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a b s t r a c t

In this paper, we describe a framework able to support run-time adjustment and a

posteriori analysis of business processes, which exploits the retrieval step of the Case-

based Reasoning (CBR) methodology. In particular, our framework allows to retrieve

traces of process execution similar to the current one. Moreover, it supports an automatic

organization of the trace database content through the application of hierarchical

clustering techniques. Results can provide help both to end users, in the process

execution phase, and to process engineers, in (formal) process conformance evaluation

and long term process schema redesign.

Retrieval and clustering rely on a distance definition able to take into account

temporal information in traces. This metric has outperformed simpler distance defini-

tions in our experiments, which were conducted in a real-world application domain.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Business Process (BP) Management is a set of activities
aimed at defining, executing and optimizing BP, with the
objective of making the business of an enterprise as
effective and efficient as possible, and of increasing its
economic success. Such activities are highly automated,
typically by means of workflow management systems, also
called Business Process Management System (BPMS) [1,2].

In normal conditions, a BPMS allows to automatically
execute a BP according to its process schema, i.e., to a
formalized model in which the actions to be performed
and the control flow relations to be respected among
them are specified. However, BP optimization may ask the
enterprise to be able to flexibly change and adapt such a
predefined process schema, in response to expected
situations (e.g., new laws, reengineering efforts) as well

as to unanticipated exceptions and problems in the operating
environment (e.g., emergencies) [3].

The agile workflow technology [4,5] is the technical
solution which has been invoked to deal with such
adaptation and overriding needs. It can support both ad
hoc adjustments of individual process instances [6,7],
operated by end users, and redesign at the general process
schema level, operated by process engineers—applicable
even if the default process schema is already in use by
some running instances [6,8].

In order to provide an effective and quick adaptation
support, many agile workflow systems share the idea of
recalling and reusing concrete examples of changes

adopted in the past. To this end, Case-based Reasoning
(CBR) [9] has been proposed as a natural methodological
solution. CBR is a reasoning paradigm that exploits the
specific knowledge of previously experienced situations,
called cases. It operates by retrieving and reusing similar
cases in order to solve the problem at hand (after a
possible revision of the retrieved solutions, if needed).
Indeed CBR is particularly well suited for managing
exceptional situations, even when they cannot be fore-
seen or preplanned. As a matter of fact, in the literature
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cases have often been resorted to in order to describe
exceptions, in various domains (see e.g. [10]), and many
examples of CBR-based process change support have been
proposed (see e.g. [7,11–15]).

The implementation of a proper CBR-based support for
process adjustment and analysis obviously starts from a
careful evaluation of past cases representation. In many
applications, past examples of change are recorded as
traces of execution [16] (stored in a database, also known
as event log [17]), i.e., as the sequence of the process
actions that were actually performed, often coupled with
their starting and ending time. In the simplest form, a trace
does not log any other feature about the executed actions
(e.g., the actor, or the available resources). Moreover,
usually it does not provide any contextual information,
which could justify the reasons for possible deviations
from the prescriptions of the default process schema.

In this paper, we propose a support to BP adjustment
and analysis which adopts the retrieval step of the CBR
methodology, specifically designed to work on cases in
the form of traces of execution.

In our framework, retrieval is meant to help end users

in the process execution phase, when dealing with an
atypical situation. Indeed, suggestions on how to adjust
the default process schema in the current situation may
be obtained by analyzing the most similar retrieved
examples of change, recorded as traces that share the
starting sequence of actions with the current query (i.e.,
with the input problem).

Moreover, we support an automatic organization of
the case base content (i.e., of all the available traces)
through the application of hierarchical clustering techni-
ques. Clustering can serve as a starting point for a set of a
posteriori trace analyses. In particular, it can help process

engineers in conformance evaluation (e.g., it can be an
input to formal verification of the conformance of traces
to proper semantic constraints [18]). Additionally, since
changes can also be due to a weak or incomplete initial
process schema definition, engineers can exploit (retrieval
and) clustering results to draw some suggestions on how
to redesign process schemata, in order to incorporate the
most frequent and significant changes once and for all.

In our work retrieval and clustering rely on a distance
definition able to take into account temporal information.

Interestingly, only a few metrics specifically designed
to work on traces have been described in the literature.
Moreover, most of them do not manage temporal infor-
mation; in particular, a properly way of comparing
qualitative temporal constraints is usually not provided
(see Section 5).

On the other hand, neglecting time can be a significant
flaw. In fact, time is really crucial in some applications.
In medicine, for instance, the role of time is clearly
central: it is mandatory to penalize the fact that the very
same action had different durations in two traces, or was
delayed, especially if referring to emergency procedures.
And, generally speaking, temporal information is relevant
in all domains, as it can be used e.g., to discover bottle-
necks and to measure service levels [17].

The metric we introduce in this work allows us to
explicit manage temporal information in traces, paying

attention both to quantitative and to qualitative
constraints.

In addition to this methodological contribution, in the
paper we also describe our experimental work in the field
of stroke care, in which we compared the new metric to a
classical existing one (namely, the edit distance [19,20]),
and to simpler versions of our distance definition, able to
manage only part of the overall information available on
traces.

The paper is organized as follows. Section 2 presents
technical details of the framework. Section 3 describes
experimental results. Section 4 adds information about
recent methodological improvements we are providing, in
order to enhance the framework performance. Section 5
addresses some comparisons with related works. Finally,
Section 6 is devoted to conclusions, discussion of limita-
tions and future research directions.

2. A framework for supporting BP adjustment and
analysis

This section describes methodological and technical
details of our framework.

In particular, central tasks that all CBR tools have to
deal with are [9] to define the notion of case, and to find a
past case similar to the input one (i.e., to implement
retrieval). Case definition and retrieval methods can vary
considerably [9], and should be tailored to the needs of
the application domain. Specifically, a proper distance
definition has to be introduced, in order to optimize the
reliability of retrieval results. The quality of clustering
output also strongly depends on the distance we define.

