, a lot of work has been devoted to the treat-
ment of time-related phenomena; roughly speak-
ing, one could identify two different mainstreams
[20].

The first mainstream is mainly devoted to
the definition of general-purpose formalisms,
covering a wide range of temporal (and, possibly,
non-temporal) phenomena. It aims at coping
with the evolving world, by describing the internal
structure of events, and at modelling how the
world changes in response to such events. In parti-
cular, a lot of different logical approaches (includ-
ing first order, modal, or nonmonotonic logical
formalisms) have been developed to achieve such
a goal.

The second mainstream is mainly focused on the
definition of representation formalisms and of rea-
soning techniques to deal specifically with
temporal constraints between temporal entities
per se, without regard to the internal description
of such entities (henceforth, we will call ‘‘con-
straint-based’’ the approaches in this mainstream).
In particular, since the 1980s, several domain-
independent constraint-based temporal managers
have been developed within the AI community
(see, e.g., [21] for a comparison between some
of them, and the general survey in [22]); such
managers are mainly conceived as knowledge
servers to which temporal constraint propagation
problems can be delegated, and which possibly
have to be coupled with other modules (e.g., a
planner) to solve complex problems. By
focusing on a more restricted problem, one
could obtain higher efficiency than general-
purpose approaches. In fact, it could be possible
to define specialised reasoning techniques
that make inferences in a more efficient way
than, e.g., a standard theorem prover for the
first-order logic. However, the aim towards
specialization led many of these approaches to
focus on specific classes of constraints, so that there
still seems to be a gap between the range of phe-
nomena they cover and the types of temporal con-
straints emerging from the domain of clinical
guidelines. In this paper, we propose a constraint-
based approach aiming at filling (at least in part)
such a gap.

Developing a constraint-based manager of tem-
poral constraints for clinical guidelines involves
both the design of an expressive representation
formalism, and the development of suitable tem-
poral reasoning algorithms operating on them.
However, subtle issues such as the trade-off
between the expressiveness of the representation
formalism and the tractability of correct and com-
plete temporal reasoning algorithms have to be
faced in order to deal with temporal constraints
in a well-founded way; few works in the area of
computerized guidelines have deeply analysed this
topic so far.

In Section 2 we discuss the advantages of a
well-founded approach, provide an overview of
the state of the art, and sketch the basic principles
and motivations underlying our approach. In
Section 3 we introduce our formalism, and in
Section 4 we provide two tractable, correct and
complete algorithms to perform temporal reason-
ing in the acquisition and in the execution phase,
respectively. In Section 5wedescribe how to exploit
our formalism and algorithms to provide clinical
guidelines systems with temporal reasoning
facilities. Finally, we address comparisons and
conclusions.
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2. Representing and reasoning with
temporal constraints in clinical
guidelines

Representing and reasoning with temporal
constraints is an essential feature for computer-
based approaches to clinical guidelines. In particu-
lar, a temporal manager coping with time-related
issues can be exploited in different ways in the
management of clinical guidelines. For instance,
during the acquisition of a new guideline, the con-
sistency of the temporal constraints it contains can
be automatically checked; during the execution of a
guideline on a specific patient, the temporal man-
ager can be used to check whether the specific
actions have been executed in such a way that
the constraints in the guideline have been
respected, or to determine the times when the next
actions need to be executed (see Section 5 for a
more detailed and exhaustive treatment of these
issues). Therefore, desiderata such as correctness
and completeness of temporal reasoning play a
crucial role also within clinical guideline applica-
tions (see Section 2.1). However, although many
domain-independent temporalmanagers have been
devised within the AI literature (see, e.g., [22]),
and several approaches to time-related issues have
been faced within the clinical guideline literature
(Section 2.2), several new challenges have to be
addressed when dealing with temporal representa-
tion and temporal reasoning about clinical guide-
lines (Section 2.3).

2.1. Motivating the desiderata

As in most AI approaches to the treatment of time
(see, e.g., the survey in [22]), in designing our
formalism we had to carefully take into account
the fundamental trade-off between the expressive-
ness of (temporal) formalisms and the temporal
complexity of the correct and complete (temporal)
reasoning algorithms operating on them.

While expressiveness is an obvious desideratum,
we will now briefly motivate the second term of the
above trade-off. First, it is important to stress the
point that a formalism for temporal constraints is
not very useful if it is not paired with algorithms for
temporal reasoning, performing temporal infer-
ences on a set of constraints (expressed in the given
formalism) and/or checking their consistency. Con-
sider, for instance, a Knowledge Base (KB) contain-
ing the temporal constraints (i) and (ii) between
three events A, B and C.

KB ¼ fðiÞAbefore B; ðiiÞBbefore Cg
The constraint (iii) A before C can be inferred
(i.e., it is logically implied by (i) and (ii)), so that,
given KB, one can correctly assert (iii), but not (iv) A
after C, which is actually inconsistent with KB (in
other words, the set of constraints KB0 = {(i), (ii),
(iv)} cannot be satisfied). Temporal reasoning is
necessary in order to support such an intended
semantics. With no temporal reasoning, a user
can represent any set of constraints, even an incon-
sistent one (e.g., KB0 above) with no reaction by the
system.

Of course, temporal reasoning algorithms are
computationally expensive. An important desider-
atum is tractability, i.e. the fact that the running
time of the algorithms grows as a fixed power of the
number of the actions and/or constraints in the
knowledge base (i.e., polynomial time). Any fas-
ter-growing (e.g., exponential time) algorithms are
not tractable and much more computationally
expensive.

However, temporal reasoning algorithms should
also be correct, i.e., such that they only infer con-
straints that are logically implied by the initial set of
constraints (correctness grants that no wrong infer-
ence is made). Completeness (i.e., the fact that all
logically implied constraints are actually inferred) is
a fundamental desideratum as well, since it is
essential in order to grant that the system’s answers
are fully reliable (e.g., if (iii) is not inferred from
{(i), (ii)}, the answer to the question ‘‘Is (iv) con-
sistent with {(i), (ii)}?’’ may be yes).

In particular, as in most AI approaches, the main
task of our temporal reasoning algorithms is that of
checking the consistency of temporal constraints in
a guideline. In fact, real-world guidelines usually
consist of hundreds of actions, often related by
temporal constraints. This means that: (i) the fact
that hundreds of constraints are mutually consistent
cannot be taken for granted and (ii) consistency
checking cannot be directly performed by physicians
(and/or by a knowledge engineer), since making
explicit all the possible implications of such a large
number of constraints is an overwhelming and too
complex task.

2.2. State of the art

Many AI approaches focused their attention to the
definition of suitable formalisms to represent time-
related phenomena and to reason with them.
Besides ‘‘logical’’ approaches (e.g., temporal or
non-monotonic logics), starting from the early
80s, many constraint-based approaches have been
developed in AI [22]. Such approaches are mostly
concerned to define domain-independent knowl-
edge servers to which temporal reasoning, in the
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form of propagation of temporal constraints, can be
delegated, and which can be coupled with other
modules (e.g., a planner, or a systemwhichmanages
guidelines) to solve complex problems.

The aim towards specialization led these
approaches to focus on specific classes of con-
straints (e.g., qualitative constraints such as ‘‘A
before B’’, quantitative constraints such as dates,
delays and durations) [22], or to devote great atten-
tion to granularities and/or periodic/repeated con-
straints [23—25] or to the integration of different
sorts of constraints (e.g., qualitative and quantita-
tive constraints [26]).

In the area of clinical guidelines several interest-
ing approaches have been devised to represent
temporal constraints. For instance, GLIF [6,7] deals
both with temporal constraints on patient data
elements and with duration constraints on actions
and decisions. In PROforma [11], guidelines are
modelled as plans, and each plan may define con-
straints on the accomplishment of tasks, as well as
task duration and delays between tasks. Moreover,
temporal constructs can also be used in order to
specify the preconditions of actions. DILEMMA and
PRESTIGE [3] model temporal constraints within
conditions. EON [4] uses temporal expressions to
allow the scheduling of guideline steps, and deals
with duration constraints about activities. More-
over, by incorporating the RESUME system, it pro-
vides a powerful approach to cope with temporal
abstraction. In EON, the Arden Syntax allows the
representation of delays between the triggering
event and the activation of a Medical Logic Module
(MDL), and between MDLs [27].

A rich ontology to deal with temporal information
in clinical trial protocols has been proposed in [28],
considering also relative and indeterminate tem-
poral information and cyclical event patterns.

Despite the large amount of work devoted to the
representation of temporal constraints, and the
very rich and expressive formalisms being identi-
fied, little attention has been paid to temporal
reasoning. Notable exceptions are represented by
the approaches by Shahar [18] and by Duftschmid
et al. [19].

In Shahar’s approach, the goal of temporal rea-
soning is not to deal with temporal constraints (e.g.,
to check their consistency), but to find out proper
temporal abstractions of data and properties.
Therefore, temporal reasoning is not based on con-
straint propagation techniques, in fact, e.g., inter-
polation-based techniques and knowledge-based
reasoning are used.