In our work, the notion of case is related to the one of
trace [16]. As for the distance definition, as observed in
the Introduction, our goal has been the one to explicitly
manage temporal information too, thus overcoming the
limitations of many existing works.

Our notion of case and our case distance definition are
illustrated in Section 2.1. Section 2.2 then moves to the
choice of specific retrieval and clustering approaches.

2.1. Case representation and distance definition

We define a case as a trace of execution of a given
process schema. In particular, every trace is a sequence of
actions, each one stored with its execution starting and
ending times. Additional action features (e.g., actors,
available resources) are not recorded in our framework.
Therefore, an action is basically just a symbol (plus the
temporal information).

The only type of control flow structure we explicitly
deal with is sequence, since traces record what has already
been executed. This means that alternatives are not
possible, and iterations are completely unfolded. Partial
or complete parallelism between actions may have taken
place, and can be derived from action starting and ending
times. Indeed, starting and ending times allow to get
information about action durations, as well as qualita-
tive (e.g., Allen’s before, overlaps, equals, etc. [21]) and
quantitative temporal constraints (e.g., delay length,
overlap length [22]) between pairs of consecutive actions.
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For example, two completely parallel actions are comple-
tely overlapping actions (i.e., Allen’s equals [21]).

Fig. 1 provides a view of (part of) five real traces,
referring to the domain of stroke management. Identical
actions are depicted in the same color (e.g., yellow actions
are Computed Assisted Tomography), but can have a
different duration (e.g., Computed Assisted Tomography
lasts longer in the first trace). Examples of different
qualitative constraints are provided as well.

If we want to take into account all the types of
information we can find on traces, we need to calculate
distance on the basis of both:

� atemporal information (i.e., action types);
� temporal information (i.e., action durations, qualitative

and quantitative constraints between pairs of conse-
cutive actions).

Indeed, temporal information is generally very rele-
vant, because it can be used e.g., to discover bottlenecks
and to measure service levels [17]. Moreover, in many
domains (in particular medical ones, in which the role of
time is often central) it is mandatory to penalize the fact
that the very same action had different durations in two
traces, or was delayed (in fact, anomalous action lengths
and delays have to be justified, e.g., for legal purposes).

Operatively, we first take into account action types, by
calculating a modified edit distance which we have called
Trace Edit Distance. As the classical edit distance [19], our
metric tests all possible combinations of editing opera-
tions that could transform one trace into the other one
(see Section 2.1.1). Then, it takes the combination asso-
ciated to the minimal cost. Such a choice corresponds to a
specific alignment of the two traces, in which each action
in one trace has been matched to an action in the other
trace—or to a gap. We will call it the optimal alignment

henceforth.
Given the optimal alignment, we can then take into

account temporal information. In particular, we compare
the durations of aligned actions by means of a metric we
called Interval Distance.

Moreover, we take into account the temporal
constraints between two pairs of subsequent aligned
actions on the traces being compared (e.g., actions A and
B in trace P; the aligned actions A0 and B0 in trace Q).
We quantify the distance between their qualitative

constraints (e.g., A and B overlap in trace P; A0 meets B0

in trace Q), by resorting to a metric known as Neighbors-

graph Distance. If Neighbors-graph Distance is 0, because
the two pairs of actions share the same qualitative
constraint (e.g., A and B overlap in trace P; A0 and B0 also
overlap in trace Q), we compare quantitative constraints
by properly applying Interval Distance again (e.g., by
calculating Interval Distance between the two overlap
lengths).

These three contributions (i.e., Trace Edit Distance,
Interval Distance between durations, Neighbors-graph
Distance or Interval Distance between pairs of actions)
are finally combined as a linear combination with non-
negative weights (by now, we chose identical weights for
all contributions).

Formal definitions of Trace Edit Distance, Interval
Distance and Neighbors-graph Distance are provided
below.

2.1.1. Trace Edit Distance

In order to calculate Trace Edit Distance, we only
consider non-temporal information, i.e., we work on
traces as if they simply were strings of symbols, with
every action corresponding to a symbol.

We define a set of edit operations on traces. Each edit
operation performs a modification of the following kinds:
(i) substitute one action with a different one, (ii) insert a
new action, or (iii) delete an action.

However, in our approach, the cost of a substitution is
not always set to 1, as in the classical edit distance [19].
In fact, as in the weighted edit distance (see e.g. [23]),
we define it as a value 2 ½0,1� which depends on what
action appears in a trace as a substitution of the corre-
sponding action in the other trace. In particular, we
organize actions in a taxonomy, on the basis of domain
knowledge. The closer two actions are in the taxonomy,
the less penalty has to be introduced for substitution
([24]; see also [25–27]).

In detail, in our work substitution penalty is set to the
Taxonomic Distance between the two actions [24], i.e., to
the normalized number of arcs on the path between the
two actions in the taxonomy:

Definition 1 (Taxonomic Distance). Let a and b be two
actions in the taxonomy t, and let g be the closest
common ancestor of a and b. The Taxonomic Distance

Fig. 1. A view of (part of) five real traces, referring to the domain of stroke management. Identical actions are depicted in the same color (e.g., yellow

actions are Computed Assisted Tomography), but can have a different duration (e.g., Computed Assisted Tomography lasts longer in the first trace).

Examples of different qualitative constraints are provided as well. For instance, pink and purple actions overlap in trace 1, while pink action is before

purple action in trace 2 (see round shapes). On the other hand, red action is before orange action both in trace 2 and in trace 5, but the length of the delay

in between them is different in the two cases (see square shapes). (For interpretation of the references to color in this figure caption, the reader is referred

to the web version of this article.)
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dtða,bÞ between a and b is defined as

dtða,bÞ ¼
N1þN2

N1þN2þ2nN3

where N1 is the number of arcs in the path from a and g
in t, N2 is the number of arcs in the path from b and g, and N3

is the number of arcs in the path from the taxonomy root
and g.

The Trace Edit Distance traceNGLDðP,Q Þ is finally calcu-
lated as the Normalized Generalized Levenshtein Distance
(NGLD) [20] between two traces P and Q (interpreted as
two strings of symbols). Formally, we provide the follow-
ing definitions:

Definition 2 (Trace Generalized Levenshtein Distance). Let
P and Q be two traces of actions, and let a and b be two
actions. The Trace Generalized Levenshtein Distance
traceGLDðP,Q Þ between P and Q is defined as

traceGLDðP,Q Þ ¼min
Xk

i ¼ 1

cðeiÞ

( )

where ðe1, . . . ,ekÞ transforms P into Q, and

� cðeiÞ ¼ 1, if ei is an action insertion or deletion;
� cðeiÞ ¼ dtða,bÞ, if ei is the substitution of a (appearing in

P) with b (appearing in Q), with dtða,bÞ defined as in
Definition 1 above.

As already observed, the minimization of the sum of
the editing costs allows to find the optimal alignment
between the two traces being compared.

Definition 3 (Trace Edit Distance (Trace Normalized Gen-

eralized Levenshtein Distance)). Let P and Q be two traces
of actions, and let traceGLDðP,Q Þ be defined as in Definition
2 above. We define Trace Edit Distance traceNGLDðP,Q Þ
between P and Q as

traceNGLDðP,Q Þ ¼
2ntraceGLDðP,Q Þ

9P9þ9Q9þtraceGLDðP,Q Þ

where 9P9 and 9Q9 are the lengths (i.e., the number of
actions) of P and Q, respectively.

traceNGLDðP,Q Þ is just an application of NGLD [20] to
traces. Interestingly, it has been proved [20] that NGLD is
a metric. In particular, unlike other definitions of normal-
ized edit distance (e.g. [28]), it also preserves the triangle
inequality.

Like every variant of the classical edit distance
described in the literature, traceNGLDðP,Q Þ can be calcu-
lated resorting to a dynamic programming approach,
making its complexity tractable [20] (see however our
work on retrieval time improvement in Section 4).

2.1.2. Interval Distance

In our approach, action duration is represented as the
length of the interval bounded by the starting and ending
point of the action itself; starting and ending points of
two consecutive actions also allow to identify the type of
qualitative constraint between the actions themselves
(e.g., Allen’s interval relations [21] meets, before, overlaps,

etc.), and to quantify it (e.g., length of the delay, extension
of the overlap). Delay lengths and overlap extensions are
interval lengths as well.

In order to compare the lengths of matching intervals
we resort to a metric we have called Interval Distance,
defined as follows:

Definition 4 (Interval Distance). Let i and j be two inter-
vals of length leni and lenj, respectively, and let maxlen be
the length of the longest interval available in our trace
database. The Interval Distance intervaldði,jÞ between i

and j is defined as

intervaldði,jÞ ¼
9leni�lenj9

maxlen

It is worth stressing that Interval Distance is applied to
compare the durations of two aligned actions (according
to the optimal alignment—e.g., the yellow actions in
traces 1 and 3, see Fig. 1). Moreover, it is also exploited
to compare the lengths of intervals in between aligned
actions in the traces (see Fig. 1—square shapes), or the
lengths of two corresponding overlaps. In the case of
delay comparisons, maxlen is set to the length of the
longest delay logged in our trace database.

Once Interval Distance has been calculated referring to
all the actions in the two traces being compared, the
obtained contributions are summed up. Finally, we divide
by the length of the longest trace in the database
(in terms of number of actions).

Given such a definition, it is straightforward to prove
that Interval Distance is a metric.

2.1.3. Neighbors-graph Distance

When comparing two pairs of corresponding actions, it
may happen that they do not share the same qualitative
constraint (see Fig. 1—round shapes). In this case, we
cannot resort to Interval Distance to compare the inter-
action constraints, because they have a different semantic
meaning. On the other end, we can quantify the difference
between the two qualitative constraints by resorting to
the A-neighbors graph proposed by Freska [29] (see Fig. 2).

On such a graph, we can define the Neighbors-graph
Distance, as follows:

Definition 5 (Neighbors-graph Distance). Let i and j be
two Allen’s temporal relations [21], and let G be the
A-neighbors graph in Fig. 2. The Neighbors-graph Distance

ngraphdði,jÞ between i and j is defined as

ngraphdði,jÞ ¼
pathði,j,GÞ

maxk,l2Gfðpathðk,l,GÞÞg

where pathði,j,GÞ measures the shortest path on G

between i and j, and maxk,l2Gfðpathðk,l,GÞÞg normalizes
the distance considering the longest path on G.

As above, once Neighbors-graph Distance has been
calculated referring to all the actions in the two traces
being compared, the obtained contributions are summed
up. Finally, we divide by the length of the longest trace in
the database (in terms of number of actions).

Given such a definition, it is straightforward to prove
that Neighbors-graph Distance is a metric.

S. Montani, G. Leonardi / Information Systems 40 (2014) 128–141 131
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The final weighted average of Trace Edit Distance,
Interval Distance and Neighbors-graph Distance is then
a metric as well.

2.2. Retrieval and clustering techniques

Given the distance definition illustrated above, our
framework exploits it to implement classical methodolo-
gies for retrieval and clustering.

In particular, trace retrieval is performed by a
K-Nearest Neighbor technique, consisting in identifying
the closest k cases (i.e., traces) with respect to an input
one, according to the distance definition we have intro-
duced. Clearly, the value of k is a critical parameter, which
has to be (experimentally) set according to the specific
application domain needs.

The clustering facility we have implemented resorts to
a hierarchical clustering technique, known as Unweighted
Pair Group Method with Arithmetic Mean (UPGMA) [30].
UPGMA is typically applied in bioinformatics, where
sequences of symbols (similar to our traces) have to be
compared. The algorithm operates in a bottom-up fash-
ion. At each step, the nearest two clusters are combined
into a higher-level cluster. The distance between any two
clusters A and B is taken to be the average of all distances
between pairs of objects ‘‘x’’ in A and ‘‘y’’ in B, that is, the
mean distance between elements of each cluster. After
the creation of a new cluster, UPGMA properly updates a
pairwise distance matrix it maintains. UPGMA also allows
to build the phylogenetic tree of the obtained clusters,
which can be resorted to for user-friendly visualization
purposes, very useful in our domain.