Miksch et al. have proposed a comprehensive
approach based on the notion of temporal con-
straint propagation [2,19]. In particular, in [19],
different types of temporal constraints — deriving
from the scheduling constraints in the guideline,
from the hierarchical decomposition of actions into
their components and from the control-flow of
actions in the guideline — are mapped onto an
STP framework [29]. Temporal constraint propaga-
tion is used in order to (1) detect inconsistencies,
and to (2) provide the minimal constraints between
actions. In [19], there is also the claim that (3) such
amethod can be used by the guideline interpreter in
order to assemble feasible time intervals for the
execution of each guideline activity. Moreover,
advanced visualization techniques are used in order
to show users the results of temporal reasoning
[30].
2.3. Dealing with temporal constraints in
clinical guidelines: new challenges and
open problems

Despite the large amount of valuable works, there
still seems to be a gap between the range of phe-
nomena covered by current AI constraint-based
approaches and the needs arising from clinical
guidelines management. The first important issue
concerns the expressiveness of temporal formal-
isms. Consider, e.g., Example 1 (which is a simplified
part of a guideline about multiple mieloma).

Example 1. The therapy for multiple mieloma is
made by six cycles of 5-day treatment, each one
followed by a delay of 23 days (for a total time of 24
weeks). Within each cycle of 5 days, two inner
cycles can be distinguished: the melphalan treat-
ment, to be provided twice a day, for each of the 5
days, and the prednisone treatment, to be provided
once a day, for each of the 5 days. These two
treatments must be performed in parallel.

While Example 1 above is a real example taken
from the clinical domain, in the following we intro-
duce a fictitious example, which includes, besides
the main features of Example 1, other interesting
features emerging from the clinical domain (e.g.,
‘‘conditioned’’ repetitions). We thus use Example 2
as the leading example in our paper, to exemplify
the expressiveness of our approach and its reasoning
capabilities.

Example 2. The guideline G is composed by two
repeated actions, a and b, where b must start at
least 10 days after the end of a. Action a is repeated
once every week for 2 weeks, until condition cw does
not hold anymore. Action b is repeated twice a week
and each repetition must be at most 1 day after the
previous one.
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In its turn, a is composed by the repeated action
a1 and the atomic action a2. a1 is repeated once a
day for 3 days and each repetition is performed if
the condition ci holds. Action a2 lasts exactly 2 days
and must start after the end of the repeated action
a1 but no more than 1 day after.

Finally, a1 is composed by two atomic actions,
a11 and a12 that must be performed in parallel (i.e.,
at the same time).

Of course, in the clinical practice, any guideline
can be executed on different patients. For
instance, let us suppose that the (temporal
constraints involved by the) execution of the guide-
line in Example 2 on patient P1 is described in
Example 2A.

Example 2A. Since, for patient P1, condition cw
held only for the first week, action a has been
repeated only once. The subaction a1 has been
attempted on the second, third and fourth day of
the first week; however, since ci only held on
the second and fourth day, the second execution
of a1 has been skipped. These facts led to the
observation of the following instances of atomic
actions:
� a
111 (which is an instance of a11, and, precisely,
of the first execution of the first repetition of a1
composing the first repetition of a), executed
between 8 and 9 a.m. of the second day;
� a
121 at the same time of a111;

� a
113 executed during the fourth day;

� a
123 at the same time of a113;

� a
21 starting between 3 and 4 hours after the end

of a123;

� b
1 For example, given an execution of the composite action a in
the guidelineG of Example 2, one expects to have an instance of b
at least 10 days after (an analogous problem has been faced in
[46] concerning workflow systems).
11 starting 20 days after the end of a21.

While the constraints in Example 2A can be
easily modelled in most of the constraint-based
formalisms developed within the AI literature (in
the following, a representation in STP [29] of
such constraints will be provided–—see Fig. 9),
temporal constraints in Example 2 are more
challenging. Roughly speaking, almost all AI con-
straint-based temporal approaches are ‘‘exten-
sional’’, since they operate on a knowledge base
containing an explicit representation of all the
events, and all the constraints between them.
Thus, for instance, the treatment of Example 2 in
the STP (or in the TCSP) framework [29] would
involve an explicit representation of all the actions
in all the repetitions (and of the corresponding
constraints). Such a solution seems to us neither
commonsense (since plenty of events and
constraints need to be unnecessarily elicited) nor
efficient (since it involves an unnecessary growth of
the number of modelled events). Even worst, it is
not practically feasible if one wants to model also
‘‘conditioned repetitions’’ (such as in the case of a
and a1 in Example 2), in which the number of
repetitions cannot be known at the time the guide-
line is built (and which are, realistically, quite
common within clinical guidelines). We thus aim
at devising, as far as possible, an ‘‘intensional’’
approach, in which repetitions are not ‘‘expanded’’
unless needed.

A further desideratum of our approach is that of
describing a ‘‘high-level’’ representation formal-
ism, providing, as far as possible, explicit constructs
to model the different temporal issues to be cap-
tured in the guideline domain. This means that we
want to provide a direct support to model:
(1) q
ualitative (such as ‘‘at the same time’’) and
quantitative (e.g., ‘‘at least 10 days after’’)
constraints, as well as repeated/periodic events
(e.g., actions a, a1 in Example 2); all types of
constraints may be imprecise and/or partially
defined;
(2) a
 structured representation of complex events
(in terms of part-of relations), to deal with
structured descriptions of the domain knowl-
edge (consider, e.g., the composite action a
in Example 2);
(3) t
he distinction between classes of actions (e.g.
an action in a general guideline) and instances of
such actions (e.g., the specific execution of an
action in a guideline) (the actions in Example 2
are ‘‘classes’’; a111—b11 in Example 2A are
instantiations of such actions on the specific
patient P1).

Of course, our temporal reasoning algorithms
have to operate on a knowledge base of con-
straints in the high-level formalism, checking
their consistency (and performing other time-
related operations) in a correct, complete and
tractable way. In particular:
(4) t
he consistency of the temporal constraints
between classes and instances must be sup-
ported. This involves dealing with the inheri-
tance of constraints (from classes to instances)
and with the predictive role of constraints
between classes.1
Obviously, the interplay between issues (1)—(4)
needs to be dealt with, too. For example, the
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interaction between composite and periodic
events might be complex to represent and manage.
In fact, in the case of a composite periodic event,
the temporal pattern regards the components,
which may, recursively, be composite and/or per-
iodic events. For instance, consider Example 1. In
Example 1, the instances of the melphalan
treatment must respect the temporal pattern
‘‘twice a day, for 5 days’’, but such a pattern
must be repeated for six cycles, each one followed
by a delay of 23 days, since the melphalan treat-
ment is part of the general therapy for multiple
mieloma.

While some of the above issues have been treated
in an ad-hoc way in the literature, in this paper we
aim at devising a general module coping in an
integrated way with all of them, providing a tem-
poral knowledge server which acts as an indepen-
dent module to which temporal problems in
different clinical guidelines may be delegated.

The strategy we chose to adopt in order to
achieve our goal is that of devising a two-layer
approach:
(1) t
2 W
temp
prog
pret
neve
mak
he high-level layer provides a high-level lan-
guage to represent the above-mentioned tem-
poral phenomena and to offer several temporal
reasoning facilities;
(2) t
he low-level layer consists of an internal repre-
sentation of the temporal constraints, on which
temporal constraint propagation algorithms
operate.
We designed our high-level language with
specific attention to the modelling of repeated
actions, and in such a way that tractable temporal
reasoning can be supported. At the low-level layer,
we chose to exploit as much as possible STP (Simple
Temporal Problem [29]), a standard AI temporal
reasoning framework. In a certain sense, our
approach uses STP as an ‘assembly language’ and
builds an expressive ‘high-level temporal reasoning
framework’ on top of it.2 Obviously, the gap
between our high-level language and STP is very
large. Filling such a gap is the main contribution of
our approach, and has involved the design of sui-
table temporal reasoning algorithms to cope with
issues (1)—(4) above, as well as an extension of the
STP framework itself (to consider labelled trees of
STPs–—see Section 4.2).
e thus believe that our contribution is analogous, in the
oral reasoning area, to the design of a new language in the
ramming area. New languages are finally compiled/inter-
ed into some ‘standard’ assembly language, but they are
rtheless introduced in order to provide high-level tools to
e easier the work of programmers.
3. Representing temporal constraints
in clinical guidelines

3.1. Representation formalism

Our high-level language allows one to express tem-
poral constraints about durations and delays
between actions. More specifically, we list below
some of the primitives that our language supports.

Dates can be expressed by the predicate date(A,
L1,U1, L2,U2), stating that the action Amust start
between dates L1 and U1 and end between dates L2
and U2. Precise dates can be expressed imposing
L1 = U1 or L2 = U2. Please note that also unknown
dates are allowed by imposing that the extremes
assume value �1 or +1. Other constructs include
the predicate duration(A, L, U), stating that the
duration of action A must be included between L
and U, delay(P1, P2, L, U), stating that the
delay between P1 and P2 must be between L
andU, where P1 and P2 are time points (i.e. starting
or ending points of actions). Also qualitative tem-
poral constraints such as ‘‘before’’, ‘‘after’’, ‘‘dur-
ing’’ are supported by our language: in fact, it
supports all and only the qualitative constraints
that can be mapped to conjunctions of STP con-
straints [22] (further details on STP can be found in
Section 4).

For example, the duration of a2 in Example 2
(‘‘Action a2 lasts exactly 2 days’’) can be expressed
by the predicate duration(a2, 2d, 2d); the relation
between a and b in Example 2 (‘‘bmust start at least
10 days after the end of a’’) can be represented by
the constraint delay(End(a), Start(b), 10d, +1);
the relation between a11 and a12 (‘‘a11 and
a12 must be performed in parallel’’) can be repre-
sented by the qualitative temporal constraint
equal(a11, a12).

For representing composite actions, we support
the predicate partOf(A0, A), stating that the action
A0 is part of the composite action A. Please note that
the partOf relation induces a temporal constraint
between the actions: i.e., action A0 must be during
action A.

For example, in Example 2 we have: partOf(a1,
a), partOf(a2, a), partOf(a11, a1), partOf(a12, a1),
partOf(b1, b).

The predicates described above can be also used
for representing temporal constraints between
instances of actions.

In order to describe the relation between
instances and classes, we need to introduce a
further predicate, instanceOf(I, A, p) to represent
the fact that the instance of action I is an instance
of the class of actions A. If A is a repeated action,
then p represents the fact that I is an instance
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Figure 1 Syntax in BNF of the repetition primitive. Curly brackets represent optionality.
of the pth repetition of A (if A is not a repeated
action, p = 0). From Example 2A, we have instan-
ceOf(a111, a11, 1), instanceOf(a121, a12, 1),
instanceOf (a113, a11, 3), instanceOf(a123, a12,
3), instanceOf (a21, a2, 1), instanceOf(b11, b1, 1).

Regarding repetition of actions, we provide the
predicate repetition(A, RSpec), to state that the
(possibly composite) class of action A is repeated
according to the parameter RSpec. Since this pri-
mitive represents an innovative feature of our lan-
guage, we deal in detail with the predicate. Please
note that the predicate repetition regards classes of
actions only, since the instances of actions are
observed separately and independently of each
others at execution time.

The syntax of the predicate repetition is
described in BNF in Fig. 1.

RSpec is a recursive structure of arbitrary (finite)
depth, where each level Ri states that the actions
described in the next level (i.e., Ri+1, or — by
convention — the action A, if i = n) must be repeated
a certain number of times in a certain time span. To
be more specific, any basic element Ri consists of a
quadruple [Nrep, ITime, {RConstr}, {Cond}], where
the first term represents the number of times that
Ri+1 must be repeated, the second one represents
the time span in which the repetitions must be
included, the third one (which is optional) may
impose a pattern that the repetitions must follow,
and the last one (which is optional) allows one to
express conditions that must hold so that the repe-
titions can take place. Informally, we can roughly
describe the semantics of a quadruple Ri as the
natural language sentence ‘‘repeat Ri+1 Nrep times
in exactly ITime, if Cond holds’’.

RConstr is a (possibly empty) set of pattern con-
straints, representing possibly imprecise repetition
patterns. Pattern constraints may be of type:
� f
romStart(min, max), representing a (possibly
imprecise) delay between the start of the ITime
and the beginning of the first repetition;
� t
oEnd(min,max), representing a (possibly impre-
cise) delay between the end of the last repetition
and the end of the ITime;
� in
BetweenAll(min, max) representing the
(possibly imprecise) delay between the end of
each repetition and the start of the subsequent
one;
� in
Between((min1, max1), . . ., (minNrepS1,
maxNrepS1)) representing the (possibly imprecise)
delays between each repetition and the subse-
quent one. Note that any couple (minj, maxj) may
be missing, to indicate that we do not impose any
temporal constraint between the jth repetition
and the (j + 1)th one.

Cond is a (possibly empty) set of conditions that
influence the repetitions. The conditions may be of
type:
� w
hile(C), where C is a Boolean predicate. It
states that, when C becomes false, the repetition
ends;
� o
nlyIf(C), where C is a Boolean predicate. It
states that, if C is true, the repetition may be
performed and, if C is false, the repetition must
not be performed and we can pass to the next
repetition. This construct allows to skip single
repetitions.

In order to make our approach to temporal con-
straints more user-friendly, a (possibly graphical)
user interface could be used to acquire and repre-
sent temporal constraints (concerning both (i)
dates, durations, delays and qualitative relations
between non-repeated events and (ii) repetition/
periodicity constraints) [30—33].

Before describing the semantics of the above
primitives, we show how the periodicity constraints
in Example 2 can be expressed by using the repeti-
tion construct. Action b (‘‘Action b is repeated twice
a week and each repetition must be at most 1 day
after the previous one’’) exemplifies the RConstr
component: repetition(b, [2, 7d, inBetwee-
nAll(0d,1d),]).

For representing action a (‘‘Action a is repeated
once every week for 2 weeks, until condition cw
does not hold anymore’’), we can use a two-level
specification: one level for representing the ‘‘once
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Figure 2 Extensional semantics for repetition(A, [4,10d],,). Diamond-shaped arrows represent placeholders and circle-
shaped arrows represent instances of actions.
every week’’ part and one for representing the ‘‘for
2 weeks’’ part; furthermore, the ‘‘until condition cw
does not hold anymore’’ part can be represented by
a while condition as follows, repetition(a, [2, 14d,,
while(cw)], [1,7d,,]).

The repetition of action a1 (‘‘a1 is repeated
once a day for 3 days and each repetition is per-
formed if the condition ci holds’’) can be repre-
sented by the following constraint: repetition(a1,
[3, 3d,, onlyIf(ci)], [1,1d,,]).

In the following, we describe the semantics of
the repetition construct by introducing progres-
sively the various components of the construct.
However, a logical semantics of our formalism,
which might be used in order to logically prove
the correctness and completeness of our approach
(as we did in [34] for a fragment of our language
about repetitions), is outside the scope of this
paper.

For each component, a figure is given to intui-
tively describe the extensional semantics of the
construct.
� r
epetition(A, [Nrep, ITime,,]) (see Fig. 2)
(1) there exists a temporal interval (placeholder)

PA lasting ITime; there exist Nrep temporal
intervals (placeholders) PA1 ; . . . ; PANrep such
that they are not overlapping and they are
(not-strictly) during PA;

(2) for each PAi there exists an instance of the
action A (more precisely, for each PAi before
NOW).
Figu
Here and in the following, in case action A is not
atomic, all the instances of its atomic components
must be considered (from the algorithmic point of
view, we manage the possible nesting of composite/
repeated actions through the generation of place-
holders; see Fig. 12).
re 3 Extensional semantics for repetition(A, [4,10d,
� r
fr
epetition(A, [Nrep, ITime, RConstr,]) (see
Fig. 3)
(1) (same as above);
(2) (same as above);
(3) (a) if fromStart(m, M) 2 RConstr, then the

delay between the start of PA and the
start of PA1 must be between m and M;

(b) if toEnd(m, M) 2 RConstr, then the delay
between the end of PANrep and the end of PA

must be between m and M;
(c) if inBetween((m1, M1), . . ., (mNrep�1,

MNrep�1)) 2 RConstr, then the delay
between the end of PAi and the start of
PAiþ1 must be betweenmi andMi, i = 1, . . .,
Nrep�1;

(d) if inBetweenAll(m,M) 2 RConstr, then the
delay between the end of PAi and the start
of PAi must be betweenm andM, i = 1, . . .,
Nrep�1.
omS
tart(
� r
epetition(A, [Nrep, ITime,, Cond = while C])
(see Fig. 4)
(1) (same as above);
(2) let j be the maximum value such that 8k,

1 � k � j � Nrep C(k) holds. For each PAi ,
1 � i � j, there exists an instance of action
A (where we indicate by C(i) the fact that
condition C holds at the time of PA).
i
Here, placeholders are used to represent the
frequency of the checks of conditions; e.g., in
Fig. 4, we introduce the placeholders to state that
the condition C has to be checked at most four times
in 10 days. In general, we assume that the temporal
location of placeholders is always specified (both
for while and onlyIf) in the given and in the next
level of the repetition specification. For example,
with ‘‘repetition(A, [4,10d, fromStart(1d,1d)
toEnd(2d,2d), while C], [1,2d,,])’’ we state that
the while condition must be checked before each
0,1d) inBetweenAll(2d,2d) toEnd(1d,5d),]).
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Figure 4 Extensional semantics for repetition(A, [4,10d,, while C]). A cross indicates a missing (and not observed)
instance.

Figure 5 Extensional semantics for repetition(A, [4,10d,, onlyIf C]).
repetition, that is every 2 days for 10 days, i.e., on
days 2, 4, 6 and 8.