3. Experimental results

In this section we will provide some results on cluster-
ing experiments. Some experiment on retrieval will be

presented in Section 4, where we will discuss our most
recent improvements.

All of our experiments were conducted working on
real patient traces taken from the stroke management
domain. Actually, Health-Care Organizations (HCO) place
strong emphasis on efficiency and effectiveness, to control
their health-care performance and expenditures: they
thus need to evaluate existing infrastructures and the
services provided. To perform this evaluation, it is crucial
to explore the data collected by the HCO systems, orga-
nizing them in the form of traces, which can be seen as
the history of what happened in the HCO itself. Traces can
be helpful to gain a clear picture of the actual care
process, through the use of techniques like the ones
introduced in this paper. These considerations motivated
the choice of a medical application as an example of
business process.

In particular, in our experiments we aimed at verifying
whether the distance function described in this paper was
able to overcome the performance of classical edit dis-
tance, and of simpler versions of our distance definition.
Namely, we have considered Trace Edit Distance alone,
which manages only non-temporal information, as well as
a metric that combines Trace Edit Distance and Interval
Distance. This last metric can manage action durations
and delays between actions, but is unable to treat quali-
tative constraints other than before and meets, and is
unable to make comparisons between different qualita-
tive constraints.

The hypothesis we wished to test was the following:
including domain knowledge (through Trace Edit Dis-
tance) allows to obtain more homogeneous and compact
clusters (i.e., able to aggregate closer examples); including
temporal information provides even a further homogene-
ity improvement (moreover, obviously, the use of
Neighbors-graph Distance allows to deal with all kinds
of traces, and not only with strictly sequential ones).

The database on which we made our experiments was
composed of 100 traces collected at one of the largest
stroke management units in the Lombardia region, Italy.

Details of the application domain and experimental
results are provided below.

3.1. Stroke management

A stroke is the rapidly developing loss of brain func-
tion(s) due to disturbance in the blood supply to the
brain. This can be due to ischemia (lack of glucose and
oxygen supply) caused by thrombosis or embolism, or to a
hemorrhage. As a result, the affected area of the brain is
unable to function, leading to inability to move one or
more limbs on one side of the body, inability to under-
stand or formulate speech, or inability to see one side of
the visual field. A stroke is a medical emergency and can
cause permanent neurological damage, complications,
and death. It is the leading cause of adult disability
in the United States and Europe. It is the number two
cause of death worldwide and may soon become the
leading one.
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Fig. 2. The A-neighbors graph proposed by Freska [29]. The more two

qualitative constraints are similar, the shorter is the path between them

on the graph.
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The best medical practice [31] requires that stroke
patients are treated according to a management protocol,
which is basically composed by four steps:

1. emergency management;
2. hospitalization;
3. dismissal;
4. follow up.

Each step is in turn composed by a sequence of actions,
which must respect some criteria, although inter-patients
and inter-hospitals variations are admissible.

In particular, in step 1, symptoms onset must be
recognized, the patient must be taken to the hospital,
and a brain Computer Assisted Tomography must be
executed. In step 2, diagnosis has to be finalized, by
means of a neurological evaluation and of several addi-
tional diagnostic investigations, meant to confirm the
stroke hypothesis. Diagnostic procedures may vary, but
most patients undergo electrocardiogram and chest X-ray.
Finally, a proper therapy has to be initiated: up to 90%
patients are treated with antiaggregants. Rehabilitation
also must be started as soon as possible during
hospitalization.

In our experiments, we used traces collected on real
patients, detailing the actions of steps 1 and 2 (see also
Fig. 1 for some examples).

3.2. Comparing different distance measures

We compared the clustering results obtained by
adopting four different distance measures, namely

� (1) normalized edit distance [19,20];
� (2) Trace Edit Distance (see Definition 3 in Section 2.1);
� (3) a distance measure that linearly combines Trace

Edit Distance (see Definition 3 in Section 2.1) and
Interval Distance (see Definition 4 in Section 2.1.2).

Such a distance manages durations and delays between
actions, but is unable to treat qualitative constraints other
than before and meets, and is unable to compare different
qualitative constraints;
� (4) the more complete distance measure introduced in

Section 2.1.

We made our experiments working on two databases:

� DB1, in which some traces were modified, in order to
remove total or partial overlaps between actions; this
change was obtained by reducing the duration of some
actions;
� DB2, containing the original, real-world traces collected in

Lombardia.

The creation of DB1 as a modification of DB2 was
needed because distances (1), (2) and (3) cannot deal with
traces with overlapping actions (only distance (4) is
general enough to treat this issue).

Both databases contained 100 traces.

3.2.1. Quantitative results

Fig. 3 shows part of the cluster hierarchies we obtained
by applying distances (1) and (2), respectively, on DB1
(identical results were obtained on DB2, since temporal
information is ignored by these distances).

We can observe that the structure of the hierarchies
and the content of the resulting clusters is very different
in the two situations.

In particular, the hierarchy built using classical edit
distance (distance (1)—see Fig. 3, upper part) is very
unbalanced: every node is split into two children, one of
which usually corresponds to a very big cluster (contain-
ing most of the traces of its parent node), while the other
contains just a few traces.

On the other hand, the hierarchy built resorting to
Trace Edit Distance (distance (2)—see Fig. 3, lower part)

100

34(0.58) 66(0.57)

7(0.39) 27(0.56) 43(0.52) 23(0.51)

1[trace 20]
6(0.35)

26(0.55)

1[trace 4]

100

1[trace 53] 99(0.56)

9(0.51) 90(0.55)

7(0.38)
2(0.41)

18(0.51)

72(0.53)

(1)

(2)

5(0.42)

38(0.51)

9(0.51)

14(0.45)

Fig. 3. Part of the cluster hierarchies obtained by applying distance (1) (top) and distance (2) (bottom) on DB1. Every node represents a cluster

and reports the number of traces in the cluster itself, and their average normalized edit distance (in brackets).
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appears to be much more balanced, and every node is
normally split into two clusters of more comparable
dimensions. This is probably due to the strong penalty
assigned by distance (1) to all substitutions; such a
penalty often isolates some traces as anomalous ones
(see also the discussion on trace no. 53 below).