Notice also that it is part of the intended seman-
tics of our ‘‘while’’ construct the fact that the
temporal constraints in the repetition must be such
that, potentially (i.e., in the case the condition
always holds), all the Nrep repetitions must be
executable (see also footnote 3 in the following).
In some sense, placeholders can be seen as a tech-
nical device we had to introduce in the semantics
(and in the reasoning algorithms; see Section 4) in
order to enforce such an intended semantics.
� r
epetition(A, [Nrep, ITime,, Cond = onlyIf C])
(see Fig. 5)
(1) (same as above);
(2) 8i, 1 � i � Nrep if C(i) holds, then there exists

an instance of action A.
The semantics of the construct that has both the
RConstr component and the Cond component can be
compositionally obtained by combining the seman-
tics of RConstr and Cond.

On the other hand, the semantics of an (n + 1)-
level repetition (n � 1) of the form repetition(A,
RSpecn, . . ., RSpec1) can be provided on the basis of
the semantics of its nested n-level repetition as
follows.
� r
3 For example, theperiodicity constraint repetition(A, [10, 30d, ,
while(C)], [1, 100d, , ]),where thehigher level lasts 30days and the
lower nesting level lasts 100 days, is not allowed. In fact, even if it
would be possible that it has a consistent execution (e.g., if the
conditionC is false before the first iteration), it ismore intuitive for
the user that we signal this constraint as inconsistent, because it is
not possible to execute all the 30 repetitions.
epetition(A, RSpecn, . . ., RSpec1)
(1) at level n + 1, there exist a temporal interval

(placeholder) PA lasting ITimen+1 and Nrepn+1

temporal intervals (placeholders) PA1 ; . . . ;
PANrepnþ1 such that they are not overlapping
and they are (not strictly) during PA;

(2) the placeholders PA at level n coincide with
the placeholders PAi at level n + 1;
(3) if the (n + 1)th level contains an onlyIf or
while condition, its semantics is the same
as above, apart of the fact that only ‘‘legal’’
placeholders at levels from n to 1 are used,
i.e. those placeholders that have not been
excluded by conditions at the previous (from n
down to 1) levels, if any.

(4) the instances have to be placed in the ‘‘legal’’
placeholders at level n + 1 corresponding to
the ‘‘legal’’ placeholders at level n.
Notice that placeholders are of use for assuring
that, even with conditioned repetitions, the tem-
poral constraints allow to execute all the repeti-
tions.3

As an example, in Fig. 6 we show the extensional
semantics of the constraints in Example 2.
The figure shows all the details, including the
‘‘�’’ symbol to denote the identity of placeholders
at different nesting levels (see the semantics of
repetition(A, RSpecn, . . ., RSpec1) at point (2)).
To make the example concrete, we suppose
that, as in Example 2A, the condition of while
(i.e., Cw) holds in the first iteration of a and does
not hold in the second iteration; furthermore, we
suppose that the condition of onlyIf (i.e., Ci) does
not hold in the second iteration of a1. Moreover,
we also suppose that NOW occurs after the first
repetition of b.
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Figure 6 Extensional semantics for Example 2 (given the assumptions in Example 2A). The second iteration of b1 is not
yet observed because it will possibly occur in the future (i.e., after NOW).
3.2. Expressiveness

In this subsection we analyse the expressiveness of
our language about repetitions. We consider as a
reference the classification criteria provided in [35]
and in [36]. Before starting the analysis, it is worth
remembering that both the above approaches are
devoted to deal mainly with infinite periodical
events (called periodicities in [35] and periodical
granularities in [36]), while in our approach we deal
with repeated events that are always finite (actu-
ally, infinite repetitions are not useful/possible in
the clinical practice). In the following, we thus
classify our formalism considering the ‘‘patterns
of repetitions’’ it can model, and ignoring the fact
that such patterns are finite.

Egidi and Terenziani [35] have defined the basic
class of calendars (e.g., minutes) as elementary
partitions of the timeline, and, on the basis of
the expressiveness of many approaches in the lit-
erature, have identified five additional orthogonal
properties of periodicities (none of which holds on
calendars):
� N
on-adjacency, i.e., intuitively, the fact that
there are gaps between the denoted time inter-
vals (e.g., Mondays).
� G
ap, i.e. the fact that there are gaps within the
denoted time intervals (e.g., Mondays work
shifts; for example, from 9 to 12 and from 14
to 18, considered as a unique interval with a gap in
it).
� O
verlaps, i.e., the fact that the denoted time
interval may overlap in time (e.g., the union of
Tom’s and Mary’s working shifts–—supposing they
overlap in time).
� E
ventual periodicity, i.e., the fact that the repe-
tition cannot be represented as a purely periodic
pattern, but also contains an aperiodic part (e.g.,
Monday 3 Jan 2005, plus Wednesday 5 Jan 2005,
plus Mondays work shifts).
� S
tructure, i.e., the fact that the intervals can be
grouped into periodic structures (e.g., work-shifts
grouped by months and years).

In [37] a formal account, in terms of Presburger
Arithmetics, of the expressiveness of calendars a-
nd of each property has also been provided. Our
language can express calendars (or, more precisely,
finite portions of calendars), and, more generally,
repetition patterns for which the following proper-
ties hold:
� N
on-adjacency; in particular, we can also state
explicit metric constraints about the distance
between different repetitions.
� S
tructure; in particular, we admit nested repeti-
tions (i.e., repeated patterns that are subpart of
higher-level periodic patterns).

On the other hand, the property of admitting
eventually periodic pattern is not applicable to
our approach (since our patterns are always finite)
and we provide no construct to deal with patterns
having ‘‘Gaps’’. As concerns ‘‘Overlaps’’, we admit
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that different actions in the same repetition pattern
overlap in time, but we do not provide any construct
to define a single (possibly nested) repeating pat-
tern with overlaps.

Recently, Bettini [36,38] has proposed a mathe-
matical characterisation of granularity, aiming at
providing a standard reference in the area of Tem-
poral Databases. Since Bettini’s granularities are a
proper superset of periodic granularities, they con-
stitute a natural reference to evaluate the expres-
siveness of our language. Bettini et al. [38] defined
granularities as mappings from integers to subsets of
the time domains. They defined periodical granula-
rities (which are those granularities which are per-
iodical with respect to the basic granularity) and
classified them on the basis of twomain parameters:
boundedness of the extensions and the ‘‘Gap’’ prop-
erty [36]. As discussed above, our formalism does
not deal with intervals with gaps, and can only cope
with finite (bounded) extensions.

4. Reasoning with temporal
constraints in clinical guidelines

Regarding the instances of actions, we designed the
high-level language in such a way that all constraints
can be mapped onto bounds on differences and,
thus, internally represented as a ‘standard’ STP
framework (see Section 4.1).

However, regarding the classes of events, while
dates, delays, durations and qualitative temporal
constraints might be represented with an STP about
classes, it is not possible to represent in such a basic
way also the temporal constraints about repeated/
periodic and/or composite actions.

In fact, for the reasons given in Section 2, an
extensional representation is not feasible. On the
other hand, an intensional approach cannot be
directly implemented in ‘‘classical’’ temporal con-
straint propagation approaches (such as, e.g., STP),
which need an explicit (i.e., ‘‘extensional’’) repre-
sentation of all the temporal entities (time
points and/or time intervals). For instance, the
temporal constraint in Example 2 stating that the
start of the repeated action b must be at least 10
days after the end of the repeated action a is
actually a constraint between the start of the first
repetition of b and the end of the last repetition of
a. Furthermore, the components of the specifica-
tion of the periodicity of repeated events (e.g.,
inBetween, inBetweenAll) are actually constraints
on the single repetitions (rather than on the
repeated event as a whole). But, in the intensional
approach, one does not want an explicit represen-
tation of each single repetition.
Moreover, as discussed in Section 2.3, when we
check the consistency of the instances of events, we
wish to check not only that they are consistent with
each other, but also that they respect the temporal
constraints in the guideline. The problem consists in
checking whether the instances are located in time
in such a way that they respect the temporal con-
straints imposed by their related classes. There-
fore, the temporal constraints in the guidelinemust
be ‘‘inherited’’ on the instances, and we have to
check that all the temporal constraints (the
ones about instances and the inherited ones) are
consistent.

The reasoning mechanisms have also to take into
account the predictive role of the classes. For
instance, if we are executing the guideline of
Example 2 and we observe an instance of the action
a1, then we expect to have an instance of action a2
in at most 1 day. If we do not observe such an
instance, wemust signal to the user that an instance
is missing, because this may indicate an inconsis-
tency. The problem is more complex if we take into
account that only events occurring before the time
when the temporal reasoner is activated (i.e., NOW)
can actually be observed. Thus, if the temporal
constraints impose that the missing instance could
start after NOW, not having observed it does not
raise an inconsistency, because it could be observed
in the future.

Dealing with composite actions involves some
side effects. For example, given the guideline in
Example 1 in Section 2.3, it may happen that we
could not observe any instance of the action ‘‘mie-
loma treatment’’ in the clinical record of a patient,
but just instances of the atomic actions ‘‘adminis-
tering melphalan’’ and ‘‘administering predni-
sone’’. In a similar way, in Example 2 one could
observe just the instances of the atomic actions a11,
a12, a2 and b1 and not instances of the composite
actions a, a1 and b. Nevertheless, temporal con-
straints between composite actions must be taken
into account by the temporal reasoner. For exam-
ple, in Example 2, the constraint that action b must
start at least 10 days after action a is actually a
constraint between the composite actions and not
between their atomic actions. Therefore, the rea-
soning mechanisms must be able to map the tem-
poral constraints on composite actions onto their
composing actions.

4.1. STP

As mentioned above, we have chosen to model the
temporal constraints concerning ‘‘standard’’ (i.e.,
non-repeated) actions in the guidelines, using the
well-known and widely used AI framework, STP [29].
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In STP, a set of constraints is modelled as a
conjunction of bounds on differences of the form
c � x � y � d, which have an intuitive temporal
interpretation, namely that the temporal distance
between the time points x and y is between c
(minimum distance) and d (maximum distance). In
STP the correct and complete propagation of the
constraints (e.g., for consistency checking) can be
performed in a time cubic in the number of time
points, and can provide the minimal network of the
constraints as output (i.e., the minimum and max-
imum distance between each pair of points) [29].
The minimal network can be computed by an ‘‘all-
to-all shortest paths’’ algorithm such as the Floyd-
Warshall’s one, and it can also be used for efficient
query answering [39].

The STP framework can model precise or impre-
cise temporal locations (dates), durations, delays
between points and different forms of qualitative
temporal constraints between time points and/or
time intervals (see [26,40]). Moreover, also the
constraint that the temporal extent of a composite
action contains the extents of its components can be
trivially modelled in STP (so that, it can easily deal
with the temporal constraints involved by the hier-
archical representation of guideline actions–—i.e.,
issue (2) in Section 2.3; see also [19]).

4.2. Data structures for temporal
constraints about repeated actions

In order to devise tractable, correct and complete
temporal reasoning algorithms, an important step is
Figure 7 STP-tree for Example 2. Sx and Ex stand for th
the definition of suitable data structures to model a
set of temporal constraints. STP provides suitable
data structures for bounds on differences, which can
be modelled as graphs on which the well-known
Floyd-Warshall’s algorithm operates to check con-
sistency. However, as discussed at the beginning of
this section, the STP framework is not expressive
enough to cope with repeated/periodic actions.
Thus, we have chosen to model the constraints
regarding repeated actions into separate STPs,
one for each repeated action. In our approach,
the overall set of constraints between actions in
the guideline is represented by a tree of STPs (STP-
tree henceforth). The root of the tree is the STP
which represents the constraints between all the
actions in the guideline, except the components of
repeated actions. For example, in Fig. 7, we show
the STP-tree representing the temporal constraints
involved by Example 2 in Section 2.3. In the figure,
the root of the STP-tree, N1, contains the action
representing the entire guideline.

Each node in the tree is an STP, and has as many
children as the number of repeated actions it con-
tains. Each edge in the tree connects a pair of
endpoints in an STP (the starting and ending point
of a repeated action) to the STP containing the
constraints between its subactions, and is labelled
with the list of properties describing the temporal
constraints on the repetitions (i.e., RSpec). In Fig. 7,
for example, the repeated actions composing the
guideline (i.e., the actions composing a and b) are
represented in separated STPs, children nodes of
the actions a and b.
e starting and ending points of action x, respectively.
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Figure 8 Algorithm for generating the STP-tree of temporal constraints in a guideline.
4.2.1. Mapping high-level temporal
constraints onto an STP-tree
The STP-tree corresponding to a guideline can be
automatically constructed on the basis of the tem-
poral constraints in the guideline (expressed using
the high-level language in Section 3) by executing an
algorithm such as the one sketched in Fig. 8.

The algorithm recursively constructs the STP-
tree, from the root to the leaves, by putting in each
STP-node all the actions except the components of
repeated actions, which are represented in separate
STP-nodes. On the other hand, the partOf relations
that do not involve repeated actions are repre-
sented in the same STP as the composite action
by adding to such an STP-node the constraints that
all the components are contained into the corre-
sponding composite action. To summarize, in the
STP-tree there are asmany STP-nodes as the number
of repeated actions, and in each STP-node there are
as many actions as the number of actions in the
guideline that are parts of the repeated action that
the STP-node represents. Specifically, each action is
represented in the STP-node as a pair of time points,
while constraints between (not repeated) actions
Figure 9 STP of the inst
are represented by arcs connecting them (see
Fig. 7).

Additionally, an independent STP must be used in
order to represent the temporal constraints about
the specific instances of the actions of the guide-
lines, as emerging from executions of the guidelines
on specific patients. In Fig. 9 the STP for the
instances of Example 2A is represented. The tem-
poral point X0 is the reference point and in this case
it represents the midnight of the day when the
execution of the guideline started. For example,
the two edges labelled ‘‘[32h,33h]’’ between X0 and
the two endpoints of a111 represent the fact that
a111 is (entirely) executed between 8 and 9 a.m. of
the second day; the two edges labelled ‘‘[0,0]’’
between the endpoints of a111 and a121 represent
the fact that the two events are performed at the
same time.

4.3. Checking the consistency of a
guideline

Given an STP-tree, it is possible to check its con-
sistency in an intensional way, i.e., without gener-
ances for Example 2A.
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Figure 10 Algorithm for checking the consistency of a guideline (represented as an STP-tree).
ating every repetition of repeated actions. How-
ever, it is not sufficient to check the consistency of
each STP contained in the STP-nodes separately. In
such a case, in fact, we would neglect the repeti-
tion/periodicity information. Temporal consistency
checking, thus, proceeds in a top-down fashion,
starting from the root of the STP-tree towards its
leaves. Basically, the root contains a ‘‘standard’’
STP, so that the Floyd-Warshall’s algorithm can be
applied to check its consistency. Thereafter, for
each node X in the STP-tree (except the root), we
proceed as shown in the algorithm STP_tree_consis-
tency in Fig. 10.

STP_tree_consistency takes in input the STP-
node that must be checked (i.e. X) and the repeti-
tion/periodicity specification (i.e., the label of the
arc of the STP-tree entering STP-node X), and gives
as an output an inconsistency or, in the case of
consistency, the local minimal network of the con-
straints in X considering also the repetition/periodi-
city constraint. The procedure recursively calls
itself (step 5) on each level of the repetition spe-
cification. In the algorithm, we represent a recur-
sive n-level specification RSpec as a list of n
elements and head and tail operators select the
first element (i.e., the outmost level) and the rest of
the elements, respectively. For each level, it checks
whether the next level can be contained in the
current one (step 4 and procedure CheckLevelCon-
tainment) until it reaches the last level (step 1),
where it checks whether the STP-node can be
repeated as many times as imposed by the con-
straint itself (step 2 and procedure checkSTPCon-
tainment).
In procedure CheckLevelContainment, we com-
pute the minimum possible duration of all the repe-
titions (steps 1—2) and we check whether it is
consistent with the ITime of the level (step 3).
Please note that, since we impose that ITimes are
exact durations, they cannot change and we do not
need to propagate new information to higher levels
and to parent STP-nodes (see Property 1 below). To
compute the minimum duration of the repetitions,
we have to take into account that the ITime of the
next level will be repeated the number of times
indicated in the level (i.e., NRep times).

In procedure CheckSTPContainment, we com-
pute (steps 1—4) the maximum distance between
any pair of points that still allows to perform NRep
repetitions. In order to do so, we consider that
NRep-1 repetitions will have the minimum possible
duration and that all the remaining time (with
respect to the ITime in the specification) will be
assigned to the remaining repetition. Therefore, in
step 1 we propagate the STP constraints to obtain
the minimal network and the minimum (and max-
imum) distances between the points in the STP. In
step 3 we consider the minimum duration of the STP
(i.e., the maximum among the minimum distances
among any pairs of points in the STP) and in step 4
we compute the maximum duration of a repetition.
Then, in step 5, we add to the STP X the new
constraint that the STP can last at most maxDura-
tionSingleRepetition, and we propagate the con-
straints (step 6).

Example 3. The execution of the algorithm on the
node N2 of the STP-tree in Fig. 7 results in the call of
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the procedure STP_tree_consistency(N2, [2,14d,,
while(cw)], [1,7d,,]).

In the first step of recursion on RSpec (the second
parameter), procedure CheckLevelContain-
ment([2,14d,, while(cw)], [1,7d,,]) is invoked. min-
LevelDuration is 2 � 7d, that is 14 days, which is not
less than 14d, the ITime of the first level.

In the second and last step of recursion,
checkSTPContainment(N2, [1,7d,,]) is invoked.
After the propagation of the constraints in N2, we
have, among the other constraints, that Sa1 is from
5 to 6 days after Ea2. Since ‘‘5 days’’ is themaximum
among the minimum distances between the points
in N2, minDurationSingleRepetition is 5 days. max-
DurationSingleRepetition is 7d�(1 � 1) � 5d = 7
days. Adding the additional constraint that the
maximum distance between any two points of N2
must not be higher than 7 days does not alter N2,
because the constraints already existing are stricter.
Therefore, in this case, no new constraint is inferred
by the propagation in step 6.