We also studied the cluster contents, in order to verify
cluster homogeneity. Homogeneity is a widely used mea-
sure of the quality of the output of a clustering method
(see e.g. [32–35]). A classical definition of cluster homo-
geneity is the following [32]:

HðCÞ ¼

P
x,y2Cð1�distðx,yÞÞ

9C9

2

 !

where 9C9 is the number of elements in cluster C, and
1�distðx,yÞ is the similarity between any two elements x

and y in C. Note that, in the case of singleton clusters,
homogeneity is set to 1 (see e.g. [35]).

The higher the homogeneity value, the better the
quality of clustering results.

The average of the homogeneity H of the individual
clusters can be calculated on (some of) the clusters
obtained through the method at hand, in order to assess
its quality. Average cluster homogeneity allows to com-
pare the output of different clustering techniques on the
same dataset (or the output obtained by differently
setting up the same clustering technique, as we did by
running UPGMA with different distance measures).

An appropriate definition of distðx,yÞ is problem depen-
dent [32]. In our domain, we exploited the normalized
edit distance between pairs of traces. The choice of the
edit distance allowed us to compare our more complex
distance measures with a very classical metric, used as a
common reference.

We calculated the homogeneity of the clusters
obtained using distances (1) and (2). We then computed
the average of cluster homogeneity values level by level in
the two hierarchies.

Finally, we calculated an additional indicator, namely
the average number of traces inside a cluster not exceed-
ing a normalized edit distance of 0.5.1

Results are reported in the first two columns of
Table 1.

Specifically, clusters obtained using distance (1) had an
average homogeneity of 0.47 at level 3 of the hierarchy,
while using distance (2) they reached an average homo-
geneity of 0.50. A similar trend was obtained if working at
other intermediate levels of the hierarchy (not reported
due to space constraints).

Additionally, with distance (2), the percentage of pairs
of traces with a distance o0:5 was 37% on average at
level 3 of the hierarchy, while it dropped to 28% using
distance (1).

Fig. 4, on the other hand, shows part of the cluster
hierarchies we obtained by applying distances (3) and (4),
respectively, on DB1.

As it can be observed in the figure, the hierarchies
obtained by applying distances (3) and (4) are very similar
(in topology and number of traces contained in the
clusters) to the one obtained by applying distance (2).
However, they lead to higher homogeneity values. At level
3, homogeneity grows to 0.60 when applying distance (3),
and to 0.62 when applying distance (4). Once again, a
similar trend was obtained if working at other intermedi-
ate levels of the hierarchy. The percentage of pairs of
traces with a distance o0:5 also grows progressively (see
Table 1).

Finally, Fig. 5 reports part of the hierarchy of clusters
obtained by applying distance (4) to the original traces (DB2),
which included all kinds of qualitative temporal constraints.
Distance (3) cannot be applied to this database.

With distance (4) homogeneity reaches the average
value of 0.62 at level 3 on DB2 as well, with an average
percentage of pairs of traces with a distance o0:5 of 52%
(see Table 1), thus leading to the best overall experimen-
tal results.

3.2.2. Analysis of specific traces

It is also interesting to comment on specific traces,
early isolated in (some of) the cluster hierarchies.
In particular, all distances, except distance (2), are able
to quickly isolate trace no. 53. Such a trace contains some
quite unusual actions as substitutions of more common
ones. Specifically, anticoagulant drugs were provided
instead of antiaggregant drugs, due to an allergy to
acetylsalicylic acid. Distance (1) penalizes this difference,
and early isolates the trace; on the other hand, distance
(2) does not, because the two actions are very close in the
stroke domain taxonomy (indeed, they both describe
therapeutic actions with very similar pharmacological
effects). The behavior of distance (2) is thus more correct
as for the medical semantic meaning, but neither distance
(1) nor distance (2) take into account the role of time. And
indeed time is relevant in this example, because trace no.
53 is anomalous in its temporal component too (its delays
between consecutive actions are often longer than the
ones of the other database traces; in fact, the patient was
quickly improving, thus justifying a longer observation
time between further drug provisions/support therapies).
Actually, distance (3) and distance (4), which introduce
the temporal contribution, are able to identify such a trace
as an anomalous one, and to isolate it quite early in their
hierarchies (even if they resort to Trace Edit Distance, i.e.,

Table 1
Average homogeneity (row 1) and average number of pairs of traces

with a distance o0:5 (row 2). All values are referred to clusters at level

3 in the hierarchies.

Distance (1) (2) (3) (4) (4-DB2)

Homogeneity 0.47 0.50 0.60 0.62 0.62

Pairso0:5 (%) 28 37 43 49 52

1 This less standard indicator was calculated to reinforce the

homogeneity results; note that the choice of 0.5 could be substituted

by a different one.
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to distance (2), for the atemporal component calculation).
Moving to more complete distance definitions thus allows
to correctly take into account all the different features
(i.e., action types and temporal information) recorded in
traces.

Another interesting example, which allows to com-
ment on the difference between distance (3) and distance
(4), is represented by trace no. 20. Distance (3) isolates
it early in the hierarchy, while distance (4) does not.
The reason can be found in the types of qualitative con-
straints recorded in trace no. 20, which includes many
meeting consecutive actions. On the other hand, in the
majority of the other database traces, one action is typically
before the next one. Distance (3) does not differentiate
between the two types of constraints, it only applies Interval
Distance to the delays between consecutive actions (delays
that are typically equal to zero in trace no. 20, and longer in
other traces). The different contributions obtained on delays
allow to identify trace no. 20 as an anomalous one. On the
other hand, trace no. 20 does not appear as a peculiar one
according to distance (4). In fact, the two qualitative con-
straints meets and before are now compared according to
Neighbors-graph Distance. Neighbors-graph Distance is low,
because the two relations are close in the A-neighbors graph;
this contribution, therefore, does not penalize trace no. 20 as
much as Interval Distance did.