Complexity. Let L be the maximum number of
nesting levels in a periodicity constraint and C the
number of classes in the STP-tree (i.e., the number
of actions in the guideline). Since the complexity of
the Floyd-Warshalls’s algorithm (in steps 1 and 6 of
procedure checkSTPContainment) is cubic on the
number of the points, the complexity of procedure
STP_tree_consistency is O(max{L,C3}).

Considering that usually the number of nesting
levels is less than the number of classes, we have
that the complexity of the procedure is O(C3).
Property 1. The top-down visit of the STP-tree is
correct and complete as regards consistency check-
ing of the constraints in the STP-tree.

Proof (sketch). The correctness of our algorithm
comes from the fact that there are only two types
of constraints that are inferred by the algorithms:
(i) t
he constraints explicitly added to STP in step 5
of checkSTPContainment;
(ii) t
he constraints inferred through constraint pro-
pagation via the Floyd-Warshall’s algorithm.
The former are trivially correct, since they simply
re-state in terms of bounds on differences the fact
that the maximum duration of each single repetition
cannot exceed maxDurationSingleRepetition, i.e.,
the maximum duration as derived from the labelled
arc.

As regards the latter, Floyd-Warshall’s algorithm
has been proved to be correct (and complete) on
bounds on differences.
Also the proof of completeness relies of the
properties of Floyd-Warshall’s algorithm (namely,
the fact that it is complete on bounds on differ-
ences). Therefore, completeness can be proved by
showing that:
(i) t
here is no need to propagate back and forth
constraints along the STP-tree, but it is enough
to operate locally on each pair <constraints on
the labelled input arc—constraints in the STP>;
(ii) a
ll the ‘‘intensional’’ constraints on the labelled
arc are mapped onto STP constraints and added
into the STP-node before the application of
Floyd-Warshall’s algorithm.
In turn, the proof of issue (i) can be split into two
parts.

First of all, one has to show that the constraints
into an STP cannot modify the constraints on the
corresponding arc. The syntax of constraints on
repetition has been deliberately limited in such a
way that such a condition always holds. In fact,
constraint propagation in an STP could potentially
modify the global duration of a repetition, thus
interacting with the constraint (about the global
duration) on the arc. However, this is excluded by
the fact that we only admit exact values for such
duration on the arc (the ITime component of the
specification is just an exact number); thus, the
duration, as inferred from the STP, may be either
consistent or inconsistent with it, but can never
modify it (e.g., restrict it, as in the common case
of propagation on bounds on differences).

Second, we have to prove that there is no pro-
pagation (back and forth) on constraints about the
duration of ITimes between different levels in the
(recursive) specification of repetition on an arc of
the STP-tree. This is trivially true, since ITimes at
each level are exact.

Therefore, since durations on arcs cannot be
modified, each STP-node can be treated indepen-
dently of the others.

Moreover, notice that the algorithm is complete
in checking possible inconsistencies between
the different levels: steps 2 and 3 in checkLevel-
Containment achieve such a goal, by evaluating the
minimal duration of a level of specification, and
check that it can be contained into the ITime of
the upper level.

As regards point (ii), it should be noticed that the
constraints on the arc impact those in the STP just as
regards the maximum duration of each repetition
(remember that the STP-node ‘‘intensionally’’
represents the ‘‘prototype’’ of each repetition).
Step 5 in checkSTPContainment adds such a con-
straint (notice that, since, in general, the starting
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Figure 11 Algorithm for checking the consistency of an execution of a guideline.
and ending actions represented in an STP might
be unknown, the algorithm simply adds the
maximum duration constraint on each pair of
actions).&

Notice, however, that the above reasoning
mechanism does not provide the minimal network
between all the actions in the STP-tree. Finally,
even if not explicitly stated, the algorithm takes
advantage also of a conversion table mapping each
input granularity provided to the user (currently, we
do not admit user-defined granularities [24,25]) into
the basic granularity.
Figure 12 Algorithm for visiting the STP-tr
4.4. Reasoning with the executions of the
guideline

In Figs. 11, 12, 14, 16—18 it is reported an algorithm
for checking the consistency of the execution of a
guideline with respect to its related guideline. In our
work, as in most approaches to clinical guidelines,
we suppose that one has full observability of
instances (i.e., all the instances of actions which
have been executed have been observed and
inserted into the knowledge base), and that, for
each instance, one knows the corresponding class of
actions and/or repetition in the guidelines.
ee and for generating the placeholders.
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The procedure integratedConsistency (see
Fig. 11) accepts three parameters: T is the STP-tree
that describes the constraints about classes of
actions in the guideline, E the STP that describes
the temporal constraints between the instances of
actions (i.e., the actions that have been executed
on specific patients), and NOW, that corresponds to
the time of the present. The basic idea is to:
1. v
isit the STP-tree and place the placeholders
representing the repetitions (see the semantics
of periodicity constraints in Section 3.1) (step 1);
2. p
lace the instances in the proper placeholders
and check whether the observed instances cor-
respond with the expected instances (according
to the STP-tree) (step 2). At this point, expected
but not observed instances are hypothesized to
occur in the future. Please note that steps 1 and 2
jointly inherit the periodicity constraints;
3. i
nherit the non-periodic temporal constraints
from classes to instances (step 3);
4. p
ropagate the constraints and check whether
they are consistent (step 4);
5. c
heck whether the missing instances may actu-
ally have not been observed because they will
start in the future (step 5).

Let us go into details of each point.

4.4.1. Visit the STP-tree
Procedures visitSTPTree, inheritPeriodicityCon-
straints and inheritRConstr (see Fig. 12) jointly visit
the STP-tree and make the periodicity constraints
explicit by adding the placeholders representing the
repetitions (as stated in the semantics of periodicity
constraints–—see Section 3.1).

Procedure visitSTPTree accepts as parameters an
STP-node (X), the STP of the instances (E) and the
placeholder that represents the possible repetition
which contains X (Parent) (if X is the root, Parent is
Figure 13 Placeholders obtained after step 1 of p
NULL). In step 1 it computes the number of times that
the STP-node is repeated (given the repetition spe-
cification labelling its entering arc). Then, for each
repeated action A in X (step 2), it adds the place-
holders representing the actions (step 3), the con-
straints of containment in the parent placeholder
(step 5), then it invokes the procedure inheritPer-
iodicityConstraint, which adds to E the placeholders
required by the periodicity constraint on the arc
entering A (step 7). Finally, step 7 performs the
recursivecall on thechild STP-node. Procedure inher-
itPeriodicityConstraints accepts as parameters E,
the STP that contains the instances, RSpec, the repe-
tition specification of a repeated action, and Parent,
theplaceholder that contains theentire repetition. It
recursively adds the proper placeholders of each
level of RSpec (see the description of the periodicity
constraints in Section 3.1).More specifically, in step 1
we check whether we have not reached the base
case; in this case,weextract fromRSpec the top level
(i.e., the quadruple [Nrep, ITime, Rconstr, Cond]). In
step 3 we add the temporal constraint that Parent
must last exactly ITime (seepoint (1)of the semantics
of periodicity constraints in Section 3.1), in step 4 we
add the Nrep placeholders (see, again, point (1)) in
the semantics and, for each one (step 5), we call
recursively the procedure on the remaining levels
(step 6). Then, we add the constraints that the Nrep
placeholders are contained in Parent (step 7) and
that they must not overlap (step 8) (see again, point
(1) in the semantics). Finally, we call procedure
inheritRConstr that adds the temporal constraints
implied by RConstr on the placeholders (see point (3)
in the semantics of ‘‘repetition(A, [Nrep, ITime,
Rconstr,])’’ in Section 3.1).

If we execute step 1 of procedure integratedCon-
sistency on Example 2, we obtain the placeholders
represented in the higher part of Fig. 6 (reported
again here in Fig. 13 for the sake of clarity) and the
related temporal constraints.
rocedure integratedConsistency on Example 2.
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Figure 14 Algorithm for placing the instances in the placeholders and for checking whether the missing instances are
consistent with the conditioned repetitions.
4.4.2. Place and check instances
At this point, we have added to the STP containing
the instances of the actions all the placeholders
implied by the semantics of the periodicity con-
straints. The following step is performed by proce-
dure placeAndCheckInstances.

In procedure placeAndCheckInstances (see
Fig. 14), for each instance of a repeated action,
we add the constraint that the instance is contained
in the proper placeholder (located by using the
instanceOf relation). Then (steps 4—11), we check
whether all the instances that the STP-tree provides
to exist have actually been observed. To perform
this task, for each missing instance (step 5), we
check whether its absence is justified by some
conditioned repetition (step 6). If it is not the
case, we hypothesize the missing instance by pro-
visionally inserting it in the STP about instances
and in the set futureInstances; afterwards (in pro-
cedure checkFuture), we will check if the instance is
missing because it might occur in the future. In
steps 9 and 10, we add the constraints that all
the observed instances have been started before
NOW.

Let us go into details of step 5. This check is
performed by procedure checkCond. It accepts as
parameters the STP-tree, the STP about instances
and the placeholder PParent

i that has no correspond-
ing instance, and returns SUCCESS if the absence of
the instance if justifiable by a conditioned repeti-
tion, FAIL otherwise. The procedure basically goes
back up on the levels of the repetition specifications
and on the STP-nodes of the STP-tree until it reaches
the root (see the recursive call on Parent in step 7
and the base case in step 1). More specifically, in the
algorithm we suppose that each placeholder is
labelled with the quadruple [Nrep, ITime, RConstr,
Cond] from the level of the repetition specification
corresponding to the placeholder (see the level R in
step 2 of procedure inheritPeriodicityConstraints
and the placeholders generated in step 4 of the
same procedure). (We have chosen to not explicitly
label the placeholders with the quadruple in order
to avoid a cumbersome notation.) If in the Cond
parameter of the quadruple there is an onlyIf(C)
condition (step 3), then we check (step 4) that there
are no instances belonging to the same placeholder.
In fact, if the condition C is false, then there cannot
be any instance belonging to the repetition (see the
semantics of onlyIf in Section 3.1). On the other
hand, if in the Cond parameter there is a while(C)
condition (step 5), then we check (step 6) that there
are no instances belonging to the same placeholder
and, moreover, no instance belonging to a following
repetition (see the semantics of while in Section
3.1).

If we execute step 2 of procedure integratedCon-
sistency on Example 2, we obtain the STP repre-
sented in Fig. 15. Regarding the missing instances,
we detect that: the first missing occurrence of a11
and of a12 is compatible with the onlyIf condition in
the periodicity constraint of a1, in fact both com-
ponents of a1 are missing; the following missing
occurrences of a11, a12 and a2 are compatible with
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Figure 16 Algorithm for inheriting the non-periodic temporal constraints.

Figure 15 Placeholders obtained after step 2 of procedure integratedConsistency on Example 2. Note that, for the sake
of clarity, not all temporal constraints are shown.
the while condition in the periodicity constraint of
a, in fact all the components of a are missing from
the second repetition and there are no following
repetitions; finally, the missing occurrence of b1 is
not justifiable by any condition in the periodicity
constraint of b, so we add b1 to futureInstances.

4.4.3. Inherit non-periodic constraints
The inheritance of non-periodic constraints is per-
formed by procedure inherit (see Fig. 16). For each
pair of instances (step 1), we instantiate the relative
temporal constraints on classes (expressed as
bounds on differences) (steps 2 and 3). Then (steps
4 and 5), we do the same for the placeholders, in
order to instantiate also the temporal constraints
from non-atomic actions.

For instance, in the example, the constraint that
a21 can last at most 2 days (deriving from the class
a2) is added to the instance.
Figure 17 Algorithm for propaga
4.4.4. Propagate constraints
In procedure propagate (see Fig. 17), we propagate
the temporal constraints by using the well-known
all-pairs shortest paths algorithm by Floyd and War-
shall.

4.4.5. Check future instances
In procedure checkFuture (see Fig. 18), after the
propagation of the constraints, we check whether
themissing instances that were hypothesized in step
8 of procedure placeAndCheckInstancesmust neces-
sarily start before NOW. In fact, in this case, we
report an inconsistency because we have not
observed a required instance.

In the example, we can detect that, if NOW has a
value comprised between the end of the place-
holder Pb

1 and the end of the placeholder represent-
ing the action b (as in Fig. 6), then the second
occurrence of b1 can consistently start in the future.
ting the temporal constraints.
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Figure 18 Algorithm for checking whether the missing and hypothesized instances may actually start in the future.
Optimizations. It is not necessary to hypothesize
all the missing instances, or to add all the place-
holders of a repeated action. In fact, it is possible to
exploit two optimizations:
(a) w
4 P
data
that
list o
acce
e hypothesize only the first missing repetition
of an action (hypothesizing the following ones
does not affect the consistency of the execu-
tionSTP [41]); and
(b) w
e generate the placeholders of the repetitions
only as far as there is a related instance; when
we reach the last instance in a repetition, we
may stop generating placeholders.
For the sake of clarity and brevity, such optimiza-
tions are not explicitly shown in the algorithm.

Complexity. Let us denote with C the number of
classes in the STP-tree, with I the number of
instances in the executionSTP, with R the maximum
number of times that an action is repeated and with
L the maximum number of levels in periodicity
specification.4

Since procedure visitSTPTree in Fig. 12 visits the
tree and generates the placeholders by ‘‘unfolding’’
the repetitions, step 1 of procedure integratedCon-
sistency in Fig. 11 is performable in a time
O(max{R � C,I}). Exploiting optimization (b), we
can reduce the time to O(max{C,I}), because we
have at most one repetition for each class without a
corresponding instance. After this step, the execu-
tionSTP will include also O(C) hypothesized
instances andO(I) placeholders, that isO(I + C) = O(-
max{I,C}) instances all together.

Regarding step 2, steps 1—3 of procedure pla-
ceAndCheckInstances in Fig. 14 can be performed in
a time O(max{I,C}). Steps 5—8 are iterated O(R � C)
times, but, exploiting optimization (b), we may
reduce to O(C) times. The call of checkCond takes
O(max{L,C}); therefore steps 5—8 take
O(max{L � C,C2}). Steps 9—11 of placeAndCheckIn-
stances take O(I) time, so that the entire procedure
is performed in O(max{I,L � C,C2}). Considering that
usually the number of nesting levels is less than the
lease note that we assume a suitable implementation of the
in STP-tree and in executionSTP. In particular, we assume

, given a class, it is possible to access in constant time to the
f its instances and that, given an instance, it is possible to
ss in constant time to its class.
number of classes, we have that the complexity of
the procedure is O(max{I,C2}).

Step 3 of procedure integratedConsistency can
be performed in a time O(max{I2,C2}), because it
iterates for each pair of instances (that are O(I + C))
and, then, for each pair of placeholders (that are
O(I)).

Step 4 of procedure integratedConsistency, since
Floyd-Warshall’s algorithm is cubic on the number of
points, can be performed in a time O(max{I3,C3}).

Finally, step 5 of procedure integratedConsis-
tency, exploiting the locality properties of STP con-
straints proved in [39], can be done in a time O(C),
since there are O(C) instances in futureInstances
and each check requires constant time.

Thus, the complexity of integratedConsistency
procedure is O(max{C,I} + max{I,C2} + max{I2,C2}+
max{I3,C3} +C) = O(max{C3,I3}).

Property 2. The integratedConsistency procedure
is correct and complete as regards consistency
checking of the constraints in the executionSTP
and in the STP-tree.

Proof (sketch). The proof is based on the fact that
all and only the temporal constraints specified in the
STP-tree are inherited on the instances, that the
semantics of the temporal constraints (including the
repetition/periodicity constraints) is met, and that
correct and complete temporal constraint propaga-
tion is performed via the all-pairs shortest paths
algorithm.&
5. Exploiting temporal reasoning
within Clinical Guidelines Systems

In Sections 3 and 4 we have proposed a principled
approach coping with issues (1)—(4) in Section 2.3.
In fact, it provides support for: qualitative and
quantitative temporal constraints and repetition/
periodicity constraints; composite actions; classes
and instances of actions considering also the inheri-
tance of constraints and the predictive role of the
classes. The adoption of our approach can provide
computer-based guideline systems with crucial
advances. In the following, we discuss several facil-
ities that can be designed on the basis of our repre-
sentation formalism (see Section 3) and constraint
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Figure 19 Next-action facility.

Figure 20 Yes/no query facility (only constraints about classes).
propagation algorithms (see Section 4), both during
guideline acquisition and execution. Although the
approach we propose is system-independent, in
some cases we will exemplify it by sketching how
we are planning to implement it in GLARE (Guide-
Line Acquisition, Representation and Execution)
[42—44]. GLARE is a prototypical system to acquire
and execute clinical guidelines, developed by the
Computer Science Department of the Università del
Piemonte Orientale of Alessandria (Italy) in coop-
eration with Azienda Ospedaliera San Giovanni Bat-
tista of Torino (the third hospital in Italy).

5.1. Temporal facilities

On the basis of above approach, the following facil-
ities can be provided by a computer-based manager
of clinical guidelines:
1. t
he consistency-checking-guideline facility:
this facility can be used in order to check the
temporal consistency of the guideline in a prin-
cipled way. Such a facility can be provided
through an invocation to the algorithm in
Fig. 10, which can be advocated at any stage
during the acquisition of a clinical guideline, so
that incremental consistency checking is also
possible. By default, consistency checking can
also be executed at the end of each acquisition
working session.
2. t
he consistency-checking-instance facility: this
facility can be used in order to check whether the
temporal constraints in the guideline have been
respected or not by the instances of actions that
have been executed on the specific patients
(considering also partial–—i.e., ongoing execu-
tions). Such a facility is directly provided by
our algorithm in Fig. 11.
3. t
he query facilities: during the execution of a
given guideline (e.g. the guideline for multiple
mieloma), the query facilities provide the user-
physicians with a tool to obtain temporal infor-
mation. This temporal information have often a
crucial role when the user-physicians must take a
decision. The set of the query facilities is:
3.1 the next-action facility: for scheduling pur-

poses, it is important to provide a facility to
assess when the next actions have to be
performed, given the constraints in the
whole guideline and given the time when
the last actions in the guideline have been
executed. The execution time of the next
action(s) can be obtained through the algo-
rithm in Fig. 19.