3.2.3. Concluding remarks on experiments

In conclusion, our experiments show that the use of
domain knowledge and of temporal information in the
distance definition allows to obtain more homogeneous
and compact clusters (i.e., able to aggregate closer exam-
ples) in the intermediate levels of the hierarchy, which is
a desirable results—and a meaningful outcome, in a
domain like the one of emergency medicine, in which
the role of time is obviously central. As an interesting by-
product of clustering, anomalous traces are also correctly
isolated (according to the opinion of the domain experts
working with us).

In particular, the best homogeneity values are obtained by
resorting to distance (4), which also allows to properly
compare different qualitative temporal constraints. Of course,
distance (4) is also the only one which can be applied to
every database, including the one in which (partially) over-
lapping traces are recorded.

4. Improving performance through a pivoting-based
technique

As observed in Section 2, distance calculation is tract-
able, and indeed retrieval was fast in the experiments we
have conducted so far (see [36], where, however, we only
relied on Trace Edit Distance, and did not manage

100

39(0.49) 61(0.58)

1[trace 4] 38(0.48) 40(0.56) 21(0.50)

37(0.47)

1[trace 12]

(3)

(4)

39(0.55)

6(0.37)

15(0.47)

100

66(0.6) 34(0.59)

7(0.43) 59(0.59) 1[trace 53] 33(0.58)

58(0.58) 22(0.53)
1[trace 20]

6(0.40)

11(0.58)1[trace 55]

1[trace 53]

Fig. 4. Part of the cluster hierarchies obtained by applying distance (3) (top) and distance (4) (bottom) on DB1.

100

69(0.60) 31(0.55)

1[trace 4] 68(0.59) 9(0.44) 22(0.51)

43(0.56)

25(0.58)

(4)

2(0.54)

7(0.36)

17(0.47)

5(0.40)

Fig. 5. Part of the cluster hierarchy obtained by applying distance (4) on DB2.
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temporal information); nonetheless, it can become com-
putationally expensive when working on very large data-
bases. This problem has already been highlighted in
process retrieval [37].

To this end, we are currently designing and imple-
menting a methodology able to enhance the performance
of our tool, avoiding exhaustive search of similar traces.
Specifically, we are resorting to Pivoting-Based Retrieval

(PBR—see e.g. [38,39]), which allows one to focus on
particularly promising regions of the search space, and to
neglect the others.

The main idea in PBR consists in:

� computing the distance between a representative case
(Pivot) and all the other cases (off-line);
� computing the distance between the Pivot and the

input case;
� estimating the distance between the input case and all the

remaining cases using triangle inequality, thus finding a
lower and an upper bound for the distance value.

The intervals whose lower bound is higher than the
minimum of all the upper bounds can be pruned (see
Fig. 6).

We initialize BESTp¼1 and SOL¼ fg. We then apply
the following iterative procedure:

1. Choose the Pivot case as the minimum of the midpoints

of the intervals; compute the distance between the input

case and the Pivot (DIST); set BEST¼DIST;

2. If BESTp4BEST set SOL¼PIVOT and BESTp¼BEST;

3. Else if BESTp¼BEST set SOL¼{PIVOT,SOL};

4. Prune the intervals whose lower bound is bigger than

BEST, and remove the Pivot from the set of cases

Back to step 1.

We have made some first tests by defining the Pivot as
the mean case, i.e., the one whose average dissimilarity to
all the objects in the database is minimal. Other choices
based on heuristics can be considered as well.

Table 2 reports on our experiments on the use of PBR to
speed up retrieval time. We made tests on different case base
dimensions (from 250 to 3500 traces; artificial traces were
generated randomly to this end). On every case base, we
executed 400 queries. Table 2 compares the average query
answering time for retrieving the best 20 cases, with PBR
(column 2) and without PBR (column 3). The average number
of pruned cases when resorting to PBR is reported as well
(column 4). Experiments were performed on an Intel Core 2
Duo T9400, equipped with 4 GB of DDR2 RAM. Times are in
milliseconds. As it can be observed, up to 60% of the original
traces could be pruned in some situations, and retrieval time
always strongly improved (see also Fig. 7).

We also plan to implement a more complex solution,
in which we will first cluster the available traces (e.g.,
resorting to the well-known K-Means algorithm [40]), and
then select one Pivot for each cluster (i.e., the cluster
mean). Specifically, we will perform a multi-step retrieval,
in which:

� we identify the cluster the input case should be
assigned to;
� we apply the PBR procedure described above to the

cluster at hand (taking its mean as the initial Pivot).

An extensive experimental work will then follow, in
order to test the advantages of this enhanced PBR proce-
dure with respect to the standard PBR technique
described above, and to exhaustive search. Moreover, we
plan to carefully evaluate the trade-off between the
computational advantages of clustering-based early prun-
ing, and the risk of loosing close neighbors of the input
case, which belong to different clusters.

As a future research direction, we also plan to work on
how to apply a retrieval method based on cover trees [41]
to our domain. Indeed, such a method can potentially lead
to further significant computational improvements.

5. Related works

Examples of CBR tools in BP management, and specifically
in process adjustment support, are described in the literature
(e.g. [11,12,7,14,15]); a few works exploiting clustering
techniques are reported as well (e.g. [42,43])—even though
they mainly deal with process mining [44] (see below).

Since the main methodological contribution of our
work consists in the definition of a proper distance
function, in our comparison with the existing literature
we will first focus on this issue, and on the papers
providing interesting solutions in relation to it. We will

C1

C3

C2

PRUNED

BEST

Fig. 6. Bound pruning in PBR.