3.2 the yes/no query facility: given the set KB of
temporal constraints in the guideline (and
possibly the constraints KB0 on the instances
of actions), one may ask whether a given set
Q of temporal constraints is possible given
KB (i.e., if it is consistent with KB). For
instance, one may ask whether, given the
constraints in Example 2, the first repetition
of action b can be performed 16 days after
the first repetition of a11. Moreover, one
may ask the same question given the con-
straints in Example 2 plus those (regarding
the specific instances of actions) in Example
2A. If the query Q only involves constraints in
the guideline, the algorithm in Fig. 10 can be
used, along the lines shown in Fig. 20. On the
other hand, in case the query Q also involves
constraints on the instances of actions, the
algorithm in Fig. 11 must be used to check
consistence (see Fig. 21)

3.3 the extract facility: this facility outputs the
temporal constraints between a given set of
actions. Such a facility can be efficiently
implemented on the basis of the minimal
network provided by our algorithm in
Fig. 11 (along the lines discussed in [40],
and using the locality properties proven in
[39] to enhance efficiency), e.g., to have in
output the minimal and maximal distance
between the pairs of actions;
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Figure 21 Yes/no query facility (constraints about classes and instances).

5

dea
act
suc
act
foc
3.4 the hypothetical query facility. In order to
enhance the decision-making facilities,
hypothetical temporal queries can be pro-
vided, to ask queries in the hypothesis that
a new set TC of temporal constraints is
assumed (in addition to the constraints in
the guideline and those about instances).
Hypothetical queries can be expressed in
the abstract form

Q? If TC

where Q is any type of query in our approach
(i.e., a next-action, yes/no, or extract
query). For example, given a pattern A1,
. . ., An of actions in a guideline, temporal
reasoning can be used in order to answer
queries such as ‘‘If I perform action A1 today
at 12 o’clock, when will I have to perform A2,
. . ., An?’’, or ‘‘Is it OK if I perform A1 today at
12, A2 at 18 and A3 at 20, and, if so, when will
A muc
l wit
ions w
h an e
ion in
uses o
I have to perform A4?’’.
Hypothetical queries can be answered in two
steps (see Fig. 22):
4. t
he temporal-simulation facility: still consider-
ing decision making, temporal reasoning can be
profitably coupled with ‘‘simulation’’ computer-
based facilities to see the temporal conse-
quences of choosing among different alternative
paths in a guideline. In particular, GLARE pro-
vides the ‘‘what if?’’ facility allowing physicians
to discriminate among different alternatives of a
decision by simulating the consequences of each
choice, i.e., by visiting the paths in the guideline
stemming from each of the alternatives (see,
e.g., [43]). Taking advantage of the algorithm
in Fig. 11, such a facility can be extended in order
to provide physicians with a way of comparing
paths from the temporal point of view (i.e., in
order to find the maximal and minimal temporal
duration of each path). This facility can be pro-
vided as in Fig. 23.5
h more complex extension should be needed in order to
h the fact that physicians might choose to execute
hich are not present in the given guideline. However,
xtension, which would involve an explicit treatment of
tentions [2], is outside the goals of this paper, which
n temporal issues.
5.2. A modular architecture

In our opinion, in order to enhance the generality of
the temporal reasoning approach, such facilities
can be better provided by a modular approach, in
which a layered Temporal Server (TS) is loosely
coupled with a guideline system (see Fig. 24).
The TS can be seen as an object (e.g. a Java object)
that interacts with the Guideline System using a
Graphical User Interface (GUI) and that provides a
set of methods implementing the facilities
described above. The clinical guideline system
delegates temporal-related problems to the TS
module. The core of TS is the temporal reasoner
(TR), that consists of the implementation of the
two temporal reasoning algorithms in Figs. 10
and 11, and of the related data structures. The
facilities layer uses the two consistency-checking
algorithms in order to provide the facilities 1—4
along the lines described above. Moreover, for
acquiring and representing temporal information
the interface layer may make use of advanced
visualization techniques such as the ones described
in [30—33].

6. Comparisons and conclusions

In this paper, we propose a principled domain- and
system-independent approach to the treatment of
temporal constraints in clinical guidelines. We first
motivate the introduction of a new and principled
approach to the different types of temporal con-
straints involved in clinical guideline management.
We then propose a new representation formalism,
coping with both qualitative and quantitative tem-
poral constraints, and constraints about (possibly
periodic) repeated events. We also introduce two
correct, complete and tractable algorithms to per-
form temporal reasoning on our formalism. Finally,
we show how they can be used to implement dif-
ferent types of temporal reasoning facilities in a
clinical guideline system. The formalism and the
algorithms in this paper are an integration and an
extension of our preliminary work in [41,44]. In
particular, the treatment of conditioned repetitions
(see Sections 3 and 4) and the design of the temporal
facilities and of the architecture (see Section 5) are
entirely new contributions of this paper.
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Figure 23 Temporal simulation.

Figure 22 Hypothetical queries.
The approach by Miksch et al. [19] is the closest
one to ours in the literature. With respect to such an
approach, we propose an extended language to deal
with repetitions (e.g., we cope with conditioned
repetitions, through the ‘while’ and ‘onlyIf’ con-
structs). Moreover, in order to grant the complete-
Figure 24 A modular architecture fo
ness of the constraint-based temporal reasoning
process, we had to extend the basic STP framework,
via the definition of the STP-tree and of the related
constraint propagation algorithms. Finally, from the
point of view of end-users, we also provide, besides
the facilities in Miksch’s approach (except temporal
r our temporal knowledge server.
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constraint visualization), the facilities 2—4 dis-
cussed in Section 5. In particular, the treatment
of the ‘‘a posteriori’’ consistency between the
temporal constraints in the guideline and of the
execution times (i.e., facility 2) requires several
extensions both from the representation point
of view (since a separate STP needs to be
used) and from the algorithmic point of view
(since new constraint-propagation-based temporal
reasoning algorithms have to be devised–—see
Section 4.4).

Temporal reasoning and query-answering facil-
ities considering only qualitative constraints about
atomic and not repeated actions in the medical
domain have been also provided in [45]. Among
related approaches in other areas, it is worth men-
tioning also the work in [46], dealing with facility 1
(and other facilities) in the closely related field
of Workflow management, and considering also
multiple granularities and disjunctive temporal
problems.

Before concluding, it is worth discussing one of
the assumptions of our approach, which relies on the
full observability of instances of actions (i.e., the
fact that we suppose that whenever an action is
performed on a patient, it is observed and inserted
in the set of instances of actions managed by our
temporal reasoner). This assumption is reasonable
in several practical applications: it holds for fully
monitored patients (e.g., intensive care patients),
and should (hopefully) hold also for hospitalized
patients. In case such an assumption does not hold,
either an exponential complexity extension of our
algorithms must be devised, or the representation
formalism must be restricted to preserve computa-
tional tractability, as we did in the general-purpose
domain-independent temporal reasoner we pro-
posed in [47].

Finally, it is worth mentioning that we have
identified and tested our formalism considering
also, besides the examples from the literature,
two sets of temporal constraints arising from clinical
protocols and guidelines, provided us by Prof. John
Fox, Advanced Computation Laboratory, Cancer
Research UK, London, UK and by Prof. Gianpaolo
Molino, Azienda Ospedaliera San Giovanni Battista,
Turin, Italy. We have a coverage of most of the
temporal constraints contained in such sets. How-
ever, having to mediate between the expressiveness
of the representation formalism and the goal of
providing computationally tractable complete
forms of temporal reasoning, we had to leave out
some forms of disjunctive constraints, the most
frequent of which is the ‘‘non-overlapping’’ con-
straint, stating that two actions A and B can be
performed in any order, but at different times (i.e.,
Before(A,B) OR After(A,B), in the terms of Allen’s
Algebra [48]); as well known in the AI literature,
such kind of constraints makes complete temporal
reasoning intractable). In our future work, we will
try to investigate whether ad hoc extensions of our
approach can be devised to deal efficiently with
such constraints, exploiting the fact that they are
relatively rare in most practical clinical guidelines
(a more general solution would involve the exten-
sive use of TCSP [29]; a drawback of TCSP is the
exponential running times of the temporal reason-
ing algorithms.

Also, as future work, we plan to implement a Java
version of the approach presented in this paper, and
to loosely pair it with GLARE, according to the
architecture discussed in Section 5.2.
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