Table 2
Average query answering time (in milliseconds) for retrieving the best

20 cases, with PBR (column 2) and without PBR (column 3), on 14 case

bases of growing dimensions. The average number of pruned cases when

resorting to PBR is reported in column 4.

DB dimension Time with PBR Time no PBR Pruned

250 73.02 107.80 96

500 137.28 204.64 247

750 224.48 330.09 359

1000 289.56 419.00 501

1250 373.10 579.50 648

1500 450.97 654.88 860

1750 538.31 773.86 961

2000 585.09 854.68 1107

2250 662.96 979.12 1324

2500 717.49 1076.55 1448

2750 775.03 1158.50 1651

3000 815.46 1269.42 1846

3250 927.17 1413.68 1989

3500 1057.41 1563.17 2083
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then move to an analysis of works in process mining, in
order to clarify the possible connections and the borders
between our contribution and this research area. Finally,
we will discuss some contributions on BP management in
health care applications.

5.1. Distance functions

A number of distance measure definitions for agile
workflows exist. However, these definitions typically
require further information in addition to the workflow
structure, such as semantic annotations [45], or conversa-
tional knowledge [4,7]. Such approaches are usually
context-aware, that is, the contextual information
is considered as a part of the similarity assessment of
workflows. Unfortunately, any contextual information, as
well as conversational knowledge, is not always available,
especially when instances of process execution are
recorded as traces of actions. Starting from this observa-
tion, a rather simple graph edit distance measure [46] has
been proposed and adapted for similarity assessment in
workflow change reuse [14].

Our approach somehow moves from the same graph
edit distance definition. However, with respect to the
work in [14], by focusing just on traces of execution we
do not need to deal with control flow elements (such as
alternatives and iterations). As a matter of fact, traces are
always linear, i.e., they just admit the sequence control
flow element. From this point of view, our approach is
thus simpler than the one in [14].

On the other hand, when focusing on linear traces our
approach is more general and flexible. Indeed, we resort
to taxonomic knowledge for comparing pairs of actions,
so that two different actions do not always have a zero
similarity. Moreover, we have introduced a distance
definition which also allows to take into account qualitative

and quantitative temporal constraints between actions in
process logs. Such a capability is not provided at all in [14].

On the other hand, a treatment of temporal information
in trace distance calculation has been proposed in [47].
Somehow similarly to our approach, the distance defined
in that work combines a contribution related to action
similarity, and a contribution related to delays between
actions. As regards the temporal component, in particular,
it relies on an Interval Distance definition which is quite
similar to ours. Differently from what we do, however, the
work in [47] always starts the comparison from the last
two action in the traces: no search for the optimal action
alignment is performed. Moreover, it stops the calculation
if the distance between two actions/intervals exceeds a
given threshold, while we always calculate the overall
distance: as a matter of fact, even high distance values
are resorted to by our clustering algorithm. The distance
function in [47] does not exploit action duration, and does
not rely on taxonomical information about actions, as we
do. Finally, it does not deal with different types of quali-
tative temporal constraints, since it cannot manage (par-
tially) overlapping actions. We thus believe that our
approach is potentially more flexible in practice.

Another contribution [48] addresses the problem of
defining a similarity measure able to treat temporal
information, and is specifically designed for clinical work-
flow traces. Interestingly, the authors consider qualitative
temporal constraints between matched pairs of actions,
resorting to the A-neighbors graph proposed by Freska
[29], as we do. However, in [48] the alignment problem is
strongly simplified, as they only match actions with the
same name. Our approach thus extends their work.

5.2. Process mining

As it is well known, process mining [44] describes a
family of a posteriori analysis techniques exploiting the

Fig. 7. Comparison between the average query answering time for retrieving the best 20 cases, with PBR and without PBR, on 14 case bases of growing

dimensions—see Table 2 for numerical details.
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information recorded in traces. As well stated in [17],
process mining not only consists in discovering a process
schema when it is not available, but also supports con-
formance analysis and process enhancement. To support
conformance analysis, an already known process schema
can be compared with a model mined from the available
traces, typically by formal conformance checking techni-
ques (see e.g. [49]). Possible deviations can be identified,
and be used to support enhancement (e.g., process
schema repair or extension). The work in [50], for
instance, proposes to use association rules to properly
group deviating traces, making the analysis of deviations
less complex.

Indeed, our work on clustering could be seen as an
alternative approach (with respect to e.g. [50]) to provide
an input to the analysis of deviations, in which it is not
required to mine a model from traces (as in e.g. [49]).
Clusters may group traces conforming to the default
schema, but may also highlight the existence of frequent,
similar changes in the database. Clustering is a rather
simple data mining technique, and does not lead to the
extraction of a whole process model; nonetheless, clearly
grouping trace changes can be a significant support for
e.g. (formal) checking of conformance and verification of
semantic properties (but also for visual inspection by
human experts).

Clustering and trace alignment can also improve the
quality of the process mining activity itself (see e.g.
[42,43,51–53]): indeed, by first clustering traces, and then
applying process mining within single clusters, it is possi-
ble to obtain simpler and less confusing process models. In
the available literature approaches meant to provide this
functionality, however, temporal information is typically
not considered. Our work is therefore more complete.

Our framework could also be taken into account when
one has to deal with the concept drift issue in process
mining [17]. This issue refers to the fact that, when
mining a model from traces, it is normally assumed that
the process schema is in a steady state; however, pro-
cesses often change over time, and traces embed these
changes. Classical process mining techniques do not take
into account concept drift, and could provide low quality
mining results. A few exceptions are represented by the
very recent works in [54,55]. In [54], for instance, the
authors define proper features in traces and in the overall
event log, and statistically test the changes in feature
values to discover concept drift. They mainly focus on
changes in ordering relations between actions in traces,
while [55] is more interested in added/removed actions.
Clustering can be seen as a lazier support to concept drift
identification, where traces containing changes are auto-
matically separated from the cluster of traces fully com-
pliant with the default process schema. An analysis of
trace temporal information in such clusters could support
an identification of concept drifts, and in particular of
sudden and recurrent drifts (see [54]). Indeed, [55] sug-
gests the use of clustering techniques to identify concept
drift as well, however temporal constraints in traces are
not managed in that work (traces are only chronologically
ordered). We plan to further investigate this aspect in our
future work.

5.3. BP management in health care applications

Interestingly, BP management and process mining
techniques have gained particular attention in health care
applications in the latest years. Just to cite very recent
works, in [56] the complexities of health care processes
(i.e., clinical guidelines and pathways), which are human
centric, and multi-disciplinary in nature, are well ana-
lyzed. In [57] a system able to support adaptations of
running health care process instances is described. A lot of
attention is also devoted to conformance checking tech-
niques of clinical guidelines and pathways (see e.g.
[58,59]). The works in [60,52,61,53] deal with process
mining in health care. Specifically, [60,52] apply process
mining techniques to the stroke management and to
the gynecological oncology domains, respectively. The
contributions in [52,61,53] also propose pre-processing
techniques to improve process mining (which are highly
recommended in the medical domain, due to its complex-
ity, as discussed in the already cited [56]).

In particular [53] proposes a clustering approach to
pre-process traces, where each cluster is based on a
probabilistic model, namely a first-order Markov chain.
Such a work also focuses on the identification of anom-
alous traces, that can be found as belonging to clusters
with a very low support. Indeed, anomalous traces can be
highlighted by hierarchical clustering techniques as well
(see Section 3). A more systematic analysis of such
examples of infrequent behaviors could be considered in
our future research activity too.

On the other hand, the trace pre-processing approach
proposed in [61] is more knowledge-intensive with
respect to clustering, and requires the availability of
additional information that we do not suppose to have
in our traces.

In summary, the panorama on BP management in
health care, to which we are applying our framework, is
huge and very active. However, it is worth noting that our
work is absolutely general. Indeed, we plan to test it in
non-medical domains as well.

6. Concluding remarks and future work

In this work, we have described a case retrieval and
clustering approach to process change and analysis. In
particular, we have defined a proper case structure and a
new distance measure, that are exploited to retrieve
traces similar to the current one. Our system also allows
to automatically cluster the trace database content by
resorting to hierarchical clustering techniques.

We believe that such functionalities can help end users
who need to adapt a process instance to some unforeseen
situation, by retrieving changes applied in the past to
other instances of the same process. Moreover, process
engineers can take advantage of the retrieval and cluster-
ing results for identifying the most frequent changes to
the same process schema. Such changes can be an index
of non-conformance of process executions with respect to
proper constraints, but can also be a suggestion for
properly revising an incorrect or obsolete process schema
definition.
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The experimental results presented in this paper
testify the advantages of adopting a similarity metric
which explicitly takes into account temporal information,
and show the potential usefulness of the tool in the stroke
management domain, in which we are conducting our
first evaluations. Additional tests will be performed in the
future; applications to different domains will be consid-
ered as well.

We are also addressing the problem of retrieval on
large databases. Indeed, retrieval can become computa-
tionally expensive in these situations, as it has been
highlighted in the literature (see e.g. [37], which specifi-
cally refers to BP management applications). To this end,
we have implemented a non-exhaustive search strategy,
that exploits a Pivoting-Based Retrieval technique, allow-
ing one to focus on particularly promising regions of the
search space, and to neglect the others. The experimental
results we have collected so far are very encouraging too.

Nonetheless, our framework still presents some
limitations.

First, we have implemented clustering in order to
support trace analysis, and (if needed) trace redesign.
However, at the moment we do not provide an automatic
interface to analysis tools, such as logic-based confor-
mance checking facilities. Process engineers can visually
analyze clustering results, and manually input trace data
to process analysis tools. In the future, we would like to
overcome this limitation. Indeed, we are working at the
incorporation of our work as a set of plug-ins in the ProM
framework [62], which is an open source environment for
process mining. Within ProM, our plug-ins will be made
available for cooperation with a set of verification plug-
ins (Woflan analysis, verification of Linear Temporal Logic
formulas on a log, check of conformance between a given
process model and a trace), and performance analysis
plug-ins (basic statistical analysis and performance ana-
lysis with a given process model), already embedded in
the environment. Through such interactions, we believe
that our work will globally support a principled reengi-
neering activity, in line with the objectives described in
the Introduction.

Moreover, within ProM, clustering could also support the
process mining task itself, improving the quality of the
process mining output (as in e.g. [43,42], see Section 5).

Another limitation is related to the assessment of the
quality of the available traces. By now, we do not perform
any evaluation of trace quality, but make all of them
available for retrieval and clustering. On the other hand,
as highlighted in [17], traces have to be fully trustworthy,
if one wants to obtain meaningful analysis results. Indeed,
in the stroke application we could count on real world
traces of level nnn [17] at least, i.e., it was guaranteed that
the actions in the traces always matched reality. However,
this might not be the case in different applications:
sometimes the logging might be incomplete, or not fully
corresponding to reality. If we want to plan experiments
in other domains, we will have to address this issue
as well.

Moreover, it is worth observing that our case structure
is a very simple one, as we deal with traces, where only
sequence is represented as a control flow relation. It

might be very interesting to extend or framework in order
to deal with a more complex (e.g., graph-based) case
structure, as it happens in e.g. [14,37,63]. Studying this
extension will be one of our future goals as well.

Additionally, our tool could support the retrieval of
similar traces in systems for recommendations on next
process steps (see e.g. [64]). These tools are very inter-
esting, because they offer an on-line support for process
execution, and are based on traces—instead of process
schemata, which can be difficult to acquire/mine.

Furthermore, our approach could be properly adapted
in order to cluster change logs, as suggested in [65].
Change logs are quite different from execution traces, as
they record only changes with respect to the default
process schema (and not all the flow). On the other hand,
contextual information is sometimes available. This adap-
tation would thus probably rise some issues, however, it
seems to us an interesting research direction, which we
will consider in our future work.
